llvm-project/llvm/utils/TableGen/GICombinerEmitter.cpp

1003 lines
37 KiB
C++

//===- GlobalCombinerEmitter.cpp - Generate a combiner --------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
/// \file Generate a combiner implementation for GlobalISel from a declarative
/// syntax
///
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/ADT/StringSet.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ScopedPrinter.h"
#include "llvm/Support/Timer.h"
#include "llvm/TableGen/Error.h"
#include "llvm/TableGen/StringMatcher.h"
#include "llvm/TableGen/TableGenBackend.h"
#include "CodeGenTarget.h"
#include "GlobalISel/CodeExpander.h"
#include "GlobalISel/CodeExpansions.h"
#include "GlobalISel/GIMatchDag.h"
#include "GlobalISel/GIMatchTree.h"
#include <cstdint>
using namespace llvm;
#define DEBUG_TYPE "gicombiner-emitter"
// FIXME: Use ALWAYS_ENABLED_STATISTIC once it's available.
unsigned NumPatternTotal = 0;
STATISTIC(NumPatternTotalStatistic, "Total number of patterns");
cl::OptionCategory
GICombinerEmitterCat("Options for -gen-global-isel-combiner");
static cl::list<std::string>
SelectedCombiners("combiners", cl::desc("Emit the specified combiners"),
cl::cat(GICombinerEmitterCat), cl::CommaSeparated);
static cl::opt<bool> ShowExpansions(
"gicombiner-show-expansions",
cl::desc("Use C++ comments to indicate occurence of code expansion"),
cl::cat(GICombinerEmitterCat));
static cl::opt<bool> StopAfterParse(
"gicombiner-stop-after-parse",
cl::desc("Stop processing after parsing rules and dump state"),
cl::cat(GICombinerEmitterCat));
static cl::opt<bool> StopAfterBuild(
"gicombiner-stop-after-build",
cl::desc("Stop processing after building the match tree"),
cl::cat(GICombinerEmitterCat));
namespace {
typedef uint64_t RuleID;
// We're going to be referencing the same small strings quite a lot for operand
// names and the like. Make their lifetime management simple with a global
// string table.
StringSet<> StrTab;
StringRef insertStrTab(StringRef S) {
if (S.empty())
return S;
return StrTab.insert(S).first->first();
}
class format_partition_name {
const GIMatchTree &Tree;
unsigned Idx;
public:
format_partition_name(const GIMatchTree &Tree, unsigned Idx)
: Tree(Tree), Idx(Idx) {}
void print(raw_ostream &OS) const {
Tree.getPartitioner()->emitPartitionName(OS, Idx);
}
};
raw_ostream &operator<<(raw_ostream &OS, const format_partition_name &Fmt) {
Fmt.print(OS);
return OS;
}
/// Declares data that is passed from the match stage to the apply stage.
class MatchDataInfo {
/// The symbol used in the tablegen patterns
StringRef PatternSymbol;
/// The data type for the variable
StringRef Type;
/// The name of the variable as declared in the generated matcher.
std::string VariableName;
public:
MatchDataInfo(StringRef PatternSymbol, StringRef Type, StringRef VariableName)
: PatternSymbol(PatternSymbol), Type(Type), VariableName(VariableName) {}
StringRef getPatternSymbol() const { return PatternSymbol; };
StringRef getType() const { return Type; };
StringRef getVariableName() const { return VariableName; };
};
class RootInfo {
StringRef PatternSymbol;
public:
RootInfo(StringRef PatternSymbol) : PatternSymbol(PatternSymbol) {}
StringRef getPatternSymbol() const { return PatternSymbol; }
};
class CombineRule {
public:
using const_matchdata_iterator = std::vector<MatchDataInfo>::const_iterator;
struct VarInfo {
const GIMatchDagInstr *N;
const GIMatchDagOperand *Op;
const DagInit *Matcher;
public:
VarInfo(const GIMatchDagInstr *N, const GIMatchDagOperand *Op,
const DagInit *Matcher)
: N(N), Op(Op), Matcher(Matcher) {}
};
protected:
/// A unique ID for this rule
/// ID's are used for debugging and run-time disabling of rules among other
/// things.
RuleID ID;
/// A unique ID that can be used for anonymous objects belonging to this rule.
/// Used to create unique names in makeNameForAnon*() without making tests
/// overly fragile.
unsigned UID = 0;
/// The record defining this rule.
const Record &TheDef;
/// The roots of a match. These are the leaves of the DAG that are closest to
/// the end of the function. I.e. the nodes that are encountered without
/// following any edges of the DAG described by the pattern as we work our way
/// from the bottom of the function to the top.
std::vector<RootInfo> Roots;
GIMatchDag MatchDag;
/// A block of arbitrary C++ to finish testing the match.
/// FIXME: This is a temporary measure until we have actual pattern matching
const CodeInit *MatchingFixupCode = nullptr;
/// The MatchData defined by the match stage and required by the apply stage.
