llvm-project/flang
Diana Picus 776d0ed632 [flang] Fix overallocation by fir-to-llvm-ir pass
When converting a fir.alloca of an array to the LLVM dialect, we used to
multiply the allocated size by all the constant factors encoded in the
array type. This is fine when the array type is converted to the element
type for the purposes of the allocation, but if it's converted to an
array type, then we might be allocating too much space. For example, for
`%2 = fir.alloca !fir.array<8x16x32xf32>, %0, %1` we would allocate
%0 * %1 * 8 * 16 * 32 x llvm.array<32 x array<16 * array<8 x f32>>>. We
really only need to allocate %0 * %1 such arrays.

This patch fixes the issue by taking note of the array type that we're
trying to allocate. It tries to match the behaviour of
LLVMTypeConverter::convertPointerLike, which returns a pointer to the
element type only when the array type doesn't have a constant interior.
We consequently only multiply with the constant factors in the array
type if the array type doesn't have a constant interior.

This has the nice side effect that it gets rid of some redundant
multiplications with the constant 1 in some cases.

Differential Revision: https://reviews.llvm.org/D116926
2022-01-12 10:08:50 +00:00
..
cmake/modules [CMake] Factor out config prefix finding logic 2022-01-07 20:16:18 +00:00
docs [flang] OPEN(RECL=) handling for sequential formatted I/O 2021-12-04 16:02:48 -08:00
examples [flang][flang-omp-report] Add flang-omp-report summarising script 2021-11-04 17:43:17 +00:00
include [flang] Do not lose call in shape inquiry on function reference 2022-01-10 19:10:48 +01:00
lib [flang] Fix overallocation by fir-to-llvm-ir pass 2022-01-12 10:08:50 +00:00
module [flang] Predefine unit 0 connected to stderr 2021-11-22 09:02:39 -08:00
runtime [flang] Simplify RaggedArrayHeader and make it plain C struct 2021-12-09 22:28:06 +01:00
test [flang] Fix overallocation by fir-to-llvm-ir pass 2022-01-12 10:08:50 +00:00
tools [flang] Make the `flang` wrapper script check the Bash version 2022-01-12 09:37:35 +00:00
unittests [Flang][Unit Test] Move the declaration of kindMap to the class 2021-12-13 16:12:01 +00:00
.clang-format [flang] Remove non-alignment based divergences from LLVM formatting. 2020-03-23 17:52:22 +00:00
.clang-tidy [flang] Add clang-tidy check for braces around if 2021-06-16 09:13:53 +00:00
.drone.star [flang] [mlir rebase] Add MLIR config and react to MLIR name changes (flang-compiler/f18#1090) 2020-03-27 09:23:32 -07:00
.gitignore [flang] A rework of the cmake build components for in and out of tree builds. 2020-03-26 18:17:04 +00:00
CMakeLists.txt Set the path to the shared cmake modules based on the llvm directory 2022-01-01 17:59:08 +00:00
CODE_OWNERS.TXT [flang] fix typo (flang-compiler/f18#1067) 2020-03-12 10:25:22 -07:00
LICENSE.TXT Rename top-level LICENSE.txt files to LICENSE.TXT 2021-03-10 21:26:24 -08:00
README.md [flang] Fix the documentation on how to build flang 2022-01-10 11:54:00 -08:00

README.md

Flang

Flang is a ground-up implementation of a Fortran front end written in modern C++. It started off as the f18 project (https://github.com/flang-compiler/f18) with an aim to replace the previous flang project (https://github.com/flang-compiler/flang) and address its various deficiencies. F18 was subsequently accepted into the LLVM project and rechristened as Flang.

Getting Started

Read more about flang in the docs directory. Start with the compiler overview.

To better understand Fortran as a language and the specific grammar accepted by flang, read Fortran For C Programmers and flang's specifications of the Fortran grammar and the OpenMP grammar.

Treatment of language extensions is covered in this document.

To understand the compilers handling of intrinsics, see the discussion of intrinsics.

To understand how a flang program communicates with libraries at runtime, see the discussion of runtime descriptors.

If you're interested in contributing to the compiler, read the style guide and also review how flang uses modern C++ features.

