forked from OSchip/llvm-project
610 lines
22 KiB
C++
610 lines
22 KiB
C++
//===- ARM.cpp ------------------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InputFiles.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "Target.h"
|
|
#include "Thunks.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "llvm/Object/ELF.h"
|
|
#include "llvm/Support/Endian.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::support::endian;
|
|
using namespace llvm::ELF;
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
namespace {
|
|
class ARM final : public TargetInfo {
|
|
public:
|
|
ARM();
|
|
uint32_t calcEFlags() const override;
|
|
RelExpr getRelExpr(RelType Type, const Symbol &S,
|
|
const uint8_t *Loc) const override;
|
|
RelType getDynRel(RelType Type) const override;
|
|
int64_t getImplicitAddend(const uint8_t *Buf, RelType Type) const override;
|
|
void writeGotPlt(uint8_t *Buf, const Symbol &S) const override;
|
|
void writeIgotPlt(uint8_t *Buf, const Symbol &S) const override;
|
|
void writePltHeader(uint8_t *Buf) const override;
|
|
void writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr, uint64_t PltEntryAddr,
|
|
int32_t Index, unsigned RelOff) const override;
|
|
void addPltSymbols(InputSection &IS, uint64_t Off) const override;
|
|
void addPltHeaderSymbols(InputSection &ISD) const override;
|
|
bool needsThunk(RelExpr Expr, RelType Type, const InputFile *File,
|
|
uint64_t BranchAddr, const Symbol &S) const override;
|
|
uint32_t getThunkSectionSpacing() const override;
|
|
bool inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const override;
|
|
void relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const override;
|
|
};
|
|
} // namespace
|
|
|
|
ARM::ARM() {
|
|
CopyRel = R_ARM_COPY;
|
|
RelativeRel = R_ARM_RELATIVE;
|
|
IRelativeRel = R_ARM_IRELATIVE;
|
|
GotRel = R_ARM_GLOB_DAT;
|
|
PltRel = R_ARM_JUMP_SLOT;
|
|
TlsGotRel = R_ARM_TLS_TPOFF32;
|
|
TlsModuleIndexRel = R_ARM_TLS_DTPMOD32;
|
|
TlsOffsetRel = R_ARM_TLS_DTPOFF32;
|
|
GotBaseSymInGotPlt = false;
|
|
GotEntrySize = 4;
|
|
GotPltEntrySize = 4;
|
|
PltEntrySize = 16;
|
|
PltHeaderSize = 32;
|
|
TrapInstr = 0xd4d4d4d4;
|
|
// ARM uses Variant 1 TLS
|
|
TcbSize = 8;
|
|
NeedsThunks = true;
|
|
}
|
|
|
|
uint32_t ARM::calcEFlags() const {
|
|
// The ABIFloatType is used by loaders to detect the floating point calling
|
|
// convention.
|
|
uint32_t ABIFloatType = 0;
|
|
if (Config->ARMVFPArgs == ARMVFPArgKind::Base ||
|
|
Config->ARMVFPArgs == ARMVFPArgKind::Default)
|
|
ABIFloatType = EF_ARM_ABI_FLOAT_SOFT;
|
|
else if (Config->ARMVFPArgs == ARMVFPArgKind::VFP)
|
|
ABIFloatType = EF_ARM_ABI_FLOAT_HARD;
|
|
|
|
// We don't currently use any features incompatible with EF_ARM_EABI_VER5,
|
|
// but we don't have any firm guarantees of conformance. Linux AArch64
|
|
// kernels (as of 2016) require an EABI version to be set.
