llvm-project/llvm/lib/Transforms/Utils/LoopUnrollRuntime.cpp

959 lines
40 KiB
C++

//===-- UnrollLoopRuntime.cpp - Runtime Loop unrolling utilities ----------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file implements some loop unrolling utilities for loops with run-time
// trip counts. See LoopUnroll.cpp for unrolling loops with compile-time
// trip counts.
//
// The functions in this file are used to generate extra code when the
// run-time trip count modulo the unroll factor is not 0. When this is the
// case, we need to generate code to execute these 'left over' iterations.
//
// The current strategy generates an if-then-else sequence prior to the
// unrolled loop to execute the 'left over' iterations before or after the
// unrolled loop.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/Statistic.h"
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/LoopIterator.h"
#include "llvm/Analysis/ScalarEvolution.h"
#include "llvm/Analysis/ScalarEvolutionExpander.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Metadata.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/Debug.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Transforms/Utils.h"
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
#include "llvm/Transforms/Utils/Cloning.h"
#include "llvm/Transforms/Utils/LoopUtils.h"
#include "llvm/Transforms/Utils/UnrollLoop.h"
#include <algorithm>
using namespace llvm;
#define DEBUG_TYPE "loop-unroll"
STATISTIC(NumRuntimeUnrolled,
"Number of loops unrolled with run-time trip counts");
static cl::opt<bool> UnrollRuntimeMultiExit(
"unroll-runtime-multi-exit", cl::init(false), cl::Hidden,
cl::desc("Allow runtime unrolling for loops with multiple exits, when "
"epilog is generated"));
/// Connect the unrolling prolog code to the original loop.
/// The unrolling prolog code contains code to execute the
/// 'extra' iterations if the run-time trip count modulo the
/// unroll count is non-zero.
///
/// This function performs the following:
/// - Create PHI nodes at prolog end block to combine values
/// that exit the prolog code and jump around the prolog.
/// - Add a PHI operand to a PHI node at the loop exit block
/// for values that exit the prolog and go around the loop.
/// - Branch around the original loop if the trip count is less
/// than the unroll factor.
///
static void ConnectProlog(Loop *L, Value *BECount, unsigned Count,
BasicBlock *PrologExit,
BasicBlock *OriginalLoopLatchExit,
BasicBlock *PreHeader, BasicBlock *NewPreHeader,
ValueToValueMapTy &VMap, DominatorTree *DT,
LoopInfo *LI, bool PreserveLCSSA) {
// Loop structure should be the following:
// Preheader
// PrologHeader
// ...
// PrologLatch
// PrologExit
// NewPreheader
// Header
// ...
// Latch
// LatchExit
BasicBlock *Latch = L->getLoopLatch();
assert(Latch && "Loop must have a latch");
BasicBlock *PrologLatch = cast<BasicBlock>(VMap[Latch]);
// Create a PHI node for each outgoing value from the original loop
// (which means it is an outgoing value from the prolog code too).
// The new PHI node is inserted in the prolog end basic block.
// The new PHI node value is added as an operand of a PHI node in either
// the loop header or the loop exit block.
for (BasicBlock *Succ : successors(Latch)) {
for (PHINode &PN : Succ->phis()) {
// Add a new PHI node to the prolog end block and add the
// appropriate incoming values.
// TODO: This code assumes that the PrologExit (or the LatchExit block for
// prolog loop) contains only one predecessor from the loop, i.e. the
// PrologLatch. When supporting multiple-exiting block loops, we can have
// two or more blocks that have the LatchExit as the target in the
// original loop.
PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
PrologExit->getFirstNonPHI());
// Adding a value to the new PHI node from the original loop preheader.
// This is the value that skips all the prolog code.
if (L->contains(&PN)) {
// Succ is loop header.
NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader),
PreHeader);
} else {
// Succ is LatchExit.
NewPN->addIncoming(UndefValue::get(PN.getType()), PreHeader);
}
Value *V = PN.getIncomingValueForBlock(Latch);
if (Instruction *I = dyn_cast<Instruction>(V)) {
if (L->contains(I)) {
V = VMap.lookup(I);
}
}
// Adding a value to the new PHI node from the last prolog block
// that was created.
NewPN->addIncoming(V, PrologLatch);
// Update the existing PHI node operand with the value from the
// new PHI node. How this is done depends on if the existing
// PHI node is in the original loop block, or the exit block.
if (L->contains(&PN))
PN.setIncomingValueForBlock(NewPreHeader, NewPN);
else
PN.addIncoming(NewPN, PrologExit);
}
}
// Make sure that created prolog loop is in simplified form
SmallVector<BasicBlock *, 4> PrologExitPreds;
Loop *PrologLoop = LI->getLoopFor(PrologLatch);
if (PrologLoop) {
for (BasicBlock *PredBB : predecessors(PrologExit))
if (PrologLoop->contains(PredBB))
PrologExitPreds.push_back(PredBB);
SplitBlockPredecessors(PrologExit, PrologExitPreds, ".unr-lcssa", DT, LI,
nullptr, PreserveLCSSA);
}
// Create a branch around the original loop, which is taken if there are no
// iterations remaining to be executed after running the prologue.