If you are interested in writing new documentation, follow markdown style guide from LLVM.

Building flang

There are two ways to build flang. The first method is to build it at the same time that you build all of the projects on which it depends. This is called building in tree. The second method is to first do an in tree build to create all of the projects on which flang depends, then build an install area for these projects, and then only build the flang code itself. This is called building standalone. Building standalone has the advantage of being smaller and faster. Once you create the base build and base install areas, you can create multiple standalone builds using them.

Note that instructions for building LLVM can be found at https://llvm.org/docs/GettingStarted.html.

Building flang in tree

Building flang in tree means building flang along with all of the projects on which it depends. These projects include mlir, clang, flang, and compiler-rt. Note that compiler-rt is only needed to access libraries that support 16 bit floating point numbers. It's not needed to run the automated tests.

Here's a complete set of commands to clone all of the necessary source and do the build.

First clone the source:

git clone https://github.com/llvm/llvm-project.git my-project

Once the clone is complete, execute the following commands:

cd my-project
INSTALLDIR=`pwd`/install

rm -rf build
rm -rf install
mkdir -p build

cd build

cmake \
  -G Ninja \
  ../llvm \
  -DCMAKE_BUILD_TYPE=Release \
  -DFLANG_ENABLE_WERROR=On \
  -DLLVM_ENABLE_ASSERTIONS=ON \
  -DLLVM_TARGETS_TO_BUILD=host \
  -DCMAKE_INSTALL_PREFIX=$INSTALLDIR
  -DLLVM_LIT_ARGS=-v \
  -DLLVM_ENABLE_PROJECTS="clang;mlir;flang;compiler-rt"

ninja

To run the flang tests on this build, execute the command in the "build" directory:

ninja check-flang

If you're happy with the results, the next step is to create the install area. While in the build directory, run the command:

ninja install

Note that these instructions specify flang as one of the projects to build in the in tree build. This is not strictly necessary for subsequent standalone builds, but doing so lets you run the flang tests to verify that the source code is in good shape.

Building flang standalone

To do the standalone build, start by building flang in tree as described above. This build is base build for subsequent standalone builds. Start each standalone build the same way by cloning the source for llvm-project:

git clone https://github.com/llvm/llvm-project.git standalone

Once the clone is complete, execute the following commands:

cd standalone
base=<directory that contains the in tree build>

cd flang
rm -rf build
mkdir build
cd build

cmake \
  -G Ninja \
  -DCMAKE_BUILD_TYPE=Release \
  -DFLANG_ENABLE_WERROR=On \
  -DLLVM_TARGETS_TO_BUILD=host \
  -DLLVM_ENABLE_ASSERTIONS=On \
  -DLLVM_BUILD_MAIN_SRC_DIR=$base/build/lib/cmake/llvm \
  -DLLVM_LIT_ARGS=-v \
  -DLLVM_DIR=$base/build/lib/cmake/llvm \
  -DCLANG_DIR=$base/install/lib/cmake/clang \
  -DMLIR_DIR=$base/install/lib/cmake/mlir \
  ..

ninja

Note that for Clang and MLIR you use the installation directory ($base/install) and for LLVM you use the build directory ($base/build). This is not a typo in the script. Rather, it is because running the tests requires the GTest infrastructure which is only available in the LLVM build area. The build also requires the AddClang.cmake script from Clang, which is only available in the install area.

To run the flang tests on this build, execute the command in the "flang/build" directory:

ninja check-flang

Supported C++ compilers

Flang is written in C++17.

The code has been compiled and tested with GCC versions from 7.2.0 to 9.3.0.

The code has been compiled and tested with clang version 7.0, 8.0, 9.0 and 10.0 using either GNU's libstdc++ or LLVM's libc++.

The code has been compiled on AArch64, x86_64 and ppc64le servers with CentOS7, Ubuntu18.04, Rhel, MacOs, Mojave, XCode and Apple Clang version 10.0.1.

The code does not compile with Windows and a compiler that does not have support for C++17.

Building flang with GCC

By default, cmake will search for g++ on your PATH. The g++ version must be one of the supported versions in order to build flang.