|
|
return EF_ARM_EABI_VER5 | ABIFloatType;
|
|
}
|
|
|
|
RelExpr ARM::getRelExpr(RelType Type, const Symbol &S,
|
|
const uint8_t *Loc) const {
|
|
switch (Type) {
|
|
case R_ARM_THM_JUMP11:
|
|
return R_PC;
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_PREL31:
|
|
case R_ARM_THM_JUMP19:
|
|
case R_ARM_THM_JUMP24:
|
|
case R_ARM_THM_CALL:
|
|
return R_PLT_PC;
|
|
case R_ARM_GOTOFF32:
|
|
// (S + A) - GOT_ORG
|
|
return R_GOTREL;
|
|
case R_ARM_GOT_BREL:
|
|
// GOT(S) + A - GOT_ORG
|
|
return R_GOT_OFF;
|
|
case R_ARM_GOT_PREL:
|
|
case R_ARM_TLS_IE32:
|
|
// GOT(S) + A - P
|
|
return R_GOT_PC;
|
|
case R_ARM_SBREL32:
|
|
return R_ARM_SBREL;
|
|
case R_ARM_TARGET1:
|
|
return Config->Target1Rel ? R_PC : R_ABS;
|
|
case R_ARM_TARGET2:
|
|
if (Config->Target2 == Target2Policy::Rel)
|
|
return R_PC;
|
|
if (Config->Target2 == Target2Policy::Abs)
|
|
return R_ABS;
|
|
return R_GOT_PC;
|
|
case R_ARM_TLS_GD32:
|
|
return R_TLSGD_PC;
|
|
case R_ARM_TLS_LDM32:
|
|
return R_TLSLD_PC;
|
|
case R_ARM_BASE_PREL:
|
|
// B(S) + A - P
|
|
// FIXME: currently B(S) assumed to be .got, this may not hold for all
|
|
// platforms.
|
|
return R_GOTONLY_PC;
|
|
case R_ARM_MOVW_PREL_NC:
|
|
case R_ARM_MOVT_PREL:
|
|
case R_ARM_REL32:
|
|
case R_ARM_THM_MOVW_PREL_NC:
|
|
case R_ARM_THM_MOVT_PREL:
|
|
return R_PC;
|
|
case R_ARM_NONE:
|
|
return R_NONE;
|
|
case R_ARM_TLS_LE32:
|
|
return R_TLS;
|
|
default:
|
|
return R_ABS;
|
|
}
|
|
}
|
|
|
|
RelType ARM::getDynRel(RelType Type) const {
|
|
if ((Type == R_ARM_ABS32) || (Type == R_ARM_TARGET1 && !Config->Target1Rel))
|
|
return R_ARM_ABS32;
|
|
return R_ARM_NONE;
|
|
}
|
|
|
|
void ARM::writeGotPlt(uint8_t *Buf, const Symbol &) const {
|
|
write32le(Buf, InX::Plt->getVA());
|
|
}
|
|
|
|
void ARM::writeIgotPlt(uint8_t *Buf, const Symbol &S) const {
|
|
// An ARM entry is the address of the ifunc resolver function.
|
|
write32le(Buf, S.getVA());
|
|
}
|
|
|
|
// Long form PLT Header that does not have any restrictions on the displacement
|
|
// of the .plt from the .plt.got.
|
|
static void writePltHeaderLong(uint8_t *Buf) {
|
|
const uint8_t PltData[] = {
|
|
0x04, 0xe0, 0x2d, 0xe5, // str lr, [sp,#-4]!
|
|
0x04, 0xe0, 0x9f, 0xe5, // ldr lr, L2
|
|
0x0e, 0xe0, 0x8f, 0xe0, // L1: add lr, pc, lr
|
|
0x08, 0xf0, 0xbe, 0xe5, // ldr pc, [lr, #8]
|
|
0x00, 0x00, 0x00, 0x00, // L2: .word &(.got.plt) - L1 - 8
|
|
0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
|
|
0xd4, 0xd4, 0xd4, 0xd4, // Pad to 32-byte boundary
|
|
0xd4, 0xd4, 0xd4, 0xd4};
|
|
memcpy(Buf, PltData, sizeof(PltData));
|
|
uint64_t GotPlt = InX::GotPlt->getVA();
|
|
uint64_t L1 = InX::Plt->getVA() + 8;
|
|
write32le(Buf + 16, GotPlt - L1 - 8);
|
|
}
|
|
|
|
// The default PLT header requires the .plt.got to be within 128 Mb of the
|
|
// .plt in the positive direction.