Instruction *InsertPt = PrologExit->getTerminator();
IRBuilder<> B(InsertPt);
assert(Count != 0 && "nonsensical Count!");
// If BECount <u (Count - 1) then (BECount + 1) % Count == (BECount + 1)
// This means %xtraiter is (BECount + 1) and all of the iterations of this
// loop were executed by the prologue. Note that if BECount <u (Count - 1)
// then (BECount + 1) cannot unsigned-overflow.
Value *BrLoopExit =
B.CreateICmpULT(BECount, ConstantInt::get(BECount->getType(), Count - 1));
// Split the exit to maintain loop canonicalization guarantees
SmallVector<BasicBlock *, 4> Preds(predecessors(OriginalLoopLatchExit));
SplitBlockPredecessors(OriginalLoopLatchExit, Preds, ".unr-lcssa", DT, LI,
nullptr, PreserveLCSSA);
// Add the branch to the exit block (around the unrolled loop)
B.CreateCondBr(BrLoopExit, OriginalLoopLatchExit, NewPreHeader);
InsertPt->eraseFromParent();
if (DT)
DT->changeImmediateDominator(OriginalLoopLatchExit, PrologExit);
}
/// Connect the unrolling epilog code to the original loop.
/// The unrolling epilog code contains code to execute the
/// 'extra' iterations if the run-time trip count modulo the
/// unroll count is non-zero.
///
/// This function performs the following:
/// - Update PHI nodes at the unrolling loop exit and epilog loop exit
/// - Create PHI nodes at the unrolling loop exit to combine
/// values that exit the unrolling loop code and jump around it.
/// - Update PHI operands in the epilog loop by the new PHI nodes
/// - Branch around the epilog loop if extra iters (ModVal) is zero.
///
static void ConnectEpilog(Loop *L, Value *ModVal, BasicBlock *NewExit,
BasicBlock *Exit, BasicBlock *PreHeader,
BasicBlock *EpilogPreHeader, BasicBlock *NewPreHeader,
ValueToValueMapTy &VMap, DominatorTree *DT,
LoopInfo *LI, bool PreserveLCSSA) {
BasicBlock *Latch = L->getLoopLatch();
assert(Latch && "Loop must have a latch");
BasicBlock *EpilogLatch = cast<BasicBlock>(VMap[Latch]);
// Loop structure should be the following:
//
// PreHeader
// NewPreHeader
// Header
// ...
// Latch
// NewExit (PN)
// EpilogPreHeader
// EpilogHeader
// ...
// EpilogLatch
// Exit (EpilogPN)
// Update PHI nodes at NewExit and Exit.
for (PHINode &PN : NewExit->phis()) {
// PN should be used in another PHI located in Exit block as
// Exit was split by SplitBlockPredecessors into Exit and NewExit
// Basicaly it should look like:
// NewExit:
// PN = PHI [I, Latch]
// ...
// Exit:
// EpilogPN = PHI [PN, EpilogPreHeader]
//
// There is EpilogPreHeader incoming block instead of NewExit as
// NewExit was spilt 1 more time to get EpilogPreHeader.
assert(PN.hasOneUse() && "The phi should have 1 use");
PHINode *EpilogPN = cast<PHINode>(PN.use_begin()->getUser());
assert(EpilogPN->getParent() == Exit && "EpilogPN should be in Exit block");
// Add incoming PreHeader from branch around the Loop
PN.addIncoming(UndefValue::get(PN.getType()), PreHeader);
Value *V = PN.getIncomingValueForBlock(Latch);
Instruction *I = dyn_cast<Instruction>(V);
if (I && L->contains(I))
// If value comes from an instruction in the loop add VMap value.
V = VMap.lookup(I);
// For the instruction out of the loop, constant or undefined value
// insert value itself.
EpilogPN->addIncoming(V, EpilogLatch);
assert(EpilogPN->getBasicBlockIndex(EpilogPreHeader) >= 0 &&
"EpilogPN should have EpilogPreHeader incoming block");
// Change EpilogPreHeader incoming block to NewExit.
EpilogPN->setIncomingBlock(EpilogPN->getBasicBlockIndex(EpilogPreHeader),
NewExit);
// Now PHIs should look like:
// NewExit:
// PN = PHI [I, Latch], [undef, PreHeader]
// ...
// Exit:
// EpilogPN = PHI [PN, NewExit], [VMap[I], EpilogLatch]
}
// Create PHI nodes at NewExit (from the unrolling loop Latch and PreHeader).
// Update corresponding PHI nodes in epilog loop.
for (BasicBlock *Succ : successors(Latch)) {
// Skip this as we already updated phis in exit blocks.
if (!L->contains(Succ))
continue;
for (PHINode &PN : Succ->phis()) {
// Add new PHI nodes to the loop exit block and update epilog
// PHIs with the new PHI values.
PHINode *NewPN = PHINode::Create(PN.getType(), 2, PN.getName() + ".unr",
NewExit->getFirstNonPHI());
// Adding a value to the new PHI node from the unrolling loop preheader.
NewPN->addIncoming(PN.getIncomingValueForBlock(NewPreHeader), PreHeader);
// Adding a value to the new PHI node from the unrolling loop latch.
