llvm-project/llvm/lib/Target/AMDGPU/R600CodeEmitter.cpp

615 lines
16 KiB
C++

//===-- R600CodeEmitter.cpp - Code Emitter for R600->Cayman GPU families --===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This code emitters outputs bytecode that is understood by the r600g driver
// in the Mesa [1] project. The bytecode is very similar to the hardware's ISA,
// except that the size of the instruction fields are rounded up to the
// nearest byte.
//
// [1] http://www.mesa3d.org/
//
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPUUtil.h"
#include "AMDILCodeEmitter.h"
#include "AMDILInstrInfo.h"
#include "AMDILUtilityFunctions.h"
#include "R600InstrInfo.h"
#include "R600RegisterInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineInstrBuilder.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Target/TargetMachine.h"
#include <stdio.h>
#define SRC_BYTE_COUNT 11
#define DST_BYTE_COUNT 5
using namespace llvm;
namespace {
class R600CodeEmitter : public MachineFunctionPass, public AMDILCodeEmitter {
private:
static char ID;
formatted_raw_ostream &_OS;
const TargetMachine * TM;
const MachineRegisterInfo * MRI;
const R600RegisterInfo * TRI;
bool IsCube;
bool IsReduction;
bool IsVector;
unsigned currentElement;
bool IsLast;
public:
R600CodeEmitter(formatted_raw_ostream &OS) : MachineFunctionPass(ID),
_OS(OS), TM(NULL), IsCube(false), IsReduction(false), IsVector(false),
IsLast(true) { }
const char *getPassName() const { return "AMDGPU Machine Code Emitter"; }
bool runOnMachineFunction(MachineFunction &MF);
virtual uint64_t getMachineOpValue(const MachineInstr &MI,
const MachineOperand &MO) const;
private:
void EmitALUInstr(MachineInstr &MI);
void EmitSrc(const MachineOperand & MO, int chan_override = -1);
void EmitDst(const MachineOperand & MO);
void EmitALU(MachineInstr &MI, unsigned numSrc);
void EmitTexInstr(MachineInstr &MI);
void EmitFCInstr(MachineInstr &MI);
void EmitNullBytes(unsigned int byteCount);
void EmitByte(unsigned int byte);
void EmitTwoBytes(uint32_t bytes);
void Emit(uint32_t value);
void Emit(uint64_t value);
unsigned getHWReg(unsigned regNo) const;
};
} // End anonymous namespace
enum RegElement {
ELEMENT_X = 0,
ELEMENT_Y,
ELEMENT_Z,
ELEMENT_W
};
enum InstrTypes {
INSTR_ALU = 0,
INSTR_TEX,
INSTR_FC,
INSTR_NATIVE,
INSTR_VTX
};
enum FCInstr {
FC_IF = 0,
FC_ELSE,
FC_ENDIF,
FC_BGNLOOP,
FC_ENDLOOP,
FC_BREAK,
FC_BREAK_NZ_INT,
FC_CONTINUE,
FC_BREAK_Z_INT
};
enum TextureTypes {
TEXTURE_1D = 1,
TEXTURE_2D,
TEXTURE_3D,
TEXTURE_CUBE,
TEXTURE_RECT,
TEXTURE_SHADOW1D,
TEXTURE_SHADOW2D,
TEXTURE_SHADOWRECT,
TEXTURE_1D_ARRAY,
TEXTURE_2D_ARRAY,
TEXTURE_SHADOW1D_ARRAY,
TEXTURE_SHADOW2D_ARRAY
};
char R600CodeEmitter::ID = 0;
FunctionPass *llvm::createR600CodeEmitterPass(formatted_raw_ostream &OS) {
return new R600CodeEmitter(OS);
}
bool R600CodeEmitter::runOnMachineFunction(MachineFunction &MF) {
TM = &MF.getTarget();
MRI = &MF.getRegInfo();
TRI = static_cast<const R600RegisterInfo *>(TM->getRegisterInfo());
const R600InstrInfo * TII = static_cast<const R600InstrInfo *>(TM->getInstrInfo());
const AMDILSubtarget &STM = TM->getSubtarget<AMDILSubtarget>();
std::string gpu = STM.getDeviceName();
if (STM.dumpCode()) {
MF.dump();
}
for (MachineFunction::iterator BB = MF.begin(), BB_E = MF.end();
BB != BB_E; ++BB) {
MachineBasicBlock &MBB = *BB;
for (MachineBasicBlock::iterator I = MBB.begin(), E = MBB.end();
I != E; ++I) {
MachineInstr &MI = *I;
IsReduction = AMDGPU::isReductionOp(MI.getOpcode());
IsVector = TII->isVector(MI);
IsCube = AMDGPU::isCubeOp(MI.getOpcode());
if (MI.getNumOperands() > 1 && MI.getOperand(0).isReg() && MI.getOperand(0).isDead()) {
continue;
}
if (AMDGPU::isTexOp(MI.getOpcode())) {
EmitTexInstr(MI);
} else if (AMDGPU::isFCOp(MI.getOpcode())){
EmitFCInstr(MI);
} else if (IsReduction || IsVector || IsCube) {
IsLast = false;
// XXX: On Cayman, some (all?) of the vector instructions only need
// to fill the first three slots.