|
|
void ARM::writePltHeader(uint8_t *Buf) const {
|
|
// Use a similar sequence to that in writePlt(), the difference is the calling
|
|
// conventions mean we use lr instead of ip. The PLT entry is responsible for
|
|
// saving lr on the stack, the dynamic loader is responsible for reloading
|
|
// it.
|
|
const uint32_t PltData[] = {
|
|
0xe52de004, // L1: str lr, [sp,#-4]!
|
|
0xe28fe600, // add lr, pc, #0x0NN00000 &(.got.plt - L1 - 4)
|
|
0xe28eea00, // add lr, lr, #0x000NN000 &(.got.plt - L1 - 4)
|
|
0xe5bef000, // ldr pc, [lr, #0x00000NNN] &(.got.plt -L1 - 4)
|
|
};
|
|
|
|
uint64_t Offset = InX::GotPlt->getVA() - InX::Plt->getVA() - 4;
|
|
if (!llvm::isUInt<27>(Offset)) {
|
|
// We cannot encode the Offset, use the long form.
|
|
writePltHeaderLong(Buf);
|
|
return;
|
|
}
|
|
write32le(Buf + 0, PltData[0]);
|
|
write32le(Buf + 4, PltData[1] | ((Offset >> 20) & 0xff));
|
|
write32le(Buf + 8, PltData[2] | ((Offset >> 12) & 0xff));
|
|
write32le(Buf + 12, PltData[3] | (Offset & 0xfff));
|
|
write32le(Buf + 16, TrapInstr); // Pad to 32-byte boundary
|
|
write32le(Buf + 20, TrapInstr);
|
|
write32le(Buf + 24, TrapInstr);
|
|
write32le(Buf + 28, TrapInstr);
|
|
}
|
|
|
|
void ARM::addPltHeaderSymbols(InputSection &IS) const {
|
|
addSyntheticLocal("$a", STT_NOTYPE, 0, 0, IS);
|
|
addSyntheticLocal("$d", STT_NOTYPE, 16, 0, IS);
|
|
}
|
|
|
|
// Long form PLT entries that do not have any restrictions on the displacement
|
|
// of the .plt from the .plt.got.
|
|
static void writePltLong(uint8_t *Buf, uint64_t GotPltEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index,
|
|
unsigned RelOff) {
|
|
const uint8_t PltData[] = {
|
|
0x04, 0xc0, 0x9f, 0xe5, // ldr ip, L2
|
|
0x0f, 0xc0, 0x8c, 0xe0, // L1: add ip, ip, pc
|
|
0x00, 0xf0, 0x9c, 0xe5, // ldr pc, [ip]
|
|
0x00, 0x00, 0x00, 0x00, // L2: .word Offset(&(.plt.got) - L1 - 8
|
|
};
|
|
memcpy(Buf, PltData, sizeof(PltData));
|
|
uint64_t L1 = PltEntryAddr + 4;
|
|
write32le(Buf + 12, GotPltEntryAddr - L1 - 8);
|
|
}
|
|
|
|
// The default PLT entries require the .plt.got to be within 128 Mb of the
|
|
// .plt in the positive direction.
|
|
void ARM::writePlt(uint8_t *Buf, uint64_t GotPltEntryAddr,
|
|
uint64_t PltEntryAddr, int32_t Index,
|
|
unsigned RelOff) const {
|
|
// The PLT entry is similar to the example given in Appendix A of ELF for
|
|
// the Arm Architecture. Instead of using the Group Relocations to find the
|
|
// optimal rotation for the 8-bit immediate used in the add instructions we
|
|
// hard code the most compact rotations for simplicity. This saves a load
|
|
// instruction over the long plt sequences.