NewPN->addIncoming(PN.getIncomingValueForBlock(Latch), Latch);
// Update the existing PHI node operand with the value from the new PHI
// node. Corresponding instruction in epilog loop should be PHI.
PHINode *VPN = cast<PHINode>(VMap[&PN]);
VPN->setIncomingValueForBlock(EpilogPreHeader, NewPN);
}
}
Instruction *InsertPt = NewExit->getTerminator();
IRBuilder<> B(InsertPt);
Value *BrLoopExit = B.CreateIsNotNull(ModVal, "lcmp.mod");
assert(Exit && "Loop must have a single exit block only");
// Split the epilogue exit to maintain loop canonicalization guarantees
SmallVector<BasicBlock*, 4> Preds(predecessors(Exit));
SplitBlockPredecessors(Exit, Preds, ".epilog-lcssa", DT, LI, nullptr,
PreserveLCSSA);
// Add the branch to the exit block (around the unrolling loop)
B.CreateCondBr(BrLoopExit, EpilogPreHeader, Exit);
InsertPt->eraseFromParent();
if (DT)
DT->changeImmediateDominator(Exit, NewExit);
// Split the main loop exit to maintain canonicalization guarantees.
SmallVector<BasicBlock*, 4> NewExitPreds{Latch};
SplitBlockPredecessors(NewExit, NewExitPreds, ".loopexit", DT, LI, nullptr,
PreserveLCSSA);
}
/// Create a clone of the blocks in a loop and connect them together.
/// If CreateRemainderLoop is false, loop structure will not be cloned,
/// otherwise a new loop will be created including all cloned blocks, and the
/// iterator of it switches to count NewIter down to 0.
/// The cloned blocks should be inserted between InsertTop and InsertBot.
/// If loop structure is cloned InsertTop should be new preheader, InsertBot
/// new loop exit.
/// Return the new cloned loop that is created when CreateRemainderLoop is true.
static Loop *
CloneLoopBlocks(Loop *L, Value *NewIter, const bool CreateRemainderLoop,
const bool UseEpilogRemainder, const bool UnrollRemainder,
BasicBlock *InsertTop,
BasicBlock *InsertBot, BasicBlock *Preheader,
std::vector<BasicBlock *> &NewBlocks, LoopBlocksDFS &LoopBlocks,
ValueToValueMapTy &VMap, DominatorTree *DT, LoopInfo *LI) {
StringRef suffix = UseEpilogRemainder ? "epil" : "prol";
BasicBlock *Header = L->getHeader();
BasicBlock *Latch = L->getLoopLatch();
Function *F = Header->getParent();
LoopBlocksDFS::RPOIterator BlockBegin = LoopBlocks.beginRPO();
LoopBlocksDFS::RPOIterator BlockEnd = LoopBlocks.endRPO();
Loop *ParentLoop = L->getParentLoop();
NewLoopsMap NewLoops;
NewLoops[ParentLoop] = ParentLoop;
if (!CreateRemainderLoop)
NewLoops[L] = ParentLoop;
// For each block in the original loop, create a new copy,
// and update the value map with the newly created values.
for (LoopBlocksDFS::RPOIterator BB = BlockBegin; BB != BlockEnd; ++BB) {
BasicBlock *NewBB = CloneBasicBlock(*BB, VMap, "." + suffix, F);
NewBlocks.push_back(NewBB);
// If we're unrolling the outermost loop, there's no remainder loop,
// and this block isn't in a nested loop, then the new block is not
// in any loop. Otherwise, add it to loopinfo.
if (CreateRemainderLoop || LI->getLoopFor(*BB) != L || ParentLoop)
addClonedBlockToLoopInfo(*BB, NewBB, LI, NewLoops);
VMap[*BB] = NewBB;
if (Header == *BB) {
// For the first block, add a CFG connection to this newly
// created block.
InsertTop->getTerminator()->setSuccessor(0, NewBB);
}
if (DT) {
if (Header == *BB) {
// The header is dominated by the preheader.
DT->addNewBlock(NewBB, InsertTop);
} else {
// Copy information from original loop to unrolled loop.
BasicBlock *IDomBB = DT->getNode(*BB)->getIDom()->getBlock();
DT->addNewBlock(NewBB, cast<BasicBlock>(VMap[IDomBB]));
}
}
if (Latch == *BB) {
// For the last block, if CreateRemainderLoop is false, create a direct
// jump to InsertBot. If not, create a loop back to cloned head.
