forked from OSchip/llvm-project
657 lines
21 KiB
C++
657 lines
21 KiB
C++
#include "testing.h"
|
|
#include "../../include/flang/ISO_Fortran_binding.h"
|
|
#include "../../runtime/descriptor.h"
|
|
#include <type_traits>
|
|
#ifdef VERBOSE
|
|
#include <iostream>
|
|
#endif
|
|
|
|
using namespace Fortran::runtime;
|
|
using namespace Fortran::ISO;
|
|
|
|
// CFI_CDESC_T test helpers
|
|
template<int rank> class Test_CFI_CDESC_T {
|
|
public:
|
|
Test_CFI_CDESC_T() {}
|
|
~Test_CFI_CDESC_T() {}
|
|
void Check() {
|
|
// Test CFI_CDESC_T macro defined in section 18.5.4 of F2018 standard
|
|
// CFI_CDESC_T must give storage that is:
|
|
using type = decltype(dvStorage_);
|
|
// unqualified
|
|
MATCH(false, std::is_const<type>::value);
|
|
MATCH(false, std::is_volatile<type>::value);
|
|
// suitable in size
|
|
if (rank > 0) {
|
|
MATCH(sizeof(dvStorage_), Descriptor::SizeInBytes(rank_, false));
|
|
} else { // C++ implementation over-allocates for rank=0 by 24bytes.
|
|
MATCH(true, sizeof(dvStorage_) >= Descriptor::SizeInBytes(rank_, false));
|
|
}
|
|
// suitable in alignment
|
|
MATCH(0,
|
|
reinterpret_cast<std::uintptr_t>(&dvStorage_) &
|
|
(alignof(CFI_cdesc_t) - 1));
|
|
}
|
|
|
|
private:
|
|
static constexpr int rank_{rank};
|
|
CFI_CDESC_T(rank) dvStorage_;
|
|
};
|
|
|
|
template<int rank> static void TestCdescMacroForAllRanksSmallerThan() {
|
|
static_assert(rank > 0, "rank<0!");
|
|
Test_CFI_CDESC_T<rank> obj;
|
|
obj.Check();
|
|
TestCdescMacroForAllRanksSmallerThan<rank - 1>();
|
|
}
|
|
|
|
template<> void TestCdescMacroForAllRanksSmallerThan<0>() {
|
|
Test_CFI_CDESC_T<0> obj;
|
|
obj.Check();
|
|
}
|
|
|
|
// CFI_establish test helper
|
|
static void AddNoiseToCdesc(CFI_cdesc_t *dv, CFI_rank_t rank) {
|
|
static const int trap{0};
|
|
dv->rank = 16;
|
|
// This address is not supposed to be used. Any write attempt should trigger
|
|
// program termination
|
|
dv->base_addr = const_cast<int *>(&trap);
|
|
dv->elem_len = 320;
|
|
dv->type = CFI_type_struct;
|
|
dv->attribute = CFI_attribute_pointer;
|
|
for (int i{0}; i < rank; i++) {
|
|
dv->dim[i].extent = -42;
|
|
dv->dim[i].lower_bound = -42;
|
|
dv->dim[i].sm = -42;
|
|
}
|
|
}
|
|
|
|
#ifdef VERBOSE
|
|
static void DumpTestWorld(const void *bAddr, CFI_attribute_t attr,
|
|
CFI_type_t ty, std::size_t eLen, CFI_rank_t rank,
|
|
const CFI_index_t *eAddr) {
|
|
std::cout << " base_addr: " << std::hex
|
|
<< reinterpret_cast<std::intptr_t>(bAddr)
|
|
<< " attribute: " << static_cast<int>(attr) << std::dec
|
|
<< " type: " << static_cast<int>(ty) << " elem_len: " << eLen
|
|
<< " rank: " << static_cast<int>(rank) << " extent: " << std::hex
|
|
<< reinterpret_cast<std::intptr_t>(eAddr) << std::endl
|
|
<< std::dec;
|
|
}
|
|
#endif
|
|
|
|
static void check_CFI_establish(CFI_cdesc_t *dv, void *base_addr,
|
|
CFI_attribute_t attribute, CFI_type_t type, std::size_t elem_len,
|
|
CFI_rank_t rank, const CFI_index_t extents[]) {
|
|
#ifdef VERBOSE
|
|
DumpTestWorld(base_addr, attribute, type, elem_len, rank, extent);
|
|
#endif
|
|
// CFI_establish reqs from F2018 section 18.5.5
|
|
int retCode{
|
|
CFI_establish(dv, base_addr, attribute, type, elem_len, rank, extents)};
|
|
Descriptor *res{reinterpret_cast<Descriptor *>(dv)};