|
|
const uint32_t PltData[] = {
|
|
0xe28fc600, // L1: add ip, pc, #0x0NN00000 Offset(&(.plt.got) - L1 - 8
|
|
0xe28cca00, // add ip, ip, #0x000NN000 Offset(&(.plt.got) - L1 - 8
|
|
0xe5bcf000, // ldr pc, [ip, #0x00000NNN] Offset(&(.plt.got) - L1 - 8
|
|
};
|
|
|
|
uint64_t Offset = GotPltEntryAddr - PltEntryAddr - 8;
|
|
if (!llvm::isUInt<27>(Offset)) {
|
|
// We cannot encode the Offset, use the long form.
|
|
writePltLong(Buf, GotPltEntryAddr, PltEntryAddr, Index, RelOff);
|
|
return;
|
|
}
|
|
write32le(Buf + 0, PltData[0] | ((Offset >> 20) & 0xff));
|
|
write32le(Buf + 4, PltData[1] | ((Offset >> 12) & 0xff));
|
|
write32le(Buf + 8, PltData[2] | (Offset & 0xfff));
|
|
write32le(Buf + 12, TrapInstr); // Pad to 16-byte boundary
|
|
}
|
|
|
|
void ARM::addPltSymbols(InputSection &IS, uint64_t Off) const {
|
|
addSyntheticLocal("$a", STT_NOTYPE, Off, 0, IS);
|
|
addSyntheticLocal("$d", STT_NOTYPE, Off + 12, 0, IS);
|
|
}
|
|
|
|
bool ARM::needsThunk(RelExpr Expr, RelType Type, const InputFile *File,
|
|
uint64_t BranchAddr, const Symbol &S) const {
|
|
// If S is an undefined weak symbol and does not have a PLT entry then it
|
|
// will be resolved as a branch to the next instruction.
|
|
if (S.isUndefWeak() && !S.isInPlt())
|
|
return false;
|
|
// A state change from ARM to Thumb and vice versa must go through an
|
|
// interworking thunk if the relocation type is not R_ARM_CALL or
|
|
// R_ARM_THM_CALL.
|
|
switch (Type) {
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_JUMP24:
|
|
// Source is ARM, all PLT entries are ARM so no interworking required.
|
|
// Otherwise we need to interwork if Symbol has bit 0 set (Thumb).
|
|
if (Expr == R_PC && ((S.getVA() & 1) == 1))
|
|
return true;
|
|
LLVM_FALLTHROUGH;
|
|
case R_ARM_CALL: {
|
|
uint64_t Dst = (Expr == R_PLT_PC) ? S.getPltVA() : S.getVA();
|
|
return !inBranchRange(Type, BranchAddr, Dst);
|
|
}
|
|
case R_ARM_THM_JUMP19:
|
|
case R_ARM_THM_JUMP24:
|
|
// Source is Thumb, all PLT entries are ARM so interworking is required.
|
|
// Otherwise we need to interwork if Symbol has bit 0 clear (ARM).
|
|
if (Expr == R_PLT_PC || ((S.getVA() & 1) == 0))
|
|
return true;
|
|
LLVM_FALLTHROUGH;
|
|
case R_ARM_THM_CALL: {
|
|
uint64_t Dst = (Expr == R_PLT_PC) ? S.getPltVA() : S.getVA();
|
|
return !inBranchRange(Type, BranchAddr, Dst);
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
uint32_t ARM::getThunkSectionSpacing() const {
|
|
// The placing of pre-created ThunkSections is controlled by the value
|
|
// ThunkSectionSpacing returned by getThunkSectionSpacing(). The aim is to
|
|
// place the ThunkSection such that all branches from the InputSections
|
|
// prior to the ThunkSection can reach a Thunk placed at the end of the
|
|
// ThunkSection. Graphically:
|
|
// | up to ThunkSectionSpacing .text input sections |
|
|
// | ThunkSection |
|
|
// | up to ThunkSectionSpacing .text input sections |
|
|
// | ThunkSection |
|
|
|
|
// Pre-created ThunkSections are spaced roughly 16MiB apart on ARMv7. This
|
|
// is to match the most common expected case of a Thumb 2 encoded BL, BLX or
|
|
// B.W:
|
|
// ARM B, BL, BLX range +/- 32MiB
|
|
// Thumb B.W, BL, BLX range +/- 16MiB
|
|
// Thumb B<cc>.W range +/- 1MiB
|
|
// If a branch cannot reach a pre-created ThunkSection a new one will be
|
|
// created so we can handle the rare cases of a Thumb 2 conditional branch.