VMap.erase((*BB)->getTerminator());
BasicBlock *FirstLoopBB = cast<BasicBlock>(VMap[Header]);
BranchInst *LatchBR = cast<BranchInst>(NewBB->getTerminator());
IRBuilder<> Builder(LatchBR);
if (!CreateRemainderLoop) {
Builder.CreateBr(InsertBot);
} else {
PHINode *NewIdx = PHINode::Create(NewIter->getType(), 2,
suffix + ".iter",
FirstLoopBB->getFirstNonPHI());
Value *IdxSub =
Builder.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
NewIdx->getName() + ".sub");
Value *IdxCmp =
Builder.CreateIsNotNull(IdxSub, NewIdx->getName() + ".cmp");
Builder.CreateCondBr(IdxCmp, FirstLoopBB, InsertBot);
NewIdx->addIncoming(NewIter, InsertTop);
NewIdx->addIncoming(IdxSub, NewBB);
}
LatchBR->eraseFromParent();
}
}
// Change the incoming values to the ones defined in the preheader or
// cloned loop.
for (BasicBlock::iterator I = Header->begin(); isa<PHINode>(I); ++I) {
PHINode *NewPHI = cast<PHINode>(VMap[&*I]);
if (!CreateRemainderLoop) {
if (UseEpilogRemainder) {
unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
NewPHI->setIncomingBlock(idx, InsertTop);
NewPHI->removeIncomingValue(Latch, false);
} else {
VMap[&*I] = NewPHI->getIncomingValueForBlock(Preheader);
cast<BasicBlock>(VMap[Header])->getInstList().erase(NewPHI);
}
} else {
unsigned idx = NewPHI->getBasicBlockIndex(Preheader);
NewPHI->setIncomingBlock(idx, InsertTop);
BasicBlock *NewLatch = cast<BasicBlock>(VMap[Latch]);
idx = NewPHI->getBasicBlockIndex(Latch);
Value *InVal = NewPHI->getIncomingValue(idx);
NewPHI->setIncomingBlock(idx, NewLatch);
if (Value *V = VMap.lookup(InVal))
NewPHI->setIncomingValue(idx, V);
}
}
if (CreateRemainderLoop) {
Loop *NewLoop = NewLoops[L];
assert(NewLoop && "L should have been cloned");
MDNode *LoopID = NewLoop->getLoopID();
// Only add loop metadata if the loop is not going to be completely
// unrolled.
if (UnrollRemainder)
return NewLoop;
Optional<MDNode *> NewLoopID = makeFollowupLoopID(
LoopID, {LLVMLoopUnrollFollowupAll, LLVMLoopUnrollFollowupRemainder});
if (NewLoopID.hasValue()) {
NewLoop->setLoopID(NewLoopID.getValue());
// Do not setLoopAlreadyUnrolled if loop attributes have been defined
// explicitly.
return NewLoop;
}
// Add unroll disable metadata to disable future unrolling for this loop.
NewLoop->setLoopAlreadyUnrolled();
return NewLoop;
}
else
return nullptr;
}
/// Returns true if we can safely unroll a multi-exit/exiting loop. OtherExits
/// is populated with all the loop exit blocks other than the LatchExit block.
static bool canSafelyUnrollMultiExitLoop(Loop *L, BasicBlock *LatchExit,
bool PreserveLCSSA,
bool UseEpilogRemainder) {
// We currently have some correctness constrains in unrolling a multi-exit
// loop. Check for these below.
// We rely on LCSSA form being preserved when the exit blocks are transformed.
if (!PreserveLCSSA)
return false;
// TODO: Support multiple exiting blocks jumping to the `LatchExit` when
// UnrollRuntimeMultiExit is true. This will need updating the logic in
// connectEpilog/connectProlog.
if (!LatchExit->getSinglePredecessor()) {
LLVM_DEBUG(
dbgs() << "Bailout for multi-exit handling when latch exit has >1 "
"predecessor.\n");
return false;
}
// FIXME: We bail out of multi-exit unrolling when epilog loop is generated
// and L is an inner loop. This is because in presence of multiple exits, the
// outer loop is incorrect: we do not add the EpilogPreheader and exit to the
// outer loop. This is automatically handled in the prolog case, so we do not
// have that bug in prolog generation.
if (UseEpilogRemainder && L->getParentLoop())
return false;
// All constraints have been satisfied.
return true;
}
/// Returns true if we can profitably unroll the multi-exit loop L. Currently,
/// we return true only if UnrollRuntimeMultiExit is set to true.
static bool canProfitablyUnrollMultiExitLoop(
Loop *L, SmallVectorImpl<BasicBlock *> &OtherExits, BasicBlock *LatchExit,
bool PreserveLCSSA, bool UseEpilogRemainder) {
#if !defined(NDEBUG)
assert(canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
UseEpilogRemainder) &&
"Should be safe to unroll before checking profitability!");
#endif
// Priority goes to UnrollRuntimeMultiExit if it's supplied.
if (UnrollRuntimeMultiExit.getNumOccurrences())
return UnrollRuntimeMultiExit;
// The main pain point with multi-exit loop unrolling is that once unrolled,
// we will not be able to merge all blocks into a straight line code.
// There are branches within the unrolled loop that go to the OtherExits.
// The second point is the increase in code size, but this is true
// irrespective of multiple exits.
// Note: Both the heuristics below are coarse grained. We are essentially
// enabling unrolling of loops that have a single side exit other than the
// normal LatchExit (i.e. exiting into a deoptimize block).
// The heuristics considered are:
// 1. low number of branches in the unrolled version.
// 2. high predictability of these extra branches.
// We avoid unrolling loops that have more than two exiting blocks. This
// limits the total number of branches in the unrolled loop to be atmost
// the unroll factor (since one of the exiting blocks is the latch block).