for (currentElement = 0; currentElement < 4; currentElement++) {
IsLast = (currentElement == 3);
EmitALUInstr(MI);
}
IsReduction = false;
IsVector = false;
IsCube = false;
} else if (MI.getOpcode() == AMDGPU::RETURN ||
MI.getOpcode() == AMDGPU::BUNDLE ||
MI.getOpcode() == AMDGPU::KILL) {
continue;
} else {
switch(MI.getOpcode()) {
case AMDGPU::RAT_WRITE_CACHELESS_eg:
{
uint64_t inst = getBinaryCodeForInstr(MI);
// Set End Of Program bit
// XXX: Need better check of end of program. EOP should be
// encoded in one of the operands of the MI, and it should be
// set in a prior pass.
MachineBasicBlock::iterator NextI = llvm::next(I);
MachineInstr &NextMI = *NextI;
if (NextMI.getOpcode() == AMDGPU::RETURN) {
inst |= (((uint64_t)1) << 53);
}
EmitByte(INSTR_NATIVE);
Emit(inst);
break;
}
case AMDGPU::VTX_READ_PARAM_i32_eg:
case AMDGPU::VTX_READ_PARAM_f32_eg:
case AMDGPU::VTX_READ_GLOBAL_i32_eg:
case AMDGPU::VTX_READ_GLOBAL_f32_eg:
case AMDGPU::VTX_READ_GLOBAL_v4i32_eg:
case AMDGPU::VTX_READ_GLOBAL_v4f32_eg:
{
uint64_t InstWord01 = getBinaryCodeForInstr(MI);
uint32_t InstWord2 = MI.getOperand(2).getImm(); // Offset
EmitByte(INSTR_VTX);
Emit(InstWord01);
Emit(InstWord2);
break;
}
default:
EmitALUInstr(MI);
break;
}
}
}
}
return false;
}
void R600CodeEmitter::EmitALUInstr(MachineInstr &MI)
{
unsigned numOperands = MI.getNumExplicitOperands();
// Some instructions are just place holder instructions that represent
// operations that the GPU does automatically. They should be ignored.
if (AMDGPU::isPlaceHolderOpcode(MI.getOpcode())) {
return;
}
// XXX Check if instruction writes a result
if (numOperands < 1) {
return;
}
const MachineOperand dstOp = MI.getOperand(0);
// Emit instruction type
EmitByte(0);
if (IsCube) {
static const int cube_src_swz[] = {2, 2, 0, 1};
EmitSrc(MI.getOperand(1), cube_src_swz[currentElement]);
EmitSrc(MI.getOperand(1), cube_src_swz[3-currentElement]);
EmitNullBytes(SRC_BYTE_COUNT);
} else {
unsigned int opIndex;
for (opIndex = 1; opIndex < numOperands; opIndex++) {
// Literal constants are always stored as the last operand.
if (MI.getOperand(opIndex).isImm() || MI.getOperand(opIndex).isFPImm()) {
break;
}
EmitSrc(MI.getOperand(opIndex));
}
// Emit zeros for unused sources
for ( ; opIndex < 4; opIndex++) {
EmitNullBytes(SRC_BYTE_COUNT);
}
}
EmitDst(dstOp);
EmitALU(MI, numOperands - 1);
}
void R600CodeEmitter::EmitSrc(const MachineOperand & MO, int chan_override)
{
uint32_t value = 0;
// Emit the source select (2 bytes). For GPRs, this is the register index.
// For other potential instruction operands, (e.g. constant registers) the
// value of the source select is defined in the r600isa docs.
if (MO.isReg()) {
unsigned reg = MO.getReg();
EmitTwoBytes(getHWReg(reg));
if (reg == AMDGPU::ALU_LITERAL_X) {
const MachineInstr * parent = MO.getParent();
unsigned immOpIndex = parent->getNumExplicitOperands() - 1;
MachineOperand immOp = parent->getOperand(immOpIndex);
if (immOp.isFPImm()) {
value = immOp.getFPImm()->getValueAPF().bitcastToAPInt().getZExtValue();
} else {
assert(immOp.isImm());
value = immOp.getImm();
}
}
} else {
// XXX: Handle other operand types.