/// This allows the plumbing of arbitrary data from C++ predicates between the
/// stages.
///
/// For example, suppose you have:
/// %A = <some-constant-expr>
/// %0 = G_ADD %1, %A
/// you could define a GIMatchPredicate that walks %A, constant folds as much
/// as possible and returns an APInt containing the discovered constant. You
/// could then declare:
/// def apint : GIDefMatchData<"APInt">;
/// add it to the rule with:
/// (defs root:$root, apint:$constant)
/// evaluate it in the pattern with a C++ function that takes a
/// MachineOperand& and an APInt& with:
/// (match [{MIR %root = G_ADD %0, %A }],
/// (constantfold operand:$A, apint:$constant))
/// and finally use it in the apply stage with:
/// (apply (create_operand
/// [{ MachineOperand::CreateImm(${constant}.getZExtValue());
/// ]}, apint:$constant),
/// [{MIR %root = FOO %0, %constant }])
std::vector<MatchDataInfo> MatchDataDecls;
void declareMatchData(StringRef PatternSymbol, StringRef Type,
StringRef VarName);
bool parseInstructionMatcher(const CodeGenTarget &Target, StringInit *ArgName,
const Init &Arg,
StringMap<std::vector<VarInfo>> &NamedEdgeDefs,
StringMap<std::vector<VarInfo>> &NamedEdgeUses);
bool parseWipMatchOpcodeMatcher(const CodeGenTarget &Target,
StringInit *ArgName, const Init &Arg);
public:
CombineRule(const CodeGenTarget &Target, GIMatchDagContext &Ctx, RuleID ID,
const Record &R)
: ID(ID), TheDef(R), MatchDag(Ctx) {}
CombineRule(const CombineRule &) = delete;
bool parseDefs();
bool parseMatcher(const CodeGenTarget &Target);
RuleID getID() const { return ID; }
unsigned allocUID() { return UID++; }
StringRef getName() const { return TheDef.getName(); }
const Record &getDef() const { return TheDef; }
const CodeInit *getMatchingFixupCode() const { return MatchingFixupCode; }
size_t getNumRoots() const { return Roots.size(); }
GIMatchDag &getMatchDag() { return MatchDag; }
const GIMatchDag &getMatchDag() const { return MatchDag; }
using const_root_iterator = std::vector<RootInfo>::const_iterator;
const_root_iterator roots_begin() const { return Roots.begin(); }
const_root_iterator roots_end() const { return Roots.end(); }
iterator_range<const_root_iterator> roots() const {
return llvm::make_range(Roots.begin(), Roots.end());
}
iterator_range<const_matchdata_iterator> matchdata_decls() const {
return make_range(MatchDataDecls.begin(), MatchDataDecls.end());
}
/// Export expansions for this rule
void declareExpansions(CodeExpansions &Expansions) const {
for (const auto &I : matchdata_decls())
Expansions.declare(I.getPatternSymbol(), I.getVariableName());
}
/// The matcher will begin from the roots and will perform the match by
/// traversing the edges to cover the whole DAG. This function reverses DAG
/// edges such that everything is reachable from a root. This is part of the
/// preparation work for flattening the DAG into a tree.
void reorientToRoots() {
SmallSet<const GIMatchDagInstr *, 5> Roots;
SmallSet<const GIMatchDagInstr *, 5> Visited;
SmallSet<GIMatchDagEdge *, 20> EdgesRemaining;
for (auto &I : MatchDag.roots()) {
Roots.insert(I);
Visited.insert(I);
}
for (auto &I : MatchDag.edges())
EdgesRemaining.insert(I);
bool Progressed = false;
SmallSet<GIMatchDagEdge *, 20> EdgesToRemove;
while (!EdgesRemaining.empty()) {
for (auto EI = EdgesRemaining.begin(), EE = EdgesRemaining.end();
EI != EE; ++EI) {
if (Visited.count((*EI)->getFromMI())) {
if (Roots.count((*EI)->getToMI()))
PrintError(TheDef.getLoc(), "One or more roots are unnecessary");
Visited.insert((*EI)->getToMI());
EdgesToRemove.insert(*EI);
Progressed = true;
}
}
for (GIMatchDagEdge *ToRemove : EdgesToRemove)
EdgesRemaining.erase(ToRemove);
EdgesToRemove.clear();
for (auto EI = EdgesRemaining.begin(), EE = EdgesRemaining.end();
EI != EE; ++EI) {
if (Visited.count((*EI)->getToMI())) {
(*EI)->reverse();
Visited.insert((*EI)->getToMI());
EdgesToRemove.insert(*EI);
Progressed = true;
}
for (GIMatchDagEdge *ToRemove : EdgesToRemove)
EdgesRemaining.erase(ToRemove);
EdgesToRemove.clear();
}
if (!Progressed) {
LLVM_DEBUG(dbgs() << "No progress\n");
return;
}
Progressed = false;
}
}
};
/// A convenience function to check that an Init refers to a specific def. This
/// is primarily useful for testing for defs and similar in DagInit's since
/// DagInit's support any type inside them.