SmallVector<BasicBlock*, 4> ExitingBlocks;
L->getExitingBlocks(ExitingBlocks);
if (ExitingBlocks.size() > 2)
return false;
// The second heuristic is that L has one exit other than the latchexit and
// that exit is a deoptimize block. We know that deoptimize blocks are rarely
// taken, which also implies the branch leading to the deoptimize block is
// highly predictable.
return (OtherExits.size() == 1 &&
OtherExits[0]->getTerminatingDeoptimizeCall());
// TODO: These can be fine-tuned further to consider code size or deopt states
// that are captured by the deoptimize exit block.
// Also, we can extend this to support more cases, if we actually
// know of kinds of multiexit loops that would benefit from unrolling.
}
/// Insert code in the prolog/epilog code when unrolling a loop with a
/// run-time trip-count.
///
/// This method assumes that the loop unroll factor is total number
/// of loop bodies in the loop after unrolling. (Some folks refer
/// to the unroll factor as the number of *extra* copies added).
/// We assume also that the loop unroll factor is a power-of-two. So, after
/// unrolling the loop, the number of loop bodies executed is 2,
/// 4, 8, etc. Note - LLVM converts the if-then-sequence to a switch
/// instruction in SimplifyCFG.cpp. Then, the backend decides how code for
/// the switch instruction is generated.
///
/// ***Prolog case***
/// extraiters = tripcount % loopfactor
/// if (extraiters == 0) jump Loop:
/// else jump Prol:
/// Prol: LoopBody;
/// extraiters -= 1 // Omitted if unroll factor is 2.
/// if (extraiters != 0) jump Prol: // Omitted if unroll factor is 2.
/// if (tripcount < loopfactor) jump End:
/// Loop:
/// ...
/// End:
///
/// ***Epilog case***
/// extraiters = tripcount % loopfactor
/// if (tripcount < loopfactor) jump LoopExit:
/// unroll_iters = tripcount - extraiters
/// Loop: LoopBody; (executes unroll_iter times);
/// unroll_iter -= 1
/// if (unroll_iter != 0) jump Loop:
/// LoopExit:
/// if (extraiters == 0) jump EpilExit:
/// Epil: LoopBody; (executes extraiters times)
/// extraiters -= 1 // Omitted if unroll factor is 2.
/// if (extraiters != 0) jump Epil: // Omitted if unroll factor is 2.
/// EpilExit:
bool llvm::UnrollRuntimeLoopRemainder(
Loop *L, unsigned Count, bool AllowExpensiveTripCount,
bool UseEpilogRemainder, bool UnrollRemainder, bool ForgetAllSCEV,
LoopInfo *LI, ScalarEvolution *SE, DominatorTree *DT, AssumptionCache *AC,
const TargetTransformInfo *TTI, bool PreserveLCSSA, Loop **ResultLoop) {
LLVM_DEBUG(dbgs() << "Trying runtime unrolling on Loop: \n");
LLVM_DEBUG(L->dump());
LLVM_DEBUG(UseEpilogRemainder ? dbgs() << "Using epilog remainder.\n"
: dbgs() << "Using prolog remainder.\n");
// Make sure the loop is in canonical form.
if (!L->isLoopSimplifyForm()) {
LLVM_DEBUG(dbgs() << "Not in simplify form!\n");
return false;
}
// Guaranteed by LoopSimplifyForm.
BasicBlock *Latch = L->getLoopLatch();
BasicBlock *Header = L->getHeader();
BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
if (!LatchBR || LatchBR->isUnconditional()) {
// The loop-rotate pass can be helpful to avoid this in many cases.
LLVM_DEBUG(
dbgs()
<< "Loop latch not terminated by a conditional branch.\n");
return false;
}
unsigned ExitIndex = LatchBR->getSuccessor(0) == Header ? 1 : 0;
BasicBlock *LatchExit = LatchBR->getSuccessor(ExitIndex);
if (L->contains(LatchExit)) {
// Cloning the loop basic blocks (`CloneLoopBlocks`) requires that one of the
// targets of the Latch be an exit block out of the loop.
LLVM_DEBUG(
dbgs()
<< "One of the loop latch successors must be the exit block.\n");
return false;
}
// These are exit blocks other than the target of the latch exiting block.
SmallVector<BasicBlock *, 4> OtherExits;
L->getUniqueNonLatchExitBlocks(OtherExits);
bool isMultiExitUnrollingEnabled =
canSafelyUnrollMultiExitLoop(L, LatchExit, PreserveLCSSA,
UseEpilogRemainder) &&
canProfitablyUnrollMultiExitLoop(L, OtherExits, LatchExit, PreserveLCSSA,
UseEpilogRemainder);
// Support only single exit and exiting block unless multi-exit loop unrolling is enabled.
if (!isMultiExitUnrollingEnabled &&
(!L->getExitingBlock() || OtherExits.size())) {
LLVM_DEBUG(
dbgs()
<< "Multiple exit/exiting blocks in loop and multi-exit unrolling not "
"enabled!\n");
return false;
}
// Use Scalar Evolution to compute the trip count. This allows more loops to
// be unrolled than relying on induction var simplification.
if (!SE)
return false;
// Only unroll loops with a computable trip count, and the trip count needs
// to be an int value (allowing a pointer type is a TODO item).