Or, cmake will use the variable CXX to find the C++ compiler. CXX should include the full path to the compiler or a name that will be found on your PATH, e.g. g++-8.3, assuming g++-8.3 is on your PATH.

export CXX=g++-8.3

or

CXX=/opt/gcc-8.3/bin/g++-8.3 cmake ...

Building flang with clang

To build flang with clang, cmake needs to know how to find clang++ and the GCC library and tools that were used to build clang++.

CXX should include the full path to clang++ or clang++ should be found on your PATH.

export CXX=clang++

Installation Directory

To specify a custom install location, add -DCMAKE_INSTALL_PREFIX=<INSTALL_PREFIX> to the cmake command where <INSTALL_PREFIX> is the path where flang should be installed.

Build Types

To create a debug build, add -DCMAKE_BUILD_TYPE=Debug to the cmake command. Debug builds execute slowly.

To create a release build, add -DCMAKE_BUILD_TYPE=Release to the cmake command. Release builds execute quickly.

How to Run Tests

Flang supports 2 different categories of tests

  1. Regression tests (https://www.llvm.org/docs/TestingGuide.html#regression-tests)
  2. Unit tests (https://www.llvm.org/docs/TestingGuide.html#unit-tests)

For standalone builds

To run all tests:

cd ~/flang/build
cmake -DLLVM_DIR=$LLVM -DMLIR_DIR=$MLIR ~/flang/src
ninja check-all

To run individual regression tests llvm-lit needs to know the lit configuration for flang. The parameters in charge of this are: flang_site_config and flang_config. And they can be set as shown below:

<path-to-llvm-lit>/llvm-lit \
 --param flang_site_config=<path-to-flang-build>/test-lit/lit.site.cfg.py \
 --param flang_config=<path-to-flang-build>/test-lit/lit.cfg.py \
  <path-to-fortran-test>

Unit tests:

If flang was built with -DFLANG_INCLUDE_TESTS=On (ON by default), it is possible to generate unittests. Note: Unit-tests will be skipped for LLVM install for an standalone build as it does not include googletest related headers and libraries.

There are various ways to run unit-tests.


1. ninja check-flang-unit
2. ninja check-all or ninja check-flang
3. <path-to-llvm-lit>/llvm-lit \
        test/Unit
4. Invoking tests from <standalone flang build>/unittests/<respective unit test folder>

For in tree builds

If flang was built with -DFLANG_INCLUDE_TESTS=On (On by default), it is possible to generate unittests.

To run all of the flang unit tests use the check-flang-unit target:

ninja check-flang-unit

To run all of the flang regression tests use the check-flang target:

ninja check-flang

How to Generate Documentation

Generate FIR Documentation

If flang was built with -DLINK_WITH_FIR=On (On by default), it is possible to generate FIR language documentation by running ninja flang-doc. This will create docs/Dialect/FIRLangRef.md in flang build directory.

Generate Doxygen-based Documentation

To generate doxygen-style documentation from source code

  • Pass -DLLVM_ENABLE_DOXYGEN=ON -DFLANG_INCLUDE_DOCS=ON to the cmake command.
cd ~/llvm-project/build
cmake -DLLVM_ENABLE_DOXYGEN=ON -DFLANG_INCLUDE_DOCS=ON ../llvm
ninja doxygen-flang

It will generate html in

    <build-dir>/tools/flang/docs/doxygen/html # for flang docs

Generate Sphinx-based Documentation

Flang documentation should preferably be written in markdown(.md) syntax (they can be in reStructuredText(.rst) format as well but markdown is recommended in first place), it is mostly meant to be processed by the Sphinx documentation generation system to create HTML pages which would be hosted on the webpage of flang and updated periodically.

If you would like to generate and view the HTML locally:

  • Install Sphinx, including the sphinx-markdown-tables extension.
  • Pass -DLLVM_ENABLE_SPHINX=ON -DSPHINX_WARNINGS_AS_ERRORS=OFF to the cmake command.
cd ~/llvm-project/build
cmake -DLLVM_ENABLE_SPHINX=ON -DSPHINX_WARNINGS_AS_ERRORS=OFF ../llvm
ninja docs-flang-html

It will generate html in

   $BROWSER <build-dir>/tools/flang/docs/html/