EmitTwoBytes(0);
}
// Emit the source channel (1 byte)
if (chan_override != -1) {
EmitByte(chan_override);
} else if (IsReduction) {
EmitByte(currentElement);
} else if (MO.isReg()) {
EmitByte(TRI->getHWRegChan(MO.getReg()));
} else {
EmitByte(0);
}
// XXX: Emit isNegated (1 byte)
if ((!(MO.getTargetFlags() & MO_FLAG_ABS))
&& (MO.getTargetFlags() & MO_FLAG_NEG ||
(MO.isReg() &&
(MO.getReg() == AMDGPU::NEG_ONE || MO.getReg() == AMDGPU::NEG_HALF)))){
EmitByte(1);
} else {
EmitByte(0);
}
// Emit isAbsolute (1 byte)
if (MO.getTargetFlags() & MO_FLAG_ABS) {
EmitByte(1);
} else {
EmitByte(0);
}
// XXX: Emit relative addressing mode (1 byte)
EmitByte(0);
// Emit kc_bank, This will be adjusted later by r600_asm
EmitByte(0);
// Emit the literal value, if applicable (4 bytes).
Emit(value);
}
void R600CodeEmitter::EmitDst(const MachineOperand & MO)
{
if (MO.isReg()) {
// Emit the destination register index (1 byte)
EmitByte(getHWReg(MO.getReg()));
// Emit the element of the destination register (1 byte)
if (IsReduction || IsCube || IsVector) {
EmitByte(currentElement);
} else {
EmitByte(TRI->getHWRegChan(MO.getReg()));
}
// Emit isClamped (1 byte)
if (MO.getTargetFlags() & MO_FLAG_CLAMP) {
EmitByte(1);
} else {
EmitByte(0);
}
// Emit writemask (1 byte).
if (((IsReduction || IsVector) &&
currentElement != TRI->getHWRegChan(MO.getReg()))
|| MO.getTargetFlags() & MO_FLAG_MASK) {
EmitByte(0);
} else {
EmitByte(1);
}
// XXX: Emit relative addressing mode
EmitByte(0);
} else {
// XXX: Handle other operand types. Are there any for destination regs?
EmitNullBytes(DST_BYTE_COUNT);
}
}
void R600CodeEmitter::EmitALU(MachineInstr &MI, unsigned numSrc)
{
// Emit the instruction (2 bytes)
EmitTwoBytes(getBinaryCodeForInstr(MI));
// Emit IsLast (for this instruction group) (1 byte)
if (IsLast) {
EmitByte(1);
} else {
EmitByte(0);
}
// Emit isOp3 (1 byte)
if (numSrc == 3) {
EmitByte(1);
} else {
EmitByte(0);
}
// XXX: Emit predicate (1 byte)
EmitByte(0);
// XXX: Emit bank swizzle. (1 byte) Do we need this? It looks like
// r600_asm.c sets it.
EmitByte(0);
// XXX: Emit bank_swizzle_force (1 byte) Not sure what this is for.
EmitByte(0);
// XXX: Emit OMOD (1 byte) Not implemented.
EmitByte(0);
// XXX: Emit index_mode. I think this is for indirect addressing, so we
// don't need to worry about it.
EmitByte(0);
}
void R600CodeEmitter::EmitTexInstr(MachineInstr &MI)
{
unsigned opcode = MI.getOpcode();
bool hasOffsets = (opcode == AMDGPU::TEX_LD);
unsigned op_offset = hasOffsets ? 3 : 0;
int64_t sampler = MI.getOperand(op_offset+2).getImm();
int64_t textureType = MI.getOperand(op_offset+3).getImm();
unsigned srcSelect[4] = {0, 1, 2, 3};
// Emit instruction type
EmitByte(1);
// Emit instruction
EmitByte(getBinaryCodeForInstr(MI));
// XXX: Emit resource id r600_shader.c uses sampler + 1. Why?