|
|
// We intentionally use a lower size for ThunkSectionSpacing than the maximum
|
|
// branch range so the end of the ThunkSection is more likely to be within
|
|
// range of the branch instruction that is furthest away. The value we shorten
|
|
// ThunkSectionSpacing by is set conservatively to allow us to create 16,384
|
|
// 12 byte Thunks at any offset in a ThunkSection without risk of a branch to
|
|
// one of the Thunks going out of range.
|
|
|
|
// On Arm the ThunkSectionSpacing depends on the range of the Thumb Branch
|
|
// range. On earlier Architectures such as ARMv4, ARMv5 and ARMv6 (except
|
|
// ARMv6T2) the range is +/- 4MiB.
|
|
|
|
return (Config->ARMJ1J2BranchEncoding) ? 0x1000000 - 0x30000
|
|
: 0x400000 - 0x7500;
|
|
}
|
|
|
|
bool ARM::inBranchRange(RelType Type, uint64_t Src, uint64_t Dst) const {
|
|
uint64_t Range;
|
|
uint64_t InstrSize;
|
|
|
|
switch (Type) {
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_CALL:
|
|
Range = 0x2000000;
|
|
InstrSize = 4;
|
|
break;
|
|
case R_ARM_THM_JUMP19:
|
|
Range = 0x100000;
|
|
InstrSize = 2;
|
|
break;
|
|
case R_ARM_THM_JUMP24:
|
|
case R_ARM_THM_CALL:
|
|
Range = Config->ARMJ1J2BranchEncoding ? 0x1000000 : 0x400000;
|
|
InstrSize = 2;
|
|
break;
|
|
default:
|
|
return true;
|
|
}
|
|
// PC at Src is 2 instructions ahead, immediate of branch is signed
|
|
if (Src > Dst)
|
|
Range -= 2 * InstrSize;
|
|
else
|
|
Range += InstrSize;
|
|
|
|
if ((Dst & 0x1) == 0)
|
|
// Destination is ARM, if ARM caller then Src is already 4-byte aligned.
|
|
// If Thumb Caller (BLX) the Src address has bottom 2 bits cleared to ensure
|
|
// destination will be 4 byte aligned.
|
|
Src &= ~0x3;
|
|
else
|
|
// Bit 0 == 1 denotes Thumb state, it is not part of the range
|
|
Dst &= ~0x1;
|
|
|
|
uint64_t Distance = (Src > Dst) ? Src - Dst : Dst - Src;
|
|
return Distance <= Range;
|
|
}
|
|
|
|
void ARM::relocateOne(uint8_t *Loc, RelType Type, uint64_t Val) const {
|
|
switch (Type) {
|
|
case R_ARM_ABS32:
|
|
case R_ARM_BASE_PREL:
|
|
case R_ARM_GLOB_DAT:
|
|
case R_ARM_GOTOFF32:
|
|
case R_ARM_GOT_BREL:
|
|
case R_ARM_GOT_PREL:
|
|
case R_ARM_REL32:
|
|
case R_ARM_RELATIVE:
|
|
case R_ARM_SBREL32:
|
|
case R_ARM_TARGET1:
|
|
case R_ARM_TARGET2:
|
|
case R_ARM_TLS_GD32:
|
|
case R_ARM_TLS_IE32:
|
|
case R_ARM_TLS_LDM32:
|
|
case R_ARM_TLS_LDO32:
|
|
case R_ARM_TLS_LE32:
|
|
case R_ARM_TLS_TPOFF32:
|
|
case R_ARM_TLS_DTPOFF32:
|
|
write32le(Loc, Val);
|
|
break;
|
|
case R_ARM_TLS_DTPMOD32:
|
|
write32le(Loc, 1);
|
|
break;
|
|
case R_ARM_PREL31:
|
|
checkInt(Loc, Val, 31, Type);
|
|
write32le(Loc, (read32le(Loc) & 0x80000000) | (Val & ~0x80000000));
|
|
break;
|
|
case R_ARM_CALL:
|
|
// R_ARM_CALL is used for BL and BLX instructions, depending on the
|
|
// value of bit 0 of Val, we must select a BL or BLX instruction
|
|
if (Val & 1) {
|
|
// If bit 0 of Val is 1 the target is Thumb, we must select a BLX.