|
|
if (retCode == CFI_SUCCESS) {
|
|
res->Check();
|
|
MATCH((attribute == CFI_attribute_pointer), res->IsPointer());
|
|
MATCH((attribute == CFI_attribute_allocatable), res->IsAllocatable());
|
|
MATCH(rank, res->rank());
|
|
MATCH(reinterpret_cast<std::intptr_t>(dv->base_addr),
|
|
reinterpret_cast<std::intptr_t>(base_addr));
|
|
MATCH(true, dv->version == CFI_VERSION);
|
|
if (base_addr != nullptr) {
|
|
MATCH(true, res->IsContiguous());
|
|
for (int i{0}; i < rank; ++i) {
|
|
MATCH(extents[i], res->GetDimension(i).Extent());
|
|
}
|
|
}
|
|
if (attribute == CFI_attribute_allocatable) {
|
|
MATCH(res->IsAllocated(), false);
|
|
}
|
|
if (attribute == CFI_attribute_pointer) {
|
|
if (base_addr != nullptr) {
|
|
for (int i{0}; i < rank; ++i) {
|
|
MATCH(0, res->GetDimension(i).LowerBound());
|
|
}
|
|
}
|
|
}
|
|
if (type == CFI_type_struct || type == CFI_type_char ||
|
|
type == CFI_type_other) {
|
|
MATCH(elem_len, res->ElementBytes());
|
|
}
|
|
}
|
|
// Checking failure/success according to combination of args forbidden by the
|
|
// standard:
|
|
int numErr{0};
|
|
int expectedRetCode{CFI_SUCCESS};
|
|
if (base_addr != nullptr && attribute == CFI_attribute_allocatable) {
|
|
++numErr;
|
|
expectedRetCode = CFI_ERROR_BASE_ADDR_NOT_NULL;
|
|
}
|
|
if (rank > CFI_MAX_RANK) {
|
|
++numErr;
|
|
expectedRetCode = CFI_INVALID_RANK;
|
|
}
|
|
if (type < 0 || type > CFI_type_struct) {
|
|
++numErr;
|
|
expectedRetCode = CFI_INVALID_TYPE;
|
|
}
|
|
|
|
if ((type == CFI_type_struct || type == CFI_type_char ||
|
|
type == CFI_type_other) &&
|
|
elem_len <= 0) {
|
|
++numErr;
|
|
expectedRetCode = CFI_INVALID_ELEM_LEN;
|
|
}
|
|
if (rank > 0 && base_addr != nullptr && extents == nullptr) {
|
|
++numErr;
|
|
expectedRetCode = CFI_INVALID_EXTENT;
|
|
}
|
|
if (numErr > 1) {
|
|
MATCH(true, retCode != CFI_SUCCESS);
|
|
} else {
|
|
MATCH(retCode, expectedRetCode);
|
|
}
|
|
}
|
|
|
|
static void run_CFI_establish_tests() {
|
|
// Testing CFI_establish defined in section 18.5.5
|
|
CFI_index_t extents[CFI_MAX_RANK];
|
|
for (int i{0}; i < CFI_MAX_RANK; ++i) {
|
|
extents[i] = i + 66;
|
|
}
|
|
CFI_CDESC_T(CFI_MAX_RANK) dv_storage;
|
|
CFI_cdesc_t *dv{&dv_storage};
|
|
char base;
|
|
void *dummyAddr{&base};
|
|
// Define test space
|
|
CFI_attribute_t attrCases[]{
|
|
CFI_attribute_pointer, CFI_attribute_allocatable, CFI_attribute_other};
|
|
CFI_type_t typeCases[]{CFI_type_int, CFI_type_struct, CFI_type_double,
|
|
CFI_type_char, CFI_type_other, CFI_type_struct + 1};
|
|
CFI_index_t *extentCases[]{extents, nullptr};
|
|
void *baseAddrCases[]{dummyAddr, nullptr};
|
|
CFI_rank_t rankCases[]{0, 1, CFI_MAX_RANK, CFI_MAX_RANK + 1};
|
|
std::size_t lenCases[]{0, 42};
|
|
|
|
for (CFI_attribute_t attribute : attrCases) {
|
|
for (void *base_addr : baseAddrCases) {
|
|
for (CFI_index_t *extent : extentCases) {
|
|
for (CFI_rank_t rank : rankCases) {
|
|
for (CFI_type_t type : typeCases) {
|
|
for (size_t elem_len : lenCases) {
|
|
AddNoiseToCdesc(dv, CFI_MAX_RANK);
|
|
check_CFI_establish(
|
|
dv, base_addr, attribute, type, elem_len, rank, extent);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// If base_addr is null, extents shall be ignored even if rank !=0
|
|