static bool isSpecificDef(const Init &N, StringRef Def) {
if (const DefInit *OpI = dyn_cast<DefInit>(&N))
if (OpI->getDef()->getName() == Def)
return true;
return false;
}
/// A convenience function to check that an Init refers to a def that is a
/// subclass of the given class and coerce it to a def if it is. This is
/// primarily useful for testing for subclasses of GIMatchKind and similar in
/// DagInit's since DagInit's support any type inside them.
static Record *getDefOfSubClass(const Init &N, StringRef Cls) {
if (const DefInit *OpI = dyn_cast<DefInit>(&N))
if (OpI->getDef()->isSubClassOf(Cls))
return OpI->getDef();
return nullptr;
}
/// A convenience function to check that an Init refers to a dag whose operator
/// is a specific def and coerce it to a dag if it is. This is primarily useful
/// for testing for subclasses of GIMatchKind and similar in DagInit's since
/// DagInit's support any type inside them.
static const DagInit *getDagWithSpecificOperator(const Init &N,
StringRef Name) {
if (const DagInit *I = dyn_cast<DagInit>(&N))
if (I->getNumArgs() > 0)
if (const DefInit *OpI = dyn_cast<DefInit>(I->getOperator()))
if (OpI->getDef()->getName() == Name)
return I;
return nullptr;
}
/// A convenience function to check that an Init refers to a dag whose operator
/// is a def that is a subclass of the given class and coerce it to a dag if it
/// is. This is primarily useful for testing for subclasses of GIMatchKind and
/// similar in DagInit's since DagInit's support any type inside them.
static const DagInit *getDagWithOperatorOfSubClass(const Init &N,
StringRef Cls) {
if (const DagInit *I = dyn_cast<DagInit>(&N))
if (I->getNumArgs() > 0)
if (const DefInit *OpI = dyn_cast<DefInit>(I->getOperator()))
if (OpI->getDef()->isSubClassOf(Cls))
return I;
return nullptr;
}
StringRef makeNameForAnonInstr(CombineRule &Rule) {
return insertStrTab(to_string(
format("__anon%" PRIu64 "_%u", Rule.getID(), Rule.allocUID())));
}
StringRef makeDebugName(CombineRule &Rule, StringRef Name) {
return insertStrTab(Name.empty() ? makeNameForAnonInstr(Rule) : StringRef(Name));
}
StringRef makeNameForAnonPredicate(CombineRule &Rule) {
return insertStrTab(to_string(
format("__anonpred%" PRIu64 "_%u", Rule.getID(), Rule.allocUID())));
}
void CombineRule::declareMatchData(StringRef PatternSymbol, StringRef Type,
StringRef VarName) {
MatchDataDecls.emplace_back(PatternSymbol, Type, VarName);
}
bool CombineRule::parseDefs() {
NamedRegionTimer T("parseDefs", "Time spent parsing the defs", "Rule Parsing",
"Time spent on rule parsing", TimeRegions);
DagInit *Defs = TheDef.getValueAsDag("Defs");
if (Defs->getOperatorAsDef(TheDef.getLoc())->getName() != "defs") {
PrintError(TheDef.getLoc(), "Expected defs operator");
return false;
}
for (unsigned I = 0, E = Defs->getNumArgs(); I < E; ++I) {
// Roots should be collected into Roots
if (isSpecificDef(*Defs->getArg(I), "root")) {
Roots.emplace_back(Defs->getArgNameStr(I));
continue;
}
// Subclasses of GIDefMatchData should declare that this rule needs to pass
// data from the match stage to the apply stage, and ensure that the
// generated matcher has a suitable variable for it to do so.
if (Record *MatchDataRec =
getDefOfSubClass(*Defs->getArg(I), "GIDefMatchData")) {
declareMatchData(Defs->getArgNameStr(I),
MatchDataRec->getValueAsString("Type"),
llvm::to_string(llvm::format("MatchData%" PRIu64, ID)));
continue;
}
// Otherwise emit an appropriate error message.
if (getDefOfSubClass(*Defs->getArg(I), "GIDefKind"))
PrintError(TheDef.getLoc(),
"This GIDefKind not implemented in tablegen");
else if (getDefOfSubClass(*Defs->getArg(I), "GIDefKindWithArgs"))
PrintError(TheDef.getLoc(),
"This GIDefKindWithArgs not implemented in tablegen");
else
PrintError(TheDef.getLoc(),
"Expected a subclass of GIDefKind or a sub-dag whose "
"operator is of type GIDefKindWithArgs");
return false;
}
if (Roots.empty()) {
PrintError(TheDef.getLoc(), "Combine rules must have at least one root");
return false;
}
return true;
}
// Parse an (Instruction $a:Arg1, $b:Arg2, ...) matcher. Edges are formed
// between matching operand names between different matchers.