|
|
// The BLX encoding is 0xfa:H:imm24 where Val = imm24:H:'1'
|
|
checkInt(Loc, Val, 26, Type);
|
|
write32le(Loc, 0xfa000000 | // opcode
|
|
((Val & 2) << 23) | // H
|
|
((Val >> 2) & 0x00ffffff)); // imm24
|
|
break;
|
|
}
|
|
if ((read32le(Loc) & 0xfe000000) == 0xfa000000)
|
|
// BLX (always unconditional) instruction to an ARM Target, select an
|
|
// unconditional BL.
|
|
write32le(Loc, 0xeb000000 | (read32le(Loc) & 0x00ffffff));
|
|
// fall through as BL encoding is shared with B
|
|
LLVM_FALLTHROUGH;
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
checkInt(Loc, Val, 26, Type);
|
|
write32le(Loc, (read32le(Loc) & ~0x00ffffff) | ((Val >> 2) & 0x00ffffff));
|
|
break;
|
|
case R_ARM_THM_JUMP11:
|
|
checkInt(Loc, Val, 12, Type);
|
|
write16le(Loc, (read32le(Loc) & 0xf800) | ((Val >> 1) & 0x07ff));
|
|
break;
|
|
case R_ARM_THM_JUMP19:
|
|
// Encoding T3: Val = S:J2:J1:imm6:imm11:0
|
|
checkInt(Loc, Val, 21, Type);
|
|
write16le(Loc,
|
|
(read16le(Loc) & 0xfbc0) | // opcode cond
|
|
((Val >> 10) & 0x0400) | // S
|
|
((Val >> 12) & 0x003f)); // imm6
|
|
write16le(Loc + 2,
|
|
0x8000 | // opcode
|
|
((Val >> 8) & 0x0800) | // J2
|
|
((Val >> 5) & 0x2000) | // J1
|
|
((Val >> 1) & 0x07ff)); // imm11
|
|
break;
|
|
case R_ARM_THM_CALL:
|
|
// R_ARM_THM_CALL is used for BL and BLX instructions, depending on the
|
|
// value of bit 0 of Val, we must select a BL or BLX instruction
|
|
if ((Val & 1) == 0) {
|
|
// Ensure BLX destination is 4-byte aligned. As BLX instruction may
|
|
// only be two byte aligned. This must be done before overflow check
|
|
Val = alignTo(Val, 4);
|
|
}
|
|
// Bit 12 is 0 for BLX, 1 for BL
|
|
write16le(Loc + 2, (read16le(Loc + 2) & ~0x1000) | (Val & 1) << 12);
|
|
if (!Config->ARMJ1J2BranchEncoding) {
|
|
// Older Arm architectures do not support R_ARM_THM_JUMP24 and have
|
|
// different encoding rules and range due to J1 and J2 always being 1.
