llvm-project/llvm/lib/Target/AMDGPU/AMDGPULegalizerInfo.cpp

1030 lines
34 KiB
C++

//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
/// \file
/// This file implements the targeting of the Machinelegalizer class for
/// AMDGPU.
/// \todo This should be generated by TableGen.
//===----------------------------------------------------------------------===//
#include "AMDGPU.h"
#include "AMDGPULegalizerInfo.h"
#include "AMDGPUTargetMachine.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
#include "llvm/CodeGen/TargetOpcodes.h"
#include "llvm/CodeGen/ValueTypes.h"
#include "llvm/IR/DerivedTypes.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
using namespace LegalizeActions;
using namespace LegalizeMutations;
using namespace LegalityPredicates;
static LegalityPredicate isMultiple32(unsigned TypeIdx,
unsigned MaxSize = 512) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
const LLT EltTy = Ty.getScalarType();
return Ty.getSizeInBits() <= MaxSize && EltTy.getSizeInBits() % 32 == 0;
};
}
static LegalityPredicate isSmallOddVector(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
return Ty.isVector() &&
Ty.getNumElements() % 2 != 0 &&
Ty.getElementType().getSizeInBits() < 32;
};
}
static LegalizeMutation oneMoreElement(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
const LLT EltTy = Ty.getElementType();
return std::make_pair(TypeIdx, LLT::vector(Ty.getNumElements() + 1, EltTy));
};
}
static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT Ty = Query.Types[TypeIdx];
const LLT EltTy = Ty.getElementType();
unsigned Size = Ty.getSizeInBits();
unsigned Pieces = (Size + 63) / 64;
unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
return std::make_pair(TypeIdx, LLT::scalarOrVector(NewNumElts, EltTy));
};
}
static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) {
return [=](const LegalityQuery &Query) {
const LLT QueryTy = Query.Types[TypeIdx];
return QueryTy.isVector() && QueryTy.getSizeInBits() > Size;
};
}
static LegalityPredicate numElementsNotEven(unsigned TypeIdx) {
return [=](const LegalityQuery &Query) {
const LLT QueryTy = Query.Types[TypeIdx];
return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0;
};
}
AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST,
const GCNTargetMachine &TM) {
using namespace TargetOpcode;
auto GetAddrSpacePtr = [&TM](unsigned AS) {
return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
};
const LLT S1 = LLT::scalar(1);
const LLT S8 = LLT::scalar(8);
const LLT S16 = LLT::scalar(16);
const LLT S32 = LLT::scalar(32);
const LLT S64 = LLT::scalar(64);
const LLT S128 = LLT::scalar(128);
const LLT S256 = LLT::scalar(256);
const LLT S512 = LLT::scalar(512);
const LLT V2S16 = LLT::vector(2, 16);
const LLT V4S16 = LLT::vector(4, 16);
const LLT V8S16 = LLT::vector(8, 16);
const LLT V2S32 = LLT::vector(2, 32);
const LLT V3S32 = LLT::vector(3, 32);
const LLT V4S32 = LLT::vector(4, 32);
const LLT V5S32 = LLT::vector(5, 32);
const LLT V6S32 = LLT::vector(6, 32);
const LLT V7S32 = LLT::vector(7, 32);
const LLT V8S32 = LLT::vector(8, 32);
const LLT V9S32 = LLT::vector(9, 32);
const LLT V10S32 = LLT::vector(10, 32);
const LLT V11S32 = LLT::vector(11, 32);
const LLT V12S32 = LLT::vector(12, 32);
const LLT V13S32 = LLT::vector(13, 32);
const LLT V14S32 = LLT::vector(14, 32);
const LLT V15S32 = LLT::vector(15, 32);
const LLT V16S32 = LLT::vector(16, 32);
const LLT V2S64 = LLT::vector(2, 64);
const LLT V3S64 = LLT::vector(3, 64);
const LLT V4S64 = LLT::vector(4, 64);
const LLT V5S64 = LLT::vector(5, 64);
const LLT V6S64 = LLT::vector(6, 64);
const LLT V7S64 = LLT::vector(7, 64);
const LLT V8S64 = LLT::vector(8, 64);
std::initializer_list<LLT> AllS32Vectors =
{V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32};
std::initializer_list<LLT> AllS64Vectors =
{V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64};
const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);
const LLT CodePtr = FlatPtr;
const std::initializer_list<LLT> AddrSpaces64 = {
GlobalPtr, ConstantPtr, FlatPtr
};
const std::initializer_list<LLT> AddrSpaces32 = {
LocalPtr, PrivatePtr
};
setAction({G_BRCOND, S1}, Legal);
// TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more
// elements for v3s16
getActionDefinitionsBuilder(G_PHI)
.legalFor({S32, S64, V2S16, V4S16, S1, S128, S256})
.legalFor(AllS32Vectors)
.legalFor(AllS64Vectors)
.legalFor(AddrSpaces64)
.legalFor(AddrSpaces32)
.clampScalar(0, S32, S256)
.widenScalarToNextPow2(0, 32)
.clampMaxNumElements(0, S32, 16)
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
.legalIf(isPointer(0));
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL, G_UMULH, G_SMULH})
.legalFor({S32})
.clampScalar(0, S32, S32)
.scalarize(0);
// Report legal for any types we can handle anywhere. For the cases only legal
// on the SALU, RegBankSelect will be able to re-legalize.
getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
.legalFor({S32, S1, S64, V2S32, V2S16, V4S16})
.clampScalar(0, S32, S64)
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
.fewerElementsIf(vectorWiderThan(0, 32), fewerEltsToSize64Vector(0))
.widenScalarToNextPow2(0)
.scalarize(0);
getActionDefinitionsBuilder({G_UADDO, G_SADDO, G_USUBO, G_SSUBO,
G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
.legalFor({{S32, S1}})
.clampScalar(0, S32, S32);
getActionDefinitionsBuilder(G_BITCAST)
.legalForCartesianProduct({S32, V2S16})
.legalForCartesianProduct({S64, V2S32, V4S16})
.legalForCartesianProduct({V2S64, V4S32})
// Don't worry about the size constraint.
.legalIf(all(isPointer(0), isPointer(1)));
if (ST.has16BitInsts()) {
getActionDefinitionsBuilder(G_FCONSTANT)
.legalFor({S32, S64, S16})
.clampScalar(0, S16, S64);
} else {
getActionDefinitionsBuilder(G_FCONSTANT)
.legalFor({S32, S64})
.clampScalar(0, S32, S64);
}
getActionDefinitionsBuilder(G_IMPLICIT_DEF)
.legalFor({S1, S32, S64, V2S32, V4S32, V2S16, V4S16, GlobalPtr,
ConstantPtr, LocalPtr, FlatPtr, PrivatePtr})
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
.clampScalarOrElt(0, S32, S512)
.legalIf(isMultiple32(0))
.widenScalarToNextPow2(0, 32)
.clampMaxNumElements(0, S32, 16);
// FIXME: i1 operands to intrinsics should always be legal, but other i1
// values may not be legal. We need to figure out how to distinguish
// between these two scenarios.