bool CombineRule::parseInstructionMatcher(
const CodeGenTarget &Target, StringInit *ArgName, const Init &Arg,
StringMap<std::vector<VarInfo>> &NamedEdgeDefs,
StringMap<std::vector<VarInfo>> &NamedEdgeUses) {
if (const DagInit *Matcher =
getDagWithOperatorOfSubClass(Arg, "Instruction")) {
auto &Instr =
Target.getInstruction(Matcher->getOperatorAsDef(TheDef.getLoc()));
StringRef Name = ArgName ? ArgName->getValue() : "";
GIMatchDagInstr *N =
MatchDag.addInstrNode(makeDebugName(*this, Name), insertStrTab(Name),
MatchDag.getContext().makeOperandList(Instr));
N->setOpcodeAnnotation(&Instr);
const auto &P = MatchDag.addPredicateNode<GIMatchDagOpcodePredicate>(
makeNameForAnonPredicate(*this), Instr);
MatchDag.addPredicateDependency(N, nullptr, P, &P->getOperandInfo()["mi"]);
unsigned OpIdx = 0;
for (const auto &NameInit : Matcher->getArgNames()) {
StringRef Name = insertStrTab(NameInit->getAsUnquotedString());
if (Name.empty())
continue;
N->assignNameToOperand(OpIdx, Name);
// Record the endpoints of any named edges. We'll add the cartesian
// product of edges later.
const auto &InstrOperand = N->getOperandInfo()[OpIdx];
if (InstrOperand.isDef()) {
NamedEdgeDefs.try_emplace(Name);
NamedEdgeDefs[Name].emplace_back(N, &InstrOperand, Matcher);
} else {
NamedEdgeUses.try_emplace(Name);
NamedEdgeUses[Name].emplace_back(N, &InstrOperand, Matcher);
}
if (InstrOperand.isDef()) {
if (find_if(Roots, [&](const RootInfo &X) {
return X.getPatternSymbol() == Name;
}) != Roots.end()) {
N->setMatchRoot();
}
}
OpIdx++;
}
return true;
}
return false;
}
// Parse the wip_match_opcode placeholder that's temporarily present in lieu of
// implementing macros or choices between two matchers.
bool CombineRule::parseWipMatchOpcodeMatcher(const CodeGenTarget &Target,
StringInit *ArgName,
const Init &Arg) {
if (const DagInit *Matcher =
getDagWithSpecificOperator(Arg, "wip_match_opcode")) {
StringRef Name = ArgName ? ArgName->getValue() : "";
GIMatchDagInstr *N =
MatchDag.addInstrNode(makeDebugName(*this, Name), insertStrTab(Name),
MatchDag.getContext().makeEmptyOperandList());
if (find_if(Roots, [&](const RootInfo &X) {
return ArgName && X.getPatternSymbol() == ArgName->getValue();
}) != Roots.end()) {
N->setMatchRoot();
}
const auto &P = MatchDag.addPredicateNode<GIMatchDagOneOfOpcodesPredicate>(
makeNameForAnonPredicate(*this));
MatchDag.addPredicateDependency(N, nullptr, P, &P->getOperandInfo()["mi"]);
// Each argument is an opcode that will pass this predicate. Add them all to
// the predicate implementation
for (const auto &Arg : Matcher->getArgs()) {
Record *OpcodeDef = getDefOfSubClass(*Arg, "Instruction");
if (OpcodeDef) {
P->addOpcode(&Target.getInstruction(OpcodeDef));
continue;
}
PrintError(TheDef.getLoc(),
"Arguments to wip_match_opcode must be instructions");
return false;
}
return true;
}
return false;
}
bool CombineRule::parseMatcher(const CodeGenTarget &Target) {
NamedRegionTimer T("parseMatcher", "Time spent parsing the matcher",
"Rule Parsing", "Time spent on rule parsing", TimeRegions);
StringMap<std::vector<VarInfo>> NamedEdgeDefs;
StringMap<std::vector<VarInfo>> NamedEdgeUses;
DagInit *Matchers = TheDef.getValueAsDag("Match");
if (Matchers->getOperatorAsDef(TheDef.getLoc())->getName() != "match") {
PrintError(TheDef.getLoc(), "Expected match operator");
return false;
}
if (Matchers->getNumArgs() == 0) {
PrintError(TheDef.getLoc(), "Matcher is empty");
return false;
}
// The match section consists of a list of matchers and predicates. Parse each
// one and add the equivalent GIMatchDag nodes, predicates, and edges.