|
|
checkInt(Loc, Val, 23, Type);
|
|
write16le(Loc,
|
|
0xf000 | // opcode
|
|
((Val >> 12) & 0x07ff)); // imm11
|
|
write16le(Loc + 2,
|
|
(read16le(Loc + 2) & 0xd000) | // opcode
|
|
0x2800 | // J1 == J2 == 1
|
|
((Val >> 1) & 0x07ff)); // imm11
|
|
break;
|
|
}
|
|
// Fall through as rest of encoding is the same as B.W
|
|
LLVM_FALLTHROUGH;
|
|
case R_ARM_THM_JUMP24:
|
|
// Encoding B T4, BL T1, BLX T2: Val = S:I1:I2:imm10:imm11:0
|
|
checkInt(Loc, Val, 25, Type);
|
|
write16le(Loc,
|
|
0xf000 | // opcode
|
|
((Val >> 14) & 0x0400) | // S
|
|
((Val >> 12) & 0x03ff)); // imm10
|
|
write16le(Loc + 2,
|
|
(read16le(Loc + 2) & 0xd000) | // opcode
|
|
(((~(Val >> 10)) ^ (Val >> 11)) & 0x2000) | // J1
|
|
(((~(Val >> 11)) ^ (Val >> 13)) & 0x0800) | // J2
|
|
((Val >> 1) & 0x07ff)); // imm11
|
|
break;
|
|
case R_ARM_MOVW_ABS_NC:
|
|
case R_ARM_MOVW_PREL_NC:
|
|
write32le(Loc, (read32le(Loc) & ~0x000f0fff) | ((Val & 0xf000) << 4) |
|
|
(Val & 0x0fff));
|
|
break;
|
|
case R_ARM_MOVT_ABS:
|
|
case R_ARM_MOVT_PREL:
|
|
checkInt(Loc, Val, 32, Type);
|
|
write32le(Loc, (read32le(Loc) & ~0x000f0fff) |
|
|
(((Val >> 16) & 0xf000) << 4) | ((Val >> 16) & 0xfff));
|
|
break;
|
|
case R_ARM_THM_MOVT_ABS:
|
|
case R_ARM_THM_MOVT_PREL:
|
|
// Encoding T1: A = imm4:i:imm3:imm8
|
|
checkInt(Loc, Val, 32, Type);
|
|
write16le(Loc,
|
|
0xf2c0 | // opcode
|
|
((Val >> 17) & 0x0400) | // i
|
|
((Val >> 28) & 0x000f)); // imm4
|
|
write16le(Loc + 2,
|
|
(read16le(Loc + 2) & 0x8f00) | // opcode
|
|
((Val >> 12) & 0x7000) | // imm3
|
|
((Val >> 16) & 0x00ff)); // imm8
|
|
break;
|
|
case R_ARM_THM_MOVW_ABS_NC:
|
|
case R_ARM_THM_MOVW_PREL_NC:
|
|
// Encoding T3: A = imm4:i:imm3:imm8
|
|
write16le(Loc,
|
|
0xf240 | // opcode
|
|
((Val >> 1) & 0x0400) | // i
|
|
((Val >> 12) & 0x000f)); // imm4
|
|
write16le(Loc + 2,
|
|
(read16le(Loc + 2) & 0x8f00) | // opcode
|
|
((Val << 4) & 0x7000) | // imm3
|
|
(Val & 0x00ff)); // imm8
|
|
break;
|
|
default:
|
|
error(getErrorLocation(Loc) + "unrecognized reloc " + Twine(Type));
|
|
}
|
|
}
|
|
|
|
int64_t ARM::getImplicitAddend(const uint8_t *Buf, RelType Type) const {
|
|
switch (Type) {
|
|
default:
|
|
return 0;
|
|
case R_ARM_ABS32:
|
|
case R_ARM_BASE_PREL:
|
|
case R_ARM_GOTOFF32:
|
|
case R_ARM_GOT_BREL:
|
|
case R_ARM_GOT_PREL:
|
|
case R_ARM_REL32:
|
|
case R_ARM_TARGET1:
|
|
case R_ARM_TARGET2:
|
|
case R_ARM_TLS_GD32:
|
|
case R_ARM_TLS_LDM32:
|
|
case R_ARM_TLS_LDO32:
|
|
case R_ARM_TLS_IE32:
|
|
case R_ARM_TLS_LE32:
|
|
return SignExtend64<32>(read32le(Buf));
|
|
case R_ARM_PREL31:
|
|
return SignExtend64<31>(read32le(Buf));
|
|
case R_ARM_CALL:
|
|
case R_ARM_JUMP24:
|
|
case R_ARM_PC24:
|
|
case R_ARM_PLT32:
|
|
return SignExtend64<26>(read32le(Buf) << 2);
|
|
case R_ARM_THM_JUMP11:
|
|
return SignExtend64<12>(read16le(Buf) << 1);
|
|
case R_ARM_THM_JUMP19: {
|
|
// Encoding T3: A = S:J2:J1:imm10:imm6:0
|
|
uint16_t Hi = read16le(Buf);
|
|
uint16_t Lo = read16le(Buf + 2);
|
|
return SignExtend64<20>(((Hi & 0x0400) << 10) | // S
|
|
((Lo & 0x0800) << 8) | // J2
|
|
((Lo & 0x2000) << 5) | // J1
|
|
((Hi & 0x003f) << 12) | // imm6
|
|
((Lo & 0x07ff) << 1)); // imm11:0
|
|
}
|
|
case R_ARM_THM_CALL:
|
|
if (!Config->ARMJ1J2BranchEncoding) {
|
|
// Older Arm architectures do not support R_ARM_THM_JUMP24 and have
|
|
// different encoding rules and range due to J1 and J2 always being 1.
|
|
uint16_t Hi = read16le(Buf);
|
|
uint16_t Lo = read16le(Buf + 2);
|
|
return SignExtend64<22>(((Hi & 0x7ff) << 12) | // imm11
|
|
((Lo & 0x7ff) << 1)); // imm11:0
|
|
break;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case R_ARM_THM_JUMP24: {
|
|
// Encoding B T4, BL T1, BLX T2: A = S:I1:I2:imm10:imm11:0
|
|
// I1 = NOT(J1 EOR S), I2 = NOT(J2 EOR S)
|
|
uint16_t Hi = read16le(Buf);
|
|
uint16_t Lo = read16le(Buf + 2);
|
|
return SignExtend64<24>(((Hi & 0x0400) << 14) | // S
|
|
(~((Lo ^ (Hi << 3)) << 10) & 0x00800000) | // I1
|
|
(~((Lo ^ (Hi << 1)) << 11) & 0x00400000) | // I2
|
|
((Hi & 0x003ff) << 12) | // imm0
|
|
((Lo & 0x007ff) << 1)); // imm11:0
|
|
}
|
|
// ELF for the ARM Architecture 4.6.1.1 the implicit addend for MOVW and
|
|
// MOVT is in the range -32768 <= A < 32768
|
|
case R_ARM_MOVW_ABS_NC:
|
|
case R_ARM_MOVT_ABS:
|
|
case R_ARM_MOVW_PREL_NC:
|
|
case R_ARM_MOVT_PREL: {
|
|
uint64_t Val = read32le(Buf) & 0x000f0fff;
|
|
return SignExtend64<16>(((Val & 0x000f0000) >> 4) | (Val & 0x00fff));
|
|
}
|
|
case R_ARM_THM_MOVW_ABS_NC:
|
|
case R_ARM_THM_MOVT_ABS:
|
|
case R_ARM_THM_MOVW_PREL_NC:
|
|
case R_ARM_THM_MOVT_PREL: {
|
|
// Encoding T3: A = imm4:i:imm3:imm8
|
|
uint16_t Hi = read16le(Buf);
|
|
uint16_t Lo = read16le(Buf + 2);
|
|
return SignExtend64<16>(((Hi & 0x000f) << 12) | // imm4
|
|
((Hi & 0x0400) << 1) | // i
|
|
((Lo & 0x7000) >> 4) | // imm3
|
|
(Lo & 0x00ff)); // imm8
|
|
}
|
|
}
|
|
}
|
|
|
|
TargetInfo *elf::getARMTargetInfo() {
|
|
static ARM Target;
|
|
return &Target;
|
|
}
|