llvm-project/llvm/lib/Transforms/Utils/CanonicalizeFreezeInLoops.cpp

251 lines
8.0 KiB
C++

//==- CanonicalizeFreezeInLoops - Canonicalize freezes in a loop-*- C++ -*-===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This pass canonicalizes freeze instructions in a loop by pushing them out to
// the preheader.
//
// loop:
// i = phi init, i.next
// i.next = add nsw i, 1
// i.next.fr = freeze i.next // push this out of this loop
// use(i.next.fr)
// br i1 (i.next <= N), loop, exit
// =>
// init.fr = freeze init
// loop:
// i = phi init.fr, i.next
// i.next = add i, 1 // nsw is dropped here
// use(i.next)
// br i1 (i.next <= N), loop, exit
//
// Removing freezes from these chains help scalar evolution successfully analyze
// expressions.
//
//===----------------------------------------------------------------------===//
#include "llvm/Transforms/Utils/CanonicalizeFreezeInLoops.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/IVDescriptors.h"
#include "llvm/Analysis/IVUsers.h"
#include "llvm/Analysis/LoopAnalysisManager.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/LoopPass.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/Dominators.h"
#include "llvm/InitializePasses.h"
#include "llvm/Pass.h"
#include "llvm/Support/Debug.h"
#include "llvm/Transforms/Utils.h"
using namespace llvm;
#define DEBUG_TYPE "canon-freeze"
namespace {
class CanonicalizeFreezeInLoops : public LoopPass {
public:
static char ID;
CanonicalizeFreezeInLoops();
private:
bool runOnLoop(Loop *L, LPPassManager &LPM) override;
void getAnalysisUsage(AnalysisUsage &AU) const override;
};
class CanonicalizeFreezeInLoopsImpl {
Loop *L;
ScalarEvolution &SE;
DominatorTree &DT;
struct FrozenIndPHIInfo {
// A freeze instruction that uses an induction phi
FreezeInst *FI = nullptr;
// The induction phi, step instruction, the operand idx of StepInst which is
// a step value
PHINode *PHI;
BinaryOperator *StepInst;
unsigned StepValIdx = 0;
FrozenIndPHIInfo(PHINode *PHI, BinaryOperator *StepInst)
: PHI(PHI), StepInst(StepInst) {}
};
// Can freeze instruction be pushed into operands of I?
// In order to do this, I should not create a poison after I's flags are
// stripped.
bool canHandleInst(const Instruction *I) {
auto Opc = I->getOpcode();
// If add/sub/mul, drop nsw/nuw flags.
return Opc == Instruction::Add || Opc == Instruction::Sub ||
Opc == Instruction::Mul;
}
void InsertFreezeAndForgetFromSCEV(Use &U);
public:
CanonicalizeFreezeInLoopsImpl(Loop *L, ScalarEvolution &SE, DominatorTree &DT)
: L(L), SE(SE), DT(DT) {}
bool run();
};
} // anonymous namespace
// Given U = (value, user), replace value with freeze(value), and let
// SCEV forget user. The inserted freeze is placed in the preheader.
void CanonicalizeFreezeInLoopsImpl::InsertFreezeAndForgetFromSCEV(Use &U) {
auto *PH = L->getLoopPreheader();
auto *UserI = cast<Instruction>(U.getUser());
auto *ValueToFr = U.get();
assert(L->contains(UserI->getParent()) &&
"Should not process an instruction that isn't inside the loop");
if (isGuaranteedNotToBeUndefOrPoison(ValueToFr, nullptr, UserI, &DT))
return;
LLVM_DEBUG(dbgs() << "canonfr: inserting freeze:\n");
LLVM_DEBUG(dbgs() << "\tUser: " << *U.getUser() << "\n");
LLVM_DEBUG(dbgs() << "\tOperand: " << *U.get() << "\n");
U.set(new FreezeInst(ValueToFr, ValueToFr->getName() + ".frozen",
PH->getTerminator()));
SE.forgetValue(UserI);
}
bool CanonicalizeFreezeInLoopsImpl::run() {
// The loop should be in LoopSimplify form.
if (!L->isLoopSimplifyForm())
return false;
SmallVector<FrozenIndPHIInfo, 4> Candidates;
for (auto &PHI : L->getHeader()->phis()) {
InductionDescriptor ID;
if (!InductionDescriptor::isInductionPHI(&PHI, L, &SE, ID))
continue;
LLVM_DEBUG(dbgs() << "canonfr: PHI: " << PHI << "\n");
FrozenIndPHIInfo Info(&PHI, ID.getInductionBinOp());
if (!Info.StepInst || !canHandleInst(Info.StepInst)) {
// The stepping instruction has unknown form.