for (unsigned I = 0; I < Matchers->getNumArgs(); ++I) {
if (parseInstructionMatcher(Target, Matchers->getArgName(I),
*Matchers->getArg(I), NamedEdgeDefs,
NamedEdgeUses))
continue;
if (parseWipMatchOpcodeMatcher(Target, Matchers->getArgName(I),
*Matchers->getArg(I)))
continue;
// Parse arbitrary C++ code we have in lieu of supporting MIR matching
if (const CodeInit *CodeI = dyn_cast<CodeInit>(Matchers->getArg(I))) {
assert(!MatchingFixupCode &&
"Only one block of arbitrary code is currently permitted");
MatchingFixupCode = CodeI;
MatchDag.setHasPostMatchPredicate(true);
continue;
}
PrintError(TheDef.getLoc(),
"Expected a subclass of GIMatchKind or a sub-dag whose "
"operator is either of a GIMatchKindWithArgs or Instruction");
PrintNote("Pattern was `" + Matchers->getArg(I)->getAsString() + "'");
return false;
}
// Add the cartesian product of use -> def edges.
bool FailedToAddEdges = false;
for (const auto &NameAndDefs : NamedEdgeDefs) {
if (NameAndDefs.getValue().size() > 1) {
PrintError(TheDef.getLoc(),
"Two different MachineInstrs cannot def the same vreg");
for (const auto &NameAndDefOp : NameAndDefs.getValue())
PrintNote("in " + to_string(*NameAndDefOp.N) + " created from " +
to_string(*NameAndDefOp.Matcher) + "");
FailedToAddEdges = true;
}
const auto &Uses = NamedEdgeUses[NameAndDefs.getKey()];
for (const VarInfo &DefVar : NameAndDefs.getValue()) {
for (const VarInfo &UseVar : Uses) {
MatchDag.addEdge(insertStrTab(NameAndDefs.getKey()), UseVar.N, UseVar.Op,
DefVar.N, DefVar.Op);
}
}
}
if (FailedToAddEdges)
return false;
// If a variable is referenced in multiple use contexts then we need a
// predicate to confirm they are the same operand. We can elide this if it's
// also referenced in a def context and we're traversing the def-use chain
// from the def to the uses but we can't know which direction we're going
// until after reorientToRoots().
for (const auto &NameAndUses : NamedEdgeUses) {
const auto &Uses = NameAndUses.getValue();
if (Uses.size() > 1) {
const auto &LeadingVar = Uses.front();
for (const auto &Var : ArrayRef<VarInfo>(Uses).drop_front()) {
// Add a predicate for each pair until we've covered the whole
// equivalence set. We could test the whole set in a single predicate
// but that means we can't test any equivalence until all the MO's are
// available which can lead to wasted work matching the DAG when this
// predicate can already be seen to have failed.
//
// We have a similar problem due to the need to wait for a particular MO
// before being able to test any of them. However, that is mitigated by
// the order in which we build the DAG. We build from the roots outwards
// so by using the first recorded use in all the predicates, we are
// making the dependency on one of the earliest visited references in
// the DAG. It's not guaranteed once the generated matcher is optimized
// (because the factoring the common portions of rules might change the
// visit order) but this should mean that these predicates depend on the
// first MO to become available.
const auto &P = MatchDag.addPredicateNode<GIMatchDagSameMOPredicate>(
makeNameForAnonPredicate(*this));
MatchDag.addPredicateDependency(LeadingVar.N, LeadingVar.Op, P,
&P->getOperandInfo()["mi0"]);
MatchDag.addPredicateDependency(Var.N, Var.Op, P,
&P->getOperandInfo()["mi1"]);
}
}
}
return true;
}
class GICombinerEmitter {
StringRef Name;
const CodeGenTarget &Target;
Record *Combiner;
std::vector<std::unique_ptr<CombineRule>> Rules;
GIMatchDagContext MatchDagCtx;
std::unique_ptr<CombineRule> makeCombineRule(const Record &R);
void gatherRules(std::vector<std::unique_ptr<CombineRule>> &ActiveRules,
const std::vector<Record *> &&RulesAndGroups);
public:
explicit GICombinerEmitter(RecordKeeper &RK, const CodeGenTarget &Target,
StringRef Name, Record *Combiner);
~GICombinerEmitter() {}
StringRef getClassName() const {
return Combiner->getValueAsString("Classname");
}
void run(raw_ostream &OS);
/// Emit the name matcher (guarded by #ifndef NDEBUG) used to disable rules in
/// response to the generated cl::opt.