getActionDefinitionsBuilder(G_CONSTANT)
.legalFor({S1, S32, S64, GlobalPtr,
LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
.clampScalar(0, S32, S64)
.widenScalarToNextPow2(0)
.legalIf(isPointer(0));
setAction({G_FRAME_INDEX, PrivatePtr}, Legal);
auto &FPOpActions = getActionDefinitionsBuilder(
{ G_FADD, G_FMUL, G_FNEG, G_FABS, G_FMA, G_FCANONICALIZE})
.legalFor({S32, S64});
if (ST.has16BitInsts()) {
if (ST.hasVOP3PInsts())
FPOpActions.legalFor({S16, V2S16});
else
FPOpActions.legalFor({S16});
}
if (ST.hasVOP3PInsts())
FPOpActions.clampMaxNumElements(0, S16, 2);
FPOpActions
.scalarize(0)
.clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
if (ST.has16BitInsts()) {
getActionDefinitionsBuilder(G_FSQRT)
.legalFor({S32, S64, S16})
.scalarize(0)
.clampScalar(0, S16, S64);
} else {
getActionDefinitionsBuilder(G_FSQRT)
.legalFor({S32, S64})
.scalarize(0)
.clampScalar(0, S32, S64);
}
getActionDefinitionsBuilder(G_FPTRUNC)
.legalFor({{S32, S64}, {S16, S32}})
.scalarize(0);
getActionDefinitionsBuilder(G_FPEXT)
.legalFor({{S64, S32}, {S32, S16}})
.lowerFor({{S64, S16}}) // FIXME: Implement
.scalarize(0);
getActionDefinitionsBuilder(G_FCOPYSIGN)
.legalForCartesianProduct({S16, S32, S64}, {S16, S32, S64})
.scalarize(0);
getActionDefinitionsBuilder(G_FSUB)
// Use actual fsub instruction
.legalFor({S32})
// Must use fadd + fneg
.lowerFor({S64, S16, V2S16})
.scalarize(0)
.clampScalar(0, S32, S64);
getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
.legalFor({{S64, S32}, {S32, S16}, {S64, S16},
{S32, S1}, {S64, S1}, {S16, S1},
// FIXME: Hack
{S64, LLT::scalar(33)},
{S32, S8}, {S128, S32}, {S128, S64}, {S32, LLT::scalar(24)}})
.scalarize(0);
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
.legalFor({{S32, S32}, {S64, S32}})
.lowerFor({{S32, S64}})
.customFor({{S64, S64}})
.scalarize(0);
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
.legalFor({{S32, S32}, {S32, S64}})
.scalarize(0);
getActionDefinitionsBuilder(G_INTRINSIC_ROUND)
.legalFor({S32, S64})
.scalarize(0);
if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
.legalFor({S32, S64})
.clampScalar(0, S32, S64)
.scalarize(0);
} else {
getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
.legalFor({S32})
.customFor({S64})
.clampScalar(0, S32, S64)
.scalarize(0);
}
getActionDefinitionsBuilder(G_GEP)
.legalForCartesianProduct(AddrSpaces64, {S64})
.legalForCartesianProduct(AddrSpaces32, {S32})
.scalarize(0);
setAction({G_BLOCK_ADDR, CodePtr}, Legal);
getActionDefinitionsBuilder(G_ICMP)
.legalForCartesianProduct(
{S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
.legalFor({{S1, S32}, {S1, S64}})
.widenScalarToNextPow2(1)
.clampScalar(1, S32, S64)
.scalarize(0)
.legalIf(all(typeIs(0, S1), isPointer(1)));
getActionDefinitionsBuilder(G_FCMP)
.legalFor({{S1, S32}, {S1, S64}})
.widenScalarToNextPow2(1)
.clampScalar(1, S32, S64)
.scalarize(0);
// FIXME: fexp, flog2, flog10 needs to be custom lowered.
getActionDefinitionsBuilder({G_FPOW, G_FEXP, G_FEXP2,
G_FLOG, G_FLOG2, G_FLOG10})
.legalFor({S32})
.scalarize(0);
// The 64-bit versions produce 32-bit results, but only on the SALU.
getActionDefinitionsBuilder({G_CTLZ, G_CTLZ_ZERO_UNDEF,
G_CTTZ, G_CTTZ_ZERO_UNDEF,
G_CTPOP})
.legalFor({{S32, S32}, {S32, S64}})
.clampScalar(0, S32, S32)
.clampScalar(1, S32, S64)
.scalarize(0)
.widenScalarToNextPow2(0, 32)
.widenScalarToNextPow2(1, 32);
// TODO: Expand for > s32
getActionDefinitionsBuilder(G_BSWAP)
.legalFor({S32})
.clampScalar(0, S32, S32)
.scalarize(0);
if (ST.has16BitInsts()) {
if (ST.hasVOP3PInsts()) {
getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
.legalFor({S32, S16, V2S16})
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
.clampMaxNumElements(0, S16, 2)
.clampScalar(0, S16, S32)
.widenScalarToNextPow2(0)
.scalarize(0);
} else {
getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
.legalFor({S32, S16})
.widenScalarToNextPow2(0)
.clampScalar(0, S16, S32)
.scalarize(0);
}
} else {
getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
.legalFor({S32})
.clampScalar(0, S32, S32)
.widenScalarToNextPow2(0)
.scalarize(0);
}
auto smallerThan = [](unsigned TypeIdx0, unsigned TypeIdx1) {