// We calculate the backedge count by using getExitCount on the Latch block,
// which is proven to be the only exiting block in this loop. This is same as
// calculating getBackedgeTakenCount on the loop (which computes SCEV for all
// exiting blocks).
const SCEV *BECountSC = SE->getExitCount(L, Latch);
if (isa<SCEVCouldNotCompute>(BECountSC) ||
!BECountSC->getType()->isIntegerTy()) {
LLVM_DEBUG(dbgs() << "Could not compute exit block SCEV\n");
return false;
}
unsigned BEWidth = cast<IntegerType>(BECountSC->getType())->getBitWidth();
// Add 1 since the backedge count doesn't include the first loop iteration.
const SCEV *TripCountSC =
SE->getAddExpr(BECountSC, SE->getConstant(BECountSC->getType(), 1));
if (isa<SCEVCouldNotCompute>(TripCountSC)) {
LLVM_DEBUG(dbgs() << "Could not compute trip count SCEV.\n");
return false;
}
BasicBlock *PreHeader = L->getLoopPreheader();
BranchInst *PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
const DataLayout &DL = Header->getModule()->getDataLayout();
SCEVExpander Expander(*SE, DL, "loop-unroll");
if (!AllowExpensiveTripCount &&
Expander.isHighCostExpansion(TripCountSC, L, SCEVCheapExpansionBudget,
TTI, PreHeaderBR)) {
LLVM_DEBUG(dbgs() << "High cost for expanding trip count scev!\n");
return false;
}
// This constraint lets us deal with an overflowing trip count easily; see the
// comment on ModVal below.
if (Log2_32(Count) > BEWidth) {
LLVM_DEBUG(
dbgs()
<< "Count failed constraint on overflow trip count calculation.\n");
return false;
}
// Loop structure is the following:
//
// PreHeader
// Header
// ...
// Latch
// LatchExit
BasicBlock *NewPreHeader;
BasicBlock *NewExit = nullptr;
BasicBlock *PrologExit = nullptr;
BasicBlock *EpilogPreHeader = nullptr;
BasicBlock *PrologPreHeader = nullptr;
if (UseEpilogRemainder) {
// If epilog remainder
// Split PreHeader to insert a branch around loop for unrolling.
NewPreHeader = SplitBlock(PreHeader, PreHeader->getTerminator(), DT, LI);
NewPreHeader->setName(PreHeader->getName() + ".new");
// Split LatchExit to create phi nodes from branch above.
SmallVector<BasicBlock*, 4> Preds(predecessors(LatchExit));
NewExit = SplitBlockPredecessors(LatchExit, Preds, ".unr-lcssa", DT, LI,
nullptr, PreserveLCSSA);
// NewExit gets its DebugLoc from LatchExit, which is not part of the
// original Loop.
// Fix this by setting Loop's DebugLoc to NewExit.
auto *NewExitTerminator = NewExit->getTerminator();
NewExitTerminator->setDebugLoc(Header->getTerminator()->getDebugLoc());
// Split NewExit to insert epilog remainder loop.
EpilogPreHeader = SplitBlock(NewExit, NewExitTerminator, DT, LI);
EpilogPreHeader->setName(Header->getName() + ".epil.preheader");
} else {
// If prolog remainder
// Split the original preheader twice to insert prolog remainder loop
PrologPreHeader = SplitEdge(PreHeader, Header, DT, LI);
PrologPreHeader->setName(Header->getName() + ".prol.preheader");
PrologExit = SplitBlock(PrologPreHeader, PrologPreHeader->getTerminator(),
DT, LI);
PrologExit->setName(Header->getName() + ".prol.loopexit");
// Split PrologExit to get NewPreHeader.
NewPreHeader = SplitBlock(PrologExit, PrologExit->getTerminator(), DT, LI);
NewPreHeader->setName(PreHeader->getName() + ".new");
}
// Loop structure should be the following:
// Epilog Prolog
//
// PreHeader PreHeader
// *NewPreHeader *PrologPreHeader
// Header *PrologExit
// ... *NewPreHeader
// Latch Header
// *NewExit ...
// *EpilogPreHeader Latch
// LatchExit LatchExit
// Calculate conditions for branch around loop for unrolling
// in epilog case and around prolog remainder loop in prolog case.
// Compute the number of extra iterations required, which is:
// extra iterations = run-time trip count % loop unroll factor
PreHeaderBR = cast<BranchInst>(PreHeader->getTerminator());
Value *TripCount = Expander.expandCodeFor(TripCountSC, TripCountSC->getType(),
PreHeaderBR);
Value *BECount = Expander.expandCodeFor(BECountSC, BECountSC->getType(),
PreHeaderBR);
IRBuilder<> B(PreHeaderBR);
Value *ModVal;
// Calculate ModVal = (BECount + 1) % Count.
// Note that TripCount is BECount + 1.
if (isPowerOf2_32(Count)) {
// When Count is power of 2 we don't BECount for epilog case, however we'll
// need it for a branch around unrolling loop for prolog case.
ModVal = B.CreateAnd(TripCount, Count - 1, "xtraiter");
// 1. There are no iterations to be run in the prolog/epilog loop.