void emitNameMatcher(raw_ostream &OS) const;
void generateDeclarationsCodeForTree(raw_ostream &OS, const GIMatchTree &Tree) const;
void generateCodeForTree(raw_ostream &OS, const GIMatchTree &Tree,
StringRef Indent) const;
};
GICombinerEmitter::GICombinerEmitter(RecordKeeper &RK,
const CodeGenTarget &Target,
StringRef Name, Record *Combiner)
: Name(Name), Target(Target), Combiner(Combiner) {}
void GICombinerEmitter::emitNameMatcher(raw_ostream &OS) const {
std::vector<std::pair<std::string, std::string>> Cases;
Cases.reserve(Rules.size());
for (const CombineRule &EnumeratedRule : make_pointee_range(Rules)) {
std::string Code;
raw_string_ostream SS(Code);
SS << "return " << EnumeratedRule.getID() << ";\n";
Cases.push_back(
std::make_pair(std::string(EnumeratedRule.getName()), SS.str()));
}
OS << "static Optional<uint64_t> getRuleIdxForIdentifier(StringRef "
"RuleIdentifier) {\n"
<< " uint64_t I;\n"
<< " // getAtInteger(...) returns false on success\n"
<< " bool Parsed = !RuleIdentifier.getAsInteger(0, I);\n"
<< " if (Parsed)\n"
<< " return I;\n\n"
<< "#ifndef NDEBUG\n";
StringMatcher Matcher("RuleIdentifier", Cases, OS);
Matcher.Emit();
OS << "#endif // ifndef NDEBUG\n\n"
<< " return None;\n"
<< "}\n";
}
std::unique_ptr<CombineRule>
GICombinerEmitter::makeCombineRule(const Record &TheDef) {
std::unique_ptr<CombineRule> Rule =
std::make_unique<CombineRule>(Target, MatchDagCtx, NumPatternTotal, TheDef);
if (!Rule->parseDefs())
return nullptr;
if (!Rule->parseMatcher(Target))
return nullptr;
Rule->reorientToRoots();
LLVM_DEBUG({
dbgs() << "Parsed rule defs/match for '" << Rule->getName() << "'\n";
Rule->getMatchDag().dump();
Rule->getMatchDag().writeDOTGraph(dbgs(), Rule->getName());
});
if (StopAfterParse)
return Rule;
// For now, don't support traversing from def to use. We'll come back to
// this later once we have the algorithm changes to support it.
bool EmittedDefToUseError = false;
for (const auto &E : Rule->getMatchDag().edges()) {
if (E->isDefToUse()) {
if (!EmittedDefToUseError) {
PrintError(
TheDef.getLoc(),
"Generated state machine cannot lookup uses from a def (yet)");
EmittedDefToUseError = true;
}
PrintNote("Node " + to_string(*E->getFromMI()));
PrintNote("Node " + to_string(*E->getToMI()));
PrintNote("Edge " + to_string(*E));
}
}
if (EmittedDefToUseError)
return nullptr;
// For now, don't support multi-root rules. We'll come back to this later
// once we have the algorithm changes to support it.
if (Rule->getNumRoots() > 1) {
PrintError(TheDef.getLoc(), "Multi-root matches are not supported (yet)");
return nullptr;
}
return Rule;
}
/// Recurse into GICombineGroup's and flatten the ruleset into a simple list.
void GICombinerEmitter::gatherRules(
std::vector<std::unique_ptr<CombineRule>> &ActiveRules,
const std::vector<Record *> &&RulesAndGroups) {
for (Record *R : RulesAndGroups) {
if (R->isValueUnset("Rules")) {
std::unique_ptr<CombineRule> Rule = makeCombineRule(*R);
if (Rule == nullptr) {
PrintError(R->getLoc(), "Failed to parse rule");
continue;
}
ActiveRules.emplace_back(std::move(Rule));
++NumPatternTotal;
} else
gatherRules(ActiveRules, R->getValueAsListOfDefs("Rules"));
}
}
void GICombinerEmitter::generateCodeForTree(raw_ostream &OS,
const GIMatchTree &Tree,
StringRef Indent) const {
if (Tree.getPartitioner() != nullptr) {
Tree.getPartitioner()->generatePartitionSelectorCode(OS, Indent);
for (const auto &EnumChildren : enumerate(Tree.children())) {
OS << Indent << "if (Partition == " << EnumChildren.index() << " /* "
<< format_partition_name(Tree, EnumChildren.index()) << " */) {\n";
generateCodeForTree(OS, EnumChildren.value(), (Indent + " ").str());
OS << Indent << "}\n";
}
return;
}
bool AnyFullyTested = false;
for (const auto &Leaf : Tree.possible_leaves()) {
OS << Indent << "// Leaf name: " << Leaf.getName() << "\n";
const CombineRule *Rule = Leaf.getTargetData<CombineRule>();
const Record &RuleDef = Rule->getDef();
OS << Indent << "// Rule: " << RuleDef.getName() << "\n"
<< Indent << "if (!isRuleDisabled(" << Rule->getID() << ")) {\n";
CodeExpansions Expansions;
for (const auto &VarBinding : Leaf.var_bindings()) {
if (VarBinding.isInstr())
Expansions.declare(VarBinding.getName(),
"MIs[" + to_string(VarBinding.getInstrID()) + "]");
else
Expansions.declare(VarBinding.getName(),
"MIs[" + to_string(VarBinding.getInstrID()) +
"]->getOperand(" +
to_string(VarBinding.getOpIdx()) + ")");
}
Rule->declareExpansions(Expansions);
DagInit *Applyer = RuleDef.getValueAsDag("Apply");
if (Applyer->getOperatorAsDef(RuleDef.getLoc())->getName() !=
"apply") {
PrintError(RuleDef.getLoc(), "Expected apply operator");
return;
}
OS << Indent << " if (1\n";
// Attempt to emit code for any untested predicates left over. Note that
// isFullyTested() will remain false even if we succeed here and therefore
// combine rule elision will not be performed. This is because we do not
// know if there's any connection between the predicates for each leaf and
// therefore can't tell if one makes another unreachable. Ideally, the
// partitioner(s) would be sufficiently complete to prevent us from having
// untested predicates left over.