return [=](const LegalityQuery &Query) {
return Query.Types[TypeIdx0].getSizeInBits() <
Query.Types[TypeIdx1].getSizeInBits();
};
};
auto greaterThan = [](unsigned TypeIdx0, unsigned TypeIdx1) {
return [=](const LegalityQuery &Query) {
return Query.Types[TypeIdx0].getSizeInBits() >
Query.Types[TypeIdx1].getSizeInBits();
};
};
getActionDefinitionsBuilder(G_INTTOPTR)
// List the common cases
.legalForCartesianProduct(AddrSpaces64, {S64})
.legalForCartesianProduct(AddrSpaces32, {S32})
.scalarize(0)
// Accept any address space as long as the size matches
.legalIf(sameSize(0, 1))
.widenScalarIf(smallerThan(1, 0),
[](const LegalityQuery &Query) {
return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
})
.narrowScalarIf(greaterThan(1, 0),
[](const LegalityQuery &Query) {
return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
});
getActionDefinitionsBuilder(G_PTRTOINT)
// List the common cases
.legalForCartesianProduct(AddrSpaces64, {S64})
.legalForCartesianProduct(AddrSpaces32, {S32})
.scalarize(0)
// Accept any address space as long as the size matches
.legalIf(sameSize(0, 1))
.widenScalarIf(smallerThan(0, 1),
[](const LegalityQuery &Query) {
return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
})
.narrowScalarIf(
greaterThan(0, 1),
[](const LegalityQuery &Query) {
return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
});
if (ST.hasFlatAddressSpace()) {
getActionDefinitionsBuilder(G_ADDRSPACE_CAST)
.scalarize(0)
.custom();
}
getActionDefinitionsBuilder({G_LOAD, G_STORE})
.narrowScalarIf([](const LegalityQuery &Query) {
unsigned Size = Query.Types[0].getSizeInBits();
unsigned MemSize = Query.MMODescrs[0].SizeInBits;
return (Size > 32 && MemSize < Size);
},
[](const LegalityQuery &Query) {
return std::make_pair(0, LLT::scalar(32));
})
.fewerElementsIf([=, &ST](const LegalityQuery &Query) {
unsigned MemSize = Query.MMODescrs[0].SizeInBits;
return (MemSize == 96) &&
Query.Types[0].isVector() &&
!ST.hasDwordx3LoadStores();
},
[=](const LegalityQuery &Query) {
return std::make_pair(0, V2S32);
})
.legalIf([=, &ST](const LegalityQuery &Query) {
const LLT &Ty0 = Query.Types[0];
unsigned Size = Ty0.getSizeInBits();
unsigned MemSize = Query.MMODescrs[0].SizeInBits;
if (Size < 32 || (Size > 32 && MemSize < Size))
return false;
if (Ty0.isVector() && Size != MemSize)
return false;
// TODO: Decompose private loads into 4-byte components.
// TODO: Illegal flat loads on SI
switch (MemSize) {
case 8:
case 16:
return Size == 32;
case 32:
case 64:
case 128:
return true;
case 96:
return ST.hasDwordx3LoadStores();
case 256:
case 512:
// TODO: constant loads
default:
return false;
}
})
.clampScalar(0, S32, S64);
// FIXME: Handle alignment requirements.
auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
.legalForTypesWithMemDesc({
{S32, GlobalPtr, 8, 8},
{S32, GlobalPtr, 16, 8},
{S32, LocalPtr, 8, 8},
{S32, LocalPtr, 16, 8},
{S32, PrivatePtr, 8, 8},
{S32, PrivatePtr, 16, 8}});
if (ST.hasFlatAddressSpace()) {
ExtLoads.legalForTypesWithMemDesc({{S32, FlatPtr, 8, 8},
{S32, FlatPtr, 16, 8}});
}
ExtLoads.clampScalar(0, S32, S32)
.widenScalarToNextPow2(0)
.unsupportedIfMemSizeNotPow2()
.lower();
auto &Atomics = getActionDefinitionsBuilder(
{G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
G_ATOMICRMW_UMIN, G_ATOMIC_CMPXCHG})
.legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
{S64, GlobalPtr}, {S64, LocalPtr}});
if (ST.hasFlatAddressSpace()) {
Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
}
// TODO: Pointer types, any 32-bit or 64-bit vector
getActionDefinitionsBuilder(G_SELECT)
.legalForCartesianProduct({S32, S64, V2S32, V2S16, V4S16,
GlobalPtr, LocalPtr, FlatPtr, PrivatePtr,
LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1})
.clampScalar(0, S32, S64)
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
.fewerElementsIf(numElementsNotEven(0), scalarize(0))
.scalarize(1)
.clampMaxNumElements(0, S32, 2)
.clampMaxNumElements(0, LocalPtr, 2)
.clampMaxNumElements(0, PrivatePtr, 2)
.scalarize(0)
.widenScalarToNextPow2(0)
.legalIf(all(isPointer(0), typeIs(1, S1)));
// TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can
// be more flexible with the shift amount type.
auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
.legalFor({{S32, S32}, {S64, S32}});
if (ST.has16BitInsts()) {
if (ST.hasVOP3PInsts()) {
Shifts.legalFor({{S16, S32}, {S16, S16}, {V2S16, V2S16}})
.clampMaxNumElements(0, S16, 2);
} else
Shifts.legalFor({{S16, S32}, {S16, S16}});
Shifts.clampScalar(1, S16, S32);
Shifts.clampScalar(0, S16, S64);
Shifts.widenScalarToNextPow2(0, 16);
} else {
// Make sure we legalize the shift amount type first, as the general
// expansion for the shifted type will produce much worse code if it hasn't
// been truncated already.
Shifts.clampScalar(1, S32, S32);
Shifts.clampScalar(0, S32, S64);
Shifts.widenScalarToNextPow2(0, 32);
}
Shifts.scalarize(0);
for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
unsigned IdxTypeIdx = 2;
getActionDefinitionsBuilder(Op)
.legalIf([=](const LegalityQuery &Query) {
const LLT &VecTy = Query.Types[VecTypeIdx];
const LLT &IdxTy = Query.Types[IdxTypeIdx];
return VecTy.getSizeInBits() % 32 == 0 &&
VecTy.getSizeInBits() <= 512 &&
IdxTy.getSizeInBits() == 32;
})
.clampScalar(EltTypeIdx, S32, S64)
.clampScalar(VecTypeIdx, S32, S64)
.clampScalar(IdxTypeIdx, S32, S32);
}
getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
.unsupportedIf([=](const LegalityQuery &Query) {
const LLT &EltTy = Query.Types[1].getElementType();
return Query.Types[0] != EltTy;
});
for (unsigned Op : {G_EXTRACT, G_INSERT}) {
unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0;
unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1;
// FIXME: Doesn't handle extract of illegal sizes.
getActionDefinitionsBuilder(Op)
.legalIf([=](const LegalityQuery &Query) {
const LLT BigTy = Query.Types[BigTyIdx];
const LLT LitTy = Query.Types[LitTyIdx];
return (BigTy.getSizeInBits() % 32 == 0) &&
(LitTy.getSizeInBits() % 16 == 0);
})
.widenScalarIf(
[=](const LegalityQuery &Query) {
const LLT BigTy = Query.Types[BigTyIdx];
return (BigTy.getScalarSizeInBits() < 16);
},
LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16))
.widenScalarIf(
[=](const LegalityQuery &Query) {
const LLT LitTy = Query.Types[LitTyIdx];
return (LitTy.getScalarSizeInBits() < 16);
},
LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16))
.moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
.widenScalarToNextPow2(BigTyIdx, 32);
}
// TODO: vectors of pointers
getActionDefinitionsBuilder(G_BUILD_VECTOR)
.legalForCartesianProduct(AllS32Vectors, {S32})
.legalForCartesianProduct(AllS64Vectors, {S64})
.clampNumElements(0, V16S32, V16S32)
.clampNumElements(0, V2S64, V8S64)
.minScalarSameAs(1, 0)
// FIXME: Sort of a hack to make progress on other legalizations.