// Ignore this PHI.
continue;
}
Info.StepValIdx = Info.StepInst->getOperand(0) == &PHI;
Value *StepV = Info.StepInst->getOperand(Info.StepValIdx);
if (auto *StepI = dyn_cast<Instruction>(StepV)) {
if (L->contains(StepI->getParent())) {
// The step value is inside the loop. Freezing step value will introduce
// another freeze into the loop, so skip this PHI.
continue;
}
}
auto Visit = [&](User *U) {
if (auto *FI = dyn_cast<FreezeInst>(U)) {
LLVM_DEBUG(dbgs() << "canonfr: found: " << *FI << "\n");
Info.FI = FI;
Candidates.push_back(Info);
}
};
for_each(PHI.users(), Visit);
for_each(Info.StepInst->users(), Visit);
}
if (Candidates.empty())
return false;
SmallSet<PHINode *, 8> ProcessedPHIs;
for (const auto &Info : Candidates) {
PHINode *PHI = Info.PHI;
if (!ProcessedPHIs.insert(Info.PHI).second)
continue;
BinaryOperator *StepI = Info.StepInst;
assert(StepI && "Step instruction should have been found");
// Drop flags from the step instruction.
if (!isGuaranteedNotToBeUndefOrPoison(StepI, nullptr, StepI, &DT)) {
LLVM_DEBUG(dbgs() << "canonfr: drop flags: " << *StepI << "\n");
StepI->dropPoisonGeneratingFlags();
SE.forgetValue(StepI);
}
InsertFreezeAndForgetFromSCEV(StepI->getOperandUse(Info.StepValIdx));
unsigned OperandIdx =
PHI->getOperandNumForIncomingValue(PHI->getIncomingValue(0) == StepI);
InsertFreezeAndForgetFromSCEV(PHI->getOperandUse(OperandIdx));
}
// Finally, remove the old freeze instructions.
for (const auto &Item : Candidates) {
auto *FI = Item.FI;
LLVM_DEBUG(dbgs() << "canonfr: removing " << *FI << "\n");
SE.forgetValue(FI);
FI->replaceAllUsesWith(FI->getOperand(0));
FI->eraseFromParent();
}
return true;
}
CanonicalizeFreezeInLoops::CanonicalizeFreezeInLoops() : LoopPass(ID) {
initializeCanonicalizeFreezeInLoopsPass(*PassRegistry::getPassRegistry());
}
void CanonicalizeFreezeInLoops::getAnalysisUsage(AnalysisUsage &AU) const {
AU.addPreservedID(LoopSimplifyID);
AU.addRequired<LoopInfoWrapperPass>();
AU.addPreserved<LoopInfoWrapperPass>();
AU.addRequiredID(LoopSimplifyID);
AU.addRequired<ScalarEvolutionWrapperPass>();
AU.addPreserved<ScalarEvolutionWrapperPass>();
AU.addRequired<DominatorTreeWrapperPass>();
AU.addPreserved<DominatorTreeWrapperPass>();
}
bool CanonicalizeFreezeInLoops::runOnLoop(Loop *L, LPPassManager &) {
if (skipLoop(L))
return false;
auto &SE = getAnalysis<ScalarEvolutionWrapperPass>().getSE();
auto &DT = getAnalysis<DominatorTreeWrapperPass>().getDomTree();
return CanonicalizeFreezeInLoopsImpl(L, SE, DT).run();
}
PreservedAnalyses
CanonicalizeFreezeInLoopsPass::run(Loop &L, LoopAnalysisManager &AM,
LoopStandardAnalysisResults &AR,
LPMUpdater &U) {
if (!CanonicalizeFreezeInLoopsImpl(&L, AR.SE, AR.DT).run())
return PreservedAnalyses::all();
return getLoopPassPreservedAnalyses();
}
INITIALIZE_PASS_BEGIN(CanonicalizeFreezeInLoops, "canon-freeze",
"Canonicalize Freeze Instructions in Loops", false, false)
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
INITIALIZE_PASS_END(CanonicalizeFreezeInLoops, "canon-freeze",
"Canonicalize Freeze Instructions in Loops", false, false)
Pass *llvm::createCanonicalizeFreezeInLoopsPass() {
return new CanonicalizeFreezeInLoops();
}
char CanonicalizeFreezeInLoops::ID = 0;