// OR
// 2. The addition computing TripCount overflowed.
//
// If (2) is true, we know that TripCount really is (1 << BEWidth) and so
// the number of iterations that remain to be run in the original loop is a
// multiple Count == (1 << Log2(Count)) because Log2(Count) <= BEWidth (we
// explicitly check this above).
} else {
// As (BECount + 1) can potentially unsigned overflow we count
// (BECount % Count) + 1 which is overflow safe as BECount % Count < Count.
Value *ModValTmp = B.CreateURem(BECount,
ConstantInt::get(BECount->getType(),
Count));
Value *ModValAdd = B.CreateAdd(ModValTmp,
ConstantInt::get(ModValTmp->getType(), 1));
// At that point (BECount % Count) + 1 could be equal to Count.
// To handle this case we need to take mod by Count one more time.
ModVal = B.CreateURem(ModValAdd,
ConstantInt::get(BECount->getType(), Count),
"xtraiter");
}
Value *BranchVal =
UseEpilogRemainder ? B.CreateICmpULT(BECount,
ConstantInt::get(BECount->getType(),
Count - 1)) :
B.CreateIsNotNull(ModVal, "lcmp.mod");
BasicBlock *RemainderLoop = UseEpilogRemainder ? NewExit : PrologPreHeader;
BasicBlock *UnrollingLoop = UseEpilogRemainder ? NewPreHeader : PrologExit;
// Branch to either remainder (extra iterations) loop or unrolling loop.
B.CreateCondBr(BranchVal, RemainderLoop, UnrollingLoop);
PreHeaderBR->eraseFromParent();
if (DT) {
if (UseEpilogRemainder)
DT->changeImmediateDominator(NewExit, PreHeader);
else
DT->changeImmediateDominator(PrologExit, PreHeader);
}
Function *F = Header->getParent();
// Get an ordered list of blocks in the loop to help with the ordering of the
// cloned blocks in the prolog/epilog code
LoopBlocksDFS LoopBlocks(L);
LoopBlocks.perform(LI);
//
// For each extra loop iteration, create a copy of the loop's basic blocks
// and generate a condition that branches to the copy depending on the
// number of 'left over' iterations.
//
std::vector<BasicBlock *> NewBlocks;
ValueToValueMapTy VMap;
// For unroll factor 2 remainder loop will have 1 iterations.
// Do not create 1 iteration loop.
bool CreateRemainderLoop = (Count != 2);
// Clone all the basic blocks in the loop. If Count is 2, we don't clone
// the loop, otherwise we create a cloned loop to execute the extra
// iterations. This function adds the appropriate CFG connections.
BasicBlock *InsertBot = UseEpilogRemainder ? LatchExit : PrologExit;
BasicBlock *InsertTop = UseEpilogRemainder ? EpilogPreHeader : PrologPreHeader;
Loop *remainderLoop = CloneLoopBlocks(
L, ModVal, CreateRemainderLoop, UseEpilogRemainder, UnrollRemainder,
InsertTop, InsertBot,
NewPreHeader, NewBlocks, LoopBlocks, VMap, DT, LI);
// Insert the cloned blocks into the function.
F->getBasicBlockList().splice(InsertBot->getIterator(),
F->getBasicBlockList(),
NewBlocks[0]->getIterator(),
F->end());
// Now the loop blocks are cloned and the other exiting blocks from the
// remainder are connected to the original Loop's exit blocks. The remaining
// work is to update the phi nodes in the original loop, and take in the
// values from the cloned region.
for (auto *BB : OtherExits) {
for (auto &II : *BB) {
// Given we preserve LCSSA form, we know that the values used outside the
// loop will be used through these phi nodes at the exit blocks that are
// transformed below.
if (!isa<PHINode>(II))
break;
PHINode *Phi = cast<PHINode>(&II);
unsigned oldNumOperands = Phi->getNumIncomingValues();
// Add the incoming values from the remainder code to the end of the phi
// node.
for (unsigned i =0; i < oldNumOperands; i++){
Value *newVal = VMap.lookup(Phi->getIncomingValue(i));
// newVal can be a constant or derived from values outside the loop, and
// hence need not have a VMap value. Also, since lookup already generated
// a default "null" VMap entry for this value, we need to populate that
// VMap entry correctly, with the mapped entry being itself.
if (!newVal) {
newVal = Phi->getIncomingValue(i);
VMap[Phi->getIncomingValue(i)] = Phi->getIncomingValue(i);
}
Phi->addIncoming(newVal,
cast<BasicBlock>(VMap[Phi->getIncomingBlock(i)]));
}
}
#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
for (BasicBlock *SuccBB : successors(BB)) {
assert(!(any_of(OtherExits,
[SuccBB](BasicBlock *EB) { return EB == SuccBB; }) ||
SuccBB == LatchExit) &&
"Breaks the definition of dedicated exits!");
}
#endif
}
// Update the immediate dominator of the exit blocks and blocks that are
// reachable from the exit blocks. This is needed because we now have paths
// from both the original loop and the remainder code reaching the exit
// blocks. While the IDom of these exit blocks were from the original loop,
// now the IDom is the preheader (which decides whether the original loop or
// remainder code should run).