.legalIf([=](const LegalityQuery &Query) {
return Query.Types[0].getScalarSizeInBits() <= 32 ||
Query.Types[0].getScalarSizeInBits() == 64;
});
// TODO: Support any combination of v2s32
getActionDefinitionsBuilder(G_CONCAT_VECTORS)
.legalFor({{V4S32, V2S32},
{V8S32, V2S32},
{V8S32, V4S32},
{V4S64, V2S64},
{V4S16, V2S16},
{V8S16, V2S16},
{V8S16, V4S16},
{LLT::vector(4, LocalPtr), LLT::vector(2, LocalPtr)},
{LLT::vector(4, PrivatePtr), LLT::vector(2, PrivatePtr)}});
// Merge/Unmerge
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
const LLT &Ty = Query.Types[TypeIdx];
if (Ty.isVector()) {
const LLT &EltTy = Ty.getElementType();
if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
return true;
if (!isPowerOf2_32(EltTy.getSizeInBits()))
return true;
}
return false;
};
getActionDefinitionsBuilder(Op)
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
// Clamp the little scalar to s8-s256 and make it a power of 2. It's not
// worth considering the multiples of 64 since 2*192 and 2*384 are not
// valid.
.clampScalar(LitTyIdx, S16, S256)
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
// Break up vectors with weird elements into scalars
.fewerElementsIf(
[=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
scalarize(0))
.fewerElementsIf(
[=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
scalarize(1))
.clampScalar(BigTyIdx, S32, S512)
.widenScalarIf(
[=](const LegalityQuery &Query) {
const LLT &Ty = Query.Types[BigTyIdx];
return !isPowerOf2_32(Ty.getSizeInBits()) &&
Ty.getSizeInBits() % 16 != 0;
},
[=](const LegalityQuery &Query) {
// Pick the next power of 2, or a multiple of 64 over 128.
// Whichever is smaller.
const LLT &Ty = Query.Types[BigTyIdx];
unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
if (NewSizeInBits >= 256) {
unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
if (RoundedTo < NewSizeInBits)
NewSizeInBits = RoundedTo;
}
return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
})
.legalIf([=](const LegalityQuery &Query) {
const LLT &BigTy = Query.Types[BigTyIdx];
const LLT &LitTy = Query.Types[LitTyIdx];
if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
return false;
if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
return false;
return BigTy.getSizeInBits() % 16 == 0 &&
LitTy.getSizeInBits() % 16 == 0 &&
BigTy.getSizeInBits() <= 512;
})
// Any vectors left are the wrong size. Scalarize them.
.scalarize(0)
.scalarize(1);
}
computeTables();
verify(*ST.getInstrInfo());
}
bool AMDGPULegalizerInfo::legalizeCustom(MachineInstr &MI,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder,
GISelChangeObserver &Observer) const {
switch (MI.getOpcode()) {
case TargetOpcode::G_ADDRSPACE_CAST:
return legalizeAddrSpaceCast(MI, MRI, MIRBuilder);
case TargetOpcode::G_FRINT:
return legalizeFrint(MI, MRI, MIRBuilder);
case TargetOpcode::G_FCEIL:
return legalizeFceil(MI, MRI, MIRBuilder);
case TargetOpcode::G_INTRINSIC_TRUNC:
return legalizeIntrinsicTrunc(MI, MRI, MIRBuilder);
case TargetOpcode::G_SITOFP:
return legalizeITOFP(MI, MRI, MIRBuilder, true);
case TargetOpcode::G_UITOFP:
return legalizeITOFP(MI, MRI, MIRBuilder, false);
default:
return false;
}
llvm_unreachable("expected switch to return");
}
unsigned AMDGPULegalizerInfo::getSegmentAperture(
unsigned AS,
MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
MachineFunction &MF = MIRBuilder.getMF();
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
const LLT S32 = LLT::scalar(32);
if (ST.hasApertureRegs()) {
// FIXME: Use inline constants (src_{shared, private}_base) instead of
// getreg.
unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
unsigned Encoding =
AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
unsigned ApertureReg = MRI.createGenericVirtualRegister(S32);
unsigned GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
MIRBuilder.buildInstr(AMDGPU::S_GETREG_B32)
.addDef(GetReg)
.addImm(Encoding);
MRI.setType(GetReg, S32);
auto ShiftAmt = MIRBuilder.buildConstant(S32, WidthM1 + 1);
MIRBuilder.buildInstr(TargetOpcode::G_SHL)
.addDef(ApertureReg)
.addUse(GetReg)
.addUse(ShiftAmt.getReg(0));
return ApertureReg;
}
unsigned QueuePtr = MRI.createGenericVirtualRegister(
LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
// FIXME: Placeholder until we can track the input registers.