const int rank3d{3};
|
|
CFI_CDESC_T(rank3d) dv3darrayStorage;
|
|
CFI_cdesc_t *dv_3darray{&dv3darrayStorage};
|
|
AddNoiseToCdesc(dv_3darray, rank3d); // => dv_3darray->dim[2].extent = -42
|
|
check_CFI_establish(dv_3darray, nullptr, CFI_attribute_other, CFI_type_int, 4,
|
|
rank3d, extents);
|
|
MATCH(false,
|
|
dv_3darray->dim[2].extent == 2 + 66); // extents was read
|
|
}
|
|
|
|
static void check_CFI_address(
|
|
const CFI_cdesc_t *dv, const CFI_index_t subscripts[]) {
|
|
// 18.5.5.2
|
|
void *addr{CFI_address(dv, subscripts)};
|
|
const Descriptor *desc{reinterpret_cast<const Descriptor *>(dv)};
|
|
void *addrCheck{desc->Element<void>(subscripts)};
|
|
MATCH(true, addr == addrCheck);
|
|
}
|
|
|
|
// Helper function to set lower bound of descriptor
|
|
static void EstablishLowerBounds(CFI_cdesc_t *dv, CFI_index_t *sub) {
|
|
for (int i{0}; i < dv->rank; ++i) {
|
|
dv->dim[i].lower_bound = sub[i];
|
|
}
|
|
}
|
|
|
|
// Helper to get size without making internal compiler functions accessible
|
|
static std::size_t ByteSize(CFI_type_t ty, std::size_t size) {
|
|
CFI_CDESC_T(0) storage;
|
|
CFI_cdesc_t *dv{&storage};
|
|
int retCode{
|
|
CFI_establish(dv, nullptr, CFI_attribute_other, ty, size, 0, nullptr)};
|
|
return retCode == CFI_SUCCESS ? dv->elem_len : 0;
|
|
}
|
|
|
|
static void run_CFI_address_tests() {
|
|
// Test CFI_address defined in 18.5.5.2
|
|
// Create test world
|
|
CFI_index_t extents[CFI_MAX_RANK];
|
|
CFI_CDESC_T(CFI_MAX_RANK) dv_storage;
|
|
CFI_cdesc_t *dv{&dv_storage};
|
|
char base;
|
|
void *dummyAddr{&base};
|
|
CFI_attribute_t attrCases[]{
|
|
CFI_attribute_pointer, CFI_attribute_allocatable, CFI_attribute_other};
|
|
CFI_type_t validTypeCases[]{
|
|
CFI_type_int, CFI_type_struct, CFI_type_double, CFI_type_char};
|
|
CFI_index_t subscripts[CFI_MAX_RANK];
|
|
CFI_index_t negativeLowerBounds[CFI_MAX_RANK];
|
|
CFI_index_t zeroLowerBounds[CFI_MAX_RANK];
|
|
CFI_index_t positiveLowerBounds[CFI_MAX_RANK];
|
|
CFI_index_t *lowerBoundCases[]{
|
|
negativeLowerBounds, zeroLowerBounds, positiveLowerBounds};
|
|
for (int i{0}; i < CFI_MAX_RANK; ++i) {
|
|
negativeLowerBounds[i] = -1;
|
|
zeroLowerBounds[i] = 0;
|
|
positiveLowerBounds[i] = 1;
|
|
extents[i] = i + 2;
|
|
subscripts[i] = i + 1;
|
|
}
|
|
|
|
// test for scalar
|
|
for (CFI_attribute_t attribute : attrCases) {
|
|
for (CFI_type_t type : validTypeCases) {
|
|
CFI_establish(dv, dummyAddr, attribute, type, 42, 0, nullptr);
|
|
check_CFI_address(dv, nullptr);
|
|
}
|
|
}
|
|
// test for arrays
|
|
CFI_establish(dv, dummyAddr, CFI_attribute_other, CFI_type_int, 0,
|
|
CFI_MAX_RANK, extents);
|
|
for (CFI_index_t *lowerBounds : lowerBoundCases) {
|
|
EstablishLowerBounds(dv, lowerBounds);
|
|
for (CFI_type_t type : validTypeCases) {
|
|
for (bool contiguous : {true, false}) {
|
|
std::size_t size{ByteSize(type, 12)};
|
|
dv->elem_len = size;
|
|
for (int i{0}; i < dv->rank; ++i) {
|
|
dv->dim[i].sm = size + (contiguous ? 0 : dv->elem_len);
|
|
size = dv->dim[i].sm * dv->dim[i].extent;
|
|
}
|
|
for (CFI_attribute_t attribute : attrCases) {
|
|
dv->attribute = attribute;
|
|
check_CFI_address(dv, subscripts);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
// Test on an assumed size array.
