llvm-project/polly
Michael Kruse 2ead2bfc12 Add IslPtr type traits. NFC.
Add traits for isl_id and isl_multi_aff, required by out-of-tree patches
currently in progress of upstreaming.

isl_union_pw_aff_dump has been added to ISL during one of the last ISL
updates, such that we can also enable its dump() trait.

llvm-svn: 288915
2016-12-07 16:17:59 +00:00
..
cmake Remove -fvisibility=hidden and FORCE_STATIC. 2016-09-12 18:25:00 +00:00
docs docs: Remove reference to PoCC 2016-05-17 19:44:16 +00:00
include/polly Add IslPtr type traits. NFC. 2016-12-07 16:17:59 +00:00
lib Add IslPtr type traits. NFC. 2016-12-07 16:17:59 +00:00
test [ScopInfo] Fold constant coefficients in array dimensions to the right 2016-12-02 08:10:56 +00:00
tools GPURuntime: ensure compilation with C99 2016-09-11 07:32:50 +00:00
unittests Add -polly-flatten-schedule pass. 2016-09-08 15:02:36 +00:00
utils Revise polly-{update|check}-format targets 2015-09-14 16:59:50 +00:00
www www: Add Loopy publication 2016-09-29 18:17:30 +00:00
.arcconfig Upgrade all the .arcconfigs to https. 2016-07-14 13:15:37 +00:00
.arclint Adjusted arc linter config for modern version of arcanist 2015-08-12 09:01:16 +00:00
.gitattributes
.gitignore Add git patch files to .gitignore 2015-06-23 20:55:01 +00:00
CMakeLists.txt Remove POLLY_LINK_LIBS, it is not used 2016-11-04 00:32:32 +00:00
CREDITS.txt Add myself to the credits 2014-08-10 03:37:29 +00:00
LICENSE.txt Update copyright year to 2016. 2016-03-30 22:41:38 +00:00
README

README

Polly - Polyhedral optimizations for LLVM
-----------------------------------------
http://polly.llvm.org/

Polly uses a mathematical representation, the polyhedral model, to represent and
transform loops and other control flow structures. Using an abstract
representation it is possible to reason about transformations in a more general
way and to use highly optimized linear programming libraries to figure out the
optimal loop structure. These transformations can be used to do constant
propagation through arrays, remove dead loop iterations, optimize loops for
cache locality, optimize arrays, apply advanced automatic parallelization, drive
vectorization, or they can be used to do software pipelining.