MIRBuilder.buildConstant(QueuePtr, 0xdeadbeef);
// Offset into amd_queue_t for group_segment_aperture_base_hi /
// private_segment_aperture_base_hi.
uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
// FIXME: Don't use undef
Value *V = UndefValue::get(PointerType::get(
Type::getInt8Ty(MF.getFunction().getContext()),
AMDGPUAS::CONSTANT_ADDRESS));
MachinePointerInfo PtrInfo(V, StructOffset);
MachineMemOperand *MMO = MF.getMachineMemOperand(
PtrInfo,
MachineMemOperand::MOLoad |
MachineMemOperand::MODereferenceable |
MachineMemOperand::MOInvariant,
4,
MinAlign(64, StructOffset));
Register LoadResult = MRI.createGenericVirtualRegister(S32);
Register LoadAddr;
MIRBuilder.materializeGEP(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset);
MIRBuilder.buildLoad(LoadResult, LoadAddr, *MMO);
return LoadResult;
}
bool AMDGPULegalizerInfo::legalizeAddrSpaceCast(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
MachineFunction &MF = MIRBuilder.getMF();
MIRBuilder.setInstr(MI);
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
LLT DstTy = MRI.getType(Dst);
LLT SrcTy = MRI.getType(Src);
unsigned DestAS = DstTy.getAddressSpace();
unsigned SrcAS = SrcTy.getAddressSpace();
// TODO: Avoid reloading from the queue ptr for each cast, or at least each
// vector element.
assert(!DstTy.isVector());
const AMDGPUTargetMachine &TM
= static_cast<const AMDGPUTargetMachine &>(MF.getTarget());
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
if (ST.getTargetLowering()->isNoopAddrSpaceCast(SrcAS, DestAS)) {
MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BITCAST));
return true;
}
if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
assert(DestAS == AMDGPUAS::LOCAL_ADDRESS ||
DestAS == AMDGPUAS::PRIVATE_ADDRESS);
unsigned NullVal = TM.getNullPointerValue(DestAS);
auto SegmentNull = MIRBuilder.buildConstant(DstTy, NullVal);
auto FlatNull = MIRBuilder.buildConstant(SrcTy, 0);
Register PtrLo32 = MRI.createGenericVirtualRegister(DstTy);
// Extract low 32-bits of the pointer.
MIRBuilder.buildExtract(PtrLo32, Src, 0);
Register CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1));
MIRBuilder.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, FlatNull.getReg(0));
MIRBuilder.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));
MI.eraseFromParent();
return true;
}
assert(SrcAS == AMDGPUAS::LOCAL_ADDRESS ||
SrcAS == AMDGPUAS::PRIVATE_ADDRESS);
auto SegmentNull =
MIRBuilder.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS));
auto FlatNull =
MIRBuilder.buildConstant(DstTy, TM.getNullPointerValue(DestAS));
Register ApertureReg = getSegmentAperture(DestAS, MRI, MIRBuilder);
Register CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1));
MIRBuilder.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, SegmentNull.getReg(0));
Register BuildPtr = MRI.createGenericVirtualRegister(DstTy);
// Coerce the type of the low half of the result so we can use merge_values.
Register SrcAsInt = MRI.createGenericVirtualRegister(LLT::scalar(32));
MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT)
.addDef(SrcAsInt)
.addUse(Src);
// TODO: Should we allow mismatched types but matching sizes in merges to
// avoid the ptrtoint?