for (const GIMatchDagPredicate *Predicate : Leaf.untested_predicates()) {
if (Predicate->generateCheckCode(OS, (Indent + " ").str(),
Expansions))
continue;
PrintError(RuleDef.getLoc(),
"Unable to test predicate used in rule");
PrintNote(SMLoc(),
"This indicates an incomplete implementation in tablegen");
Predicate->print(errs());
errs() << "\n";
OS << Indent
<< "llvm_unreachable(\"TableGen did not emit complete code for this "
"path\");\n";
break;
}
if (Rule->getMatchingFixupCode() &&
!Rule->getMatchingFixupCode()->getValue().empty()) {
// FIXME: Single-use lambda's like this are a serious compile-time
// performance and memory issue. It's convenient for this early stage to
// defer some work to successive patches but we need to eliminate this
// before the ruleset grows to small-moderate size. Last time, it became
// a big problem for low-mem systems around the 500 rule mark but by the
// time we grow that large we should have merged the ISel match table
// mechanism with the Combiner.
OS << Indent << " && [&]() {\n"
<< Indent << " "
<< CodeExpander(Rule->getMatchingFixupCode()->getValue(), Expansions,
Rule->getMatchingFixupCode()->getLoc(), ShowExpansions)
<< "\n"
<< Indent << " return true;\n"
<< Indent << " }()";
}
OS << ") {\n" << Indent << " ";
if (const CodeInit *Code = dyn_cast<CodeInit>(Applyer->getArg(0))) {
OS << CodeExpander(Code->getAsUnquotedString(), Expansions,
Code->getLoc(), ShowExpansions)
<< "\n"
<< Indent << " return true;\n"
<< Indent << " }\n";
} else {
PrintError(RuleDef.getLoc(), "Expected apply code block");
return;
}
OS << Indent << "}\n";
assert(Leaf.isFullyTraversed());
// If we didn't have any predicates left over and we're not using the
// trap-door we have to support arbitrary C++ code while we're migrating to
// the declarative style then we know that subsequent leaves are
// unreachable.
if (Leaf.isFullyTested() &&
(!Rule->getMatchingFixupCode() ||
Rule->getMatchingFixupCode()->getValue().empty())) {
AnyFullyTested = true;
OS << Indent
<< "llvm_unreachable(\"Combine rule elision was incorrect\");\n"
<< Indent << "return false;\n";
}
}
if (!AnyFullyTested)
OS << Indent << "return false;\n";
}
void GICombinerEmitter::run(raw_ostream &OS) {
gatherRules(Rules, Combiner->getValueAsListOfDefs("Rules"));
if (StopAfterParse) {
MatchDagCtx.print(errs());
PrintNote(Combiner->getLoc(),
"Terminating due to -gicombiner-stop-after-parse");
return;
}
if (ErrorsPrinted)
PrintFatalError(Combiner->getLoc(), "Failed to parse one or more rules");
LLVM_DEBUG(dbgs() << "Optimizing tree for " << Rules.size() << " rules\n");
std::unique_ptr<GIMatchTree> Tree;
{
NamedRegionTimer T("Optimize", "Time spent optimizing the combiner",
"Code Generation", "Time spent generating code",
TimeRegions);
GIMatchTreeBuilder TreeBuilder(0);
for (const auto &Rule : Rules) {
bool HadARoot = false;
for (const auto &Root : enumerate(Rule->getMatchDag().roots())) {
TreeBuilder.addLeaf(Rule->getName(), Root.index(), Rule->getMatchDag(),
Rule.get());
HadARoot = true;
}
if (!HadARoot)
PrintFatalError(Rule->getDef().getLoc(), "All rules must have a root");
}
Tree = TreeBuilder.run();
}
if (StopAfterBuild) {
Tree->writeDOTGraph(outs());
PrintNote(Combiner->getLoc(),
"Terminating due to -gicombiner-stop-after-build");
return;
}
NamedRegionTimer T("Emit", "Time spent emitting the combiner",
"Code Generation", "Time spent generating code",
TimeRegions);
OS << "#ifdef " << Name.upper() << "_GENCOMBINERHELPER_DEPS\n"
<< "#include \"llvm/ADT/SparseBitVector.h\"\n"
<< "namespace llvm {\n"
<< "extern cl::OptionCategory GICombinerOptionCategory;\n"
<< "} // end namespace llvm\n"