if (DT && !L->getExitingBlock()) {
SmallVector<BasicBlock *, 16> ChildrenToUpdate;
// NB! We have to examine the dom children of all loop blocks, not just
// those which are the IDom of the exit blocks. This is because blocks
// reachable from the exit blocks can have their IDom as the nearest common
// dominator of the exit blocks.
for (auto *BB : L->blocks()) {
auto *DomNodeBB = DT->getNode(BB);
for (auto *DomChild : DomNodeBB->getChildren()) {
auto *DomChildBB = DomChild->getBlock();
if (!L->contains(LI->getLoopFor(DomChildBB)))
ChildrenToUpdate.push_back(DomChildBB);
}
}
for (auto *BB : ChildrenToUpdate)
DT->changeImmediateDominator(BB, PreHeader);
}
// Loop structure should be the following:
// Epilog Prolog
//
// PreHeader PreHeader
// NewPreHeader PrologPreHeader
// Header PrologHeader
// ... ...
// Latch PrologLatch
// NewExit PrologExit
// EpilogPreHeader NewPreHeader
// EpilogHeader Header
// ... ...
// EpilogLatch Latch
// LatchExit LatchExit
// Rewrite the cloned instruction operands to use the values created when the
// clone is created.
for (BasicBlock *BB : NewBlocks) {
for (Instruction &I : *BB) {
RemapInstruction(&I, VMap,
RF_NoModuleLevelChanges | RF_IgnoreMissingLocals);
}
}
if (UseEpilogRemainder) {
// Connect the epilog code to the original loop and update the
// PHI functions.
ConnectEpilog(L, ModVal, NewExit, LatchExit, PreHeader,
EpilogPreHeader, NewPreHeader, VMap, DT, LI,
PreserveLCSSA);
// Update counter in loop for unrolling.
// I should be multiply of Count.
IRBuilder<> B2(NewPreHeader->getTerminator());
Value *TestVal = B2.CreateSub(TripCount, ModVal, "unroll_iter");
BranchInst *LatchBR = cast<BranchInst>(Latch->getTerminator());
B2.SetInsertPoint(LatchBR);
PHINode *NewIdx = PHINode::Create(TestVal->getType(), 2, "niter",
Header->getFirstNonPHI());
Value *IdxSub =
B2.CreateSub(NewIdx, ConstantInt::get(NewIdx->getType(), 1),
NewIdx->getName() + ".nsub");
Value *IdxCmp;
if (LatchBR->getSuccessor(0) == Header)
IdxCmp = B2.CreateIsNotNull(IdxSub, NewIdx->getName() + ".ncmp");
else
IdxCmp = B2.CreateIsNull(IdxSub, NewIdx->getName() + ".ncmp");
NewIdx->addIncoming(TestVal, NewPreHeader);
NewIdx->addIncoming(IdxSub, Latch);
LatchBR->setCondition(IdxCmp);
} else {
// Connect the prolog code to the original loop and update the
// PHI functions.
ConnectProlog(L, BECount, Count, PrologExit, LatchExit, PreHeader,
NewPreHeader, VMap, DT, LI, PreserveLCSSA);
}
// If this loop is nested, then the loop unroller changes the code in the any
// of its parent loops, so the Scalar Evolution pass needs to be run again.
SE->forgetTopmostLoop(L);
// Verify that the Dom Tree is correct.
#if defined(EXPENSIVE_CHECKS) && !defined(NDEBUG)
if (DT)
assert(DT->verify(DominatorTree::VerificationLevel::Full));
#endif
// Canonicalize to LoopSimplifyForm both original and remainder loops. We
// cannot rely on the LoopUnrollPass to do this because it only does
// canonicalization for parent/subloops and not the sibling loops.
if (OtherExits.size() > 0) {
// Generate dedicated exit blocks for the original loop, to preserve
// LoopSimplifyForm.
formDedicatedExitBlocks(L, DT, LI, nullptr, PreserveLCSSA);
// Generate dedicated exit blocks for the remainder loop if one exists, to
// preserve LoopSimplifyForm.
if (remainderLoop)
formDedicatedExitBlocks(remainderLoop, DT, LI, nullptr, PreserveLCSSA);
}
auto UnrollResult = LoopUnrollResult::Unmodified;
if (remainderLoop && UnrollRemainder) {
LLVM_DEBUG(dbgs() << "Unrolling remainder loop\n");
UnrollResult =
UnrollLoop(remainderLoop,
{/*Count*/ Count - 1, /*TripCount*/ Count - 1,
/*Force*/ false, /*AllowRuntime*/ false,
/*AllowExpensiveTripCount*/ false, /*PreserveCondBr*/ true,
/*PreserveOnlyFirst*/ false, /*TripMultiple*/ 1,
/*PeelCount*/ 0, /*UnrollRemainder*/ false, ForgetAllSCEV},
LI, SE, DT, AC, TTI, /*ORE*/ nullptr, PreserveLCSSA);
}
if (ResultLoop && UnrollResult != LoopUnrollResult::FullyUnrolled)
*ResultLoop = remainderLoop;
NumRuntimeUnrolled++;
return true;
}