MIRBuilder.buildMerge(BuildPtr, {SrcAsInt, ApertureReg});
MIRBuilder.buildSelect(Dst, CmpRes, BuildPtr, FlatNull.getReg(0));
MI.eraseFromParent();
return true;
}
bool AMDGPULegalizerInfo::legalizeFrint(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &MIRBuilder) const {
MIRBuilder.setInstr(MI);
Register Src = MI.getOperand(1).getReg();
LLT Ty = MRI.getType(Src);
assert(Ty.isScalar() && Ty.getSizeInBits() == 64);
APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
auto C1 = MIRBuilder.buildFConstant(Ty, C1Val);
auto CopySign = MIRBuilder.buildFCopysign(Ty, C1, Src);
// TODO: Should this propagate fast-math-flags?
auto Tmp1 = MIRBuilder.buildFAdd(Ty, Src, CopySign);
auto Tmp2 = MIRBuilder.buildFSub(Ty, Tmp1, CopySign);
auto C2 = MIRBuilder.buildFConstant(Ty, C2Val);
auto Fabs = MIRBuilder.buildFAbs(Ty, Src);
auto Cond = MIRBuilder.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2);
MIRBuilder.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2);
return true;
}
bool AMDGPULegalizerInfo::legalizeFceil(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
B.setInstr(MI);
const LLT S1 = LLT::scalar(1);
const LLT S64 = LLT::scalar(64);
Register Src = MI.getOperand(1).getReg();
assert(MRI.getType(Src) == S64);
// result = trunc(src)
// if (src > 0.0 && src != result)
// result += 1.0
auto Trunc = B.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC, {S64}, {Src});
const auto Zero = B.buildFConstant(S64, 0.0);
const auto One = B.buildFConstant(S64, 1.0);
auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero);
auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc);
auto And = B.buildAnd(S1, Lt0, NeTrunc);
auto Add = B.buildSelect(S64, And, One, Zero);
// TODO: Should this propagate fast-math-flags?
B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add);
return true;
}
static MachineInstrBuilder extractF64Exponent(unsigned Hi,
MachineIRBuilder &B) {
const unsigned FractBits = 52;
const unsigned ExpBits = 11;
LLT S32 = LLT::scalar(32);
auto Const0 = B.buildConstant(S32, FractBits - 32);
auto Const1 = B.buildConstant(S32, ExpBits);
auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false)
.addUse(Const0.getReg(0))
.addUse(Const1.getReg(0));
return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023));
}
bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B) const {
B.setInstr(MI);
const LLT S1 = LLT::scalar(1);
const LLT S32 = LLT::scalar(32);
const LLT S64 = LLT::scalar(64);
Register Src = MI.getOperand(1).getReg();
assert(MRI.getType(Src) == S64);
// TODO: Should this use extract since the low half is unused?
auto Unmerge = B.buildUnmerge({S32, S32}, Src);
Register Hi = Unmerge.getReg(1);
// Extract the upper half, since this is where we will find the sign and
// exponent.
auto Exp = extractF64Exponent(Hi, B);
const unsigned FractBits = 52;
// Extract the sign bit.
const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31);
auto SignBit = B.buildAnd(S32, Hi, SignBitMask);
const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1);
const auto Zero32 = B.buildConstant(S32, 0);
// Extend back to 64-bits.
auto SignBit64 = B.buildMerge(S64, {Zero32.getReg(0), SignBit.getReg(0)});
auto Shr = B.buildAShr(S64, FractMask, Exp);
auto Not = B.buildNot(S64, Shr);
auto Tmp0 = B.buildAnd(S64, Src, Not);
auto FiftyOne = B.buildConstant(S32, FractBits - 1);
auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32);
auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne);
auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0);
B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
return true;
}
bool AMDGPULegalizerInfo::legalizeITOFP(
MachineInstr &MI, MachineRegisterInfo &MRI,
MachineIRBuilder &B, bool Signed) const {
B.setInstr(MI);
Register Dst = MI.getOperand(0).getReg();
Register Src = MI.getOperand(1).getReg();
const LLT S64 = LLT::scalar(64);
const LLT S32 = LLT::scalar(32);
assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64);
auto Unmerge = B.buildUnmerge({S32, S32}, Src);
auto CvtHi = Signed ?
B.buildSITOFP(S64, Unmerge.getReg(1)) :
B.buildUITOFP(S64, Unmerge.getReg(1));
auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0));
auto ThirtyTwo = B.buildConstant(S32, 32);
auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false)
.addUse(CvtHi.getReg(0))
.addUse(ThirtyTwo.getReg(0));
// TODO: Should this propagate fast-math-flags?
B.buildFAdd(Dst, LdExp, CvtLo);
MI.eraseFromParent();
return true;
}