EmitByte(sampler + 1 + 1);
// Emit source register
EmitByte(getHWReg(MI.getOperand(1).getReg()));
// XXX: Emit src isRelativeAddress
EmitByte(0);
// Emit destination register
EmitByte(getHWReg(MI.getOperand(0).getReg()));
// XXX: Emit dst isRealtiveAddress
EmitByte(0);
// XXX: Emit dst select
EmitByte(0); // X
EmitByte(1); // Y
EmitByte(2); // Z
EmitByte(3); // W
// XXX: Emit lod bias
EmitByte(0);
// XXX: Emit coord types
unsigned coordType[4] = {1, 1, 1, 1};
if (textureType == TEXTURE_RECT
|| textureType == TEXTURE_SHADOWRECT) {
coordType[ELEMENT_X] = 0;
coordType[ELEMENT_Y] = 0;
}
if (textureType == TEXTURE_1D_ARRAY
|| textureType == TEXTURE_SHADOW1D_ARRAY) {
if (opcode == AMDGPU::TEX_SAMPLE_C_L || opcode == AMDGPU::TEX_SAMPLE_C_LB) {
coordType[ELEMENT_Y] = 0;
} else {
coordType[ELEMENT_Z] = 0;
srcSelect[ELEMENT_Z] = ELEMENT_Y;
}
} else if (textureType == TEXTURE_2D_ARRAY
|| textureType == TEXTURE_SHADOW2D_ARRAY) {
coordType[ELEMENT_Z] = 0;
}
for (unsigned i = 0; i < 4; i++) {
EmitByte(coordType[i]);
}
// XXX: Emit offsets
if (hasOffsets)
for (unsigned i = 2; i < 5; i++)
EmitByte(MI.getOperand(i).getImm()<<1);
else
EmitNullBytes(3);
// Emit sampler id
EmitByte(sampler);
// XXX:Emit source select
if ((textureType == TEXTURE_SHADOW1D
|| textureType == TEXTURE_SHADOW2D
|| textureType == TEXTURE_SHADOWRECT
|| textureType == TEXTURE_SHADOW1D_ARRAY)
&& opcode != AMDGPU::TEX_SAMPLE_C_L
&& opcode != AMDGPU::TEX_SAMPLE_C_LB) {
srcSelect[ELEMENT_W] = ELEMENT_Z;
}
for (unsigned i = 0; i < 4; i++) {
EmitByte(srcSelect[i]);
}
}
void R600CodeEmitter::EmitFCInstr(MachineInstr &MI)
{
// Emit instruction type
EmitByte(INSTR_FC);
// Emit SRC
unsigned numOperands = MI.getNumOperands();
if (numOperands > 0) {
assert(numOperands == 1);
EmitSrc(MI.getOperand(0));
} else {
EmitNullBytes(SRC_BYTE_COUNT);
}
// Emit FC Instruction
enum FCInstr instr;
switch (MI.getOpcode()) {
case AMDGPU::BREAK_LOGICALZ_f32:
instr = FC_BREAK;
break;
case AMDGPU::BREAK_LOGICALNZ_f32:
case AMDGPU::BREAK_LOGICALNZ_i32:
instr = FC_BREAK_NZ_INT;
break;
case AMDGPU::BREAK_LOGICALZ_i32:
instr = FC_BREAK_Z_INT;
break;
case AMDGPU::CONTINUE_LOGICALNZ_f32:
case AMDGPU::CONTINUE_LOGICALNZ_i32:
instr = FC_CONTINUE;
break;
case AMDGPU::IF_LOGICALNZ_f32:
case AMDGPU::IF_LOGICALNZ_i32:
instr = FC_IF;
break;
case AMDGPU::IF_LOGICALZ_f32:
abort();
break;
case AMDGPU::ELSE:
instr = FC_ELSE;
break;
case AMDGPU::ENDIF:
instr = FC_ENDIF;
break;
case AMDGPU::ENDLOOP:
instr = FC_ENDLOOP;
break;
case AMDGPU::WHILELOOP:
instr = FC_BGNLOOP;
break;
default:
abort();
break;
}
EmitByte(instr);
}
void R600CodeEmitter::EmitNullBytes(unsigned int byteCount)
{
for (unsigned int i = 0; i < byteCount; i++) {
EmitByte(0);
}
}
void R600CodeEmitter::EmitByte(unsigned int byte)
{
_OS.write((uint8_t) byte & 0xff);
}
void R600CodeEmitter::EmitTwoBytes(unsigned int bytes)
{
_OS.write((uint8_t) (bytes & 0xff));
_OS.write((uint8_t) ((bytes >> 8) & 0xff));
}
void R600CodeEmitter::Emit(uint32_t value)
{
for (unsigned i = 0; i < 4; i++) {
_OS.write((uint8_t) ((value >> (8 * i)) & 0xff));
}
}
void R600CodeEmitter::Emit(uint64_t value)
{
for (unsigned i = 0; i < 8; i++) {
EmitByte((value >> (8 * i)) & 0xff);
}
}
unsigned R600CodeEmitter::getHWReg(unsigned regNo) const
{
unsigned HWReg;
HWReg = TRI->getEncodingValue(regNo);
if (AMDGPU::R600_CReg32RegClass.contains(regNo)) {
HWReg += 512;
}
return HWReg;
}
uint64_t R600CodeEmitter::getMachineOpValue(const MachineInstr &MI,
const MachineOperand &MO) const
{
if (MO.isReg()) {
return getHWReg(MO.getReg());
} else {
return MO.getImm();
}
}
#include "AMDGPUGenCodeEmitter.inc"