<< "#endif // ifdef " << Name.upper() << "_GENCOMBINERHELPER_DEPS\n\n";
OS << "#ifdef " << Name.upper() << "_GENCOMBINERHELPER_H\n"
<< "class " << getClassName() << " {\n"
<< " SparseBitVector<> DisabledRules;\n"
<< "\n"
<< "public:\n"
<< " bool parseCommandLineOption();\n"
<< " bool isRuleDisabled(unsigned ID) const;\n"
<< " bool setRuleDisabled(StringRef RuleIdentifier);\n"
<< "\n"
<< " bool tryCombineAll(\n"
<< " GISelChangeObserver &Observer,\n"
<< " MachineInstr &MI,\n"
<< " MachineIRBuilder &B,\n"
<< " CombinerHelper &Helper) const;\n"
<< "};\n\n";
emitNameMatcher(OS);
OS << "bool " << getClassName()
<< "::setRuleDisabled(StringRef RuleIdentifier) {\n"
<< " std::pair<StringRef, StringRef> RangePair = "
"RuleIdentifier.split('-');\n"
<< " if (!RangePair.second.empty()) {\n"
<< " const auto First = getRuleIdxForIdentifier(RangePair.first);\n"
<< " const auto Last = getRuleIdxForIdentifier(RangePair.second);\n"
<< " if (!First.hasValue() || !Last.hasValue())\n"
<< " return false;\n"
<< " if (First >= Last)\n"
<< " report_fatal_error(\"Beginning of range should be before end of "
"range\");\n"
<< " for (auto I = First.getValue(); I < Last.getValue(); ++I)\n"
<< " DisabledRules.set(I);\n"
<< " return true;\n"
<< " } else {\n"
<< " const auto I = getRuleIdxForIdentifier(RangePair.first);\n"
<< " if (!I.hasValue())\n"
<< " return false;\n"
<< " DisabledRules.set(I.getValue());\n"
<< " return true;\n"
<< " }\n"
<< " return false;\n"
<< "}\n";
OS << "bool " << getClassName()
<< "::isRuleDisabled(unsigned RuleID) const {\n"
<< " return DisabledRules.test(RuleID);\n"
<< "}\n";
OS << "#endif // ifdef " << Name.upper() << "_GENCOMBINERHELPER_H\n\n";
OS << "#ifdef " << Name.upper() << "_GENCOMBINERHELPER_CPP\n"
<< "\n"
<< "cl::list<std::string> " << Name << "Option(\n"
<< " \"" << Name.lower() << "-disable-rule\",\n"
<< " cl::desc(\"Disable one or more combiner rules temporarily in "
<< "the " << Name << " pass\"),\n"
<< " cl::CommaSeparated,\n"
<< " cl::Hidden,\n"
<< " cl::cat(GICombinerOptionCategory));\n"
<< "\n"
<< "bool " << getClassName() << "::parseCommandLineOption() {\n"
<< " for (const auto &Identifier : " << Name << "Option)\n"
<< " if (!setRuleDisabled(Identifier))\n"
<< " return false;\n"
<< " return true;\n"
<< "}\n\n";
OS << "bool " << getClassName() << "::tryCombineAll(\n"
<< " GISelChangeObserver &Observer,\n"
<< " MachineInstr &MI,\n"
<< " MachineIRBuilder &B,\n"
<< " CombinerHelper &Helper) const {\n"
<< " MachineBasicBlock *MBB = MI.getParent();\n"
<< " MachineFunction *MF = MBB->getParent();\n"
<< " MachineRegisterInfo &MRI = MF->getRegInfo();\n"
<< " SmallVector<MachineInstr *, 8> MIs = { &MI };\n\n"
<< " (void)MBB; (void)MF; (void)MRI;\n\n";
OS << " // Match data\n";
for (const auto &Rule : Rules)
for (const auto &I : Rule->matchdata_decls())
OS << " " << I.getType() << " " << I.getVariableName() << ";\n";
OS << "\n";
OS << " int Partition = -1;\n";
generateCodeForTree(OS, *Tree, " ");
OS << "\n return false;\n"
<< "}\n"
<< "#endif // ifdef " << Name.upper() << "_GENCOMBINERHELPER_CPP\n";
}
} // end anonymous namespace
//===----------------------------------------------------------------------===//
namespace llvm {
void EmitGICombiner(RecordKeeper &RK, raw_ostream &OS) {
CodeGenTarget Target(RK);
emitSourceFileHeader("Global Combiner", OS);
if (SelectedCombiners.empty())
PrintFatalError("No combiners selected with -combiners");
for (const auto &Combiner : SelectedCombiners) {
Record *CombinerDef = RK.getDef(Combiner);
if (!CombinerDef)
PrintFatalError("Could not find " + Combiner);
GICombinerEmitter(RK, Target, Combiner, CombinerDef).run(OS);
}
NumPatternTotalStatistic = NumPatternTotal;
}
} // namespace llvm