|
|
CFI_establish(
|
|
dv, dummyAddr, CFI_attribute_other, CFI_type_int, 0, 3, extents);
|
|
dv->dim[2].extent = -1;
|
|
check_CFI_address(dv, subscripts);
|
|
}
|
|
|
|
static void check_CFI_allocate(CFI_cdesc_t *dv,
|
|
const CFI_index_t lower_bounds[], const CFI_index_t upper_bounds[],
|
|
std::size_t elem_len) {
|
|
// 18.5.5.3
|
|
// Backup descriptor data for future checks
|
|
const CFI_rank_t rank{dv->rank};
|
|
const std::size_t desc_elem_len{dv->elem_len};
|
|
const CFI_attribute_t attribute{dv->attribute};
|
|
const CFI_type_t type{dv->type};
|
|
const void *base_addr{dv->base_addr};
|
|
const int version{dv->version};
|
|
#ifdef VERBOSE
|
|
DumpTestWorld(base_addr, attribute, type, elem_len, rank, nullptr);
|
|
#endif
|
|
int retCode{CFI_allocate(dv, lower_bounds, upper_bounds, elem_len)};
|
|
Descriptor *desc = reinterpret_cast<Descriptor *>(dv);
|
|
if (retCode == CFI_SUCCESS) {
|
|
// check res properties from 18.5.5.3 par 3
|
|
MATCH(true, dv->base_addr != nullptr);
|
|
for (int i{0}; i < rank; ++i) {
|
|
MATCH(lower_bounds[i], dv->dim[i].lower_bound);
|
|
MATCH(upper_bounds[i], dv->dim[i].extent + dv->dim[i].lower_bound - 1);
|
|
}
|
|
if (type == CFI_type_char) {
|
|
MATCH(elem_len, dv->elem_len);
|
|
} else {
|
|
MATCH(true, desc_elem_len == dv->elem_len);
|
|
}
|
|
MATCH(true, desc->IsContiguous());
|
|
} else {
|
|
MATCH(true, base_addr == dv->base_addr);
|
|
}
|
|
|
|
// Below dv members shall not be altered by CFI_allocate regardless of
|
|
// success/failure
|
|
MATCH(true, attribute == dv->attribute);
|
|
MATCH(true, rank == dv->rank);
|
|
MATCH(true, type == dv->type);
|
|
MATCH(true, version == dv->version);
|
|
|
|
// Success/failure according to standard
|
|
int numErr{0};
|
|
int expectedRetCode{CFI_SUCCESS};
|
|
if (rank > CFI_MAX_RANK) {
|
|
++numErr;
|
|
expectedRetCode = CFI_INVALID_RANK;
|
|
}
|
|
if (type < 0 || type > CFI_type_struct) {
|
|
++numErr;
|
|
expectedRetCode = CFI_INVALID_TYPE;
|
|
}
|
|
if (base_addr != nullptr && attribute == CFI_attribute_allocatable) {
|
|
// This is less restrictive than 18.5.5.3 arg req for which pointers arg
|
|
// shall be unassociated. However, this match ALLOCATE behavior
|
|
// (9.7.3/9.7.4)
|
|
++numErr;
|
|
expectedRetCode = CFI_ERROR_BASE_ADDR_NOT_NULL;
|
|
}
|
|
if (attribute != CFI_attribute_pointer &&
|
|
attribute != CFI_attribute_allocatable) {
|
|
++numErr;
|
|
expectedRetCode = CFI_INVALID_ATTRIBUTE;
|
|
}
|
|
if (rank > 0 && (lower_bounds == nullptr || upper_bounds == nullptr)) {
|
|
++numErr;
|
|
expectedRetCode = CFI_INVALID_EXTENT;
|
|
}
|
|
|
|
// Memory allocation failures are unpredictable in this test.
|
|
if (numErr == 0 && retCode != CFI_SUCCESS) {
|
|
MATCH(true, retCode == CFI_ERROR_MEM_ALLOCATION);
|
|
} else if (numErr > 1) {
|
|
MATCH(true, retCode != CFI_SUCCESS);
|
|
} else {
|
|
MATCH(expectedRetCode, retCode);
|
|
}
|
|
// clean-up
|
|
if (retCode == CFI_SUCCESS) {
|
|
CFI_deallocate(dv);
|
|
}
|
|
}
|
|
|
|
static void run_CFI_allocate_tests() {
|
|
// 18.5.5.3
|
|
// create test world
|
|
CFI_CDESC_T(CFI_MAX_RANK) dv_storage;
|
|
CFI_cdesc_t *dv{&dv_storage};
|
|
char base;
|
|
void *dummyAddr{&base};
|
|
CFI_attribute_t attrCases[]{
|
|
CFI_attribute_pointer, CFI_attribute_allocatable, CFI_attribute_other};
|
|
CFI_type_t typeCases[]{CFI_type_int, CFI_type_struct, CFI_type_double,
|
|
CFI_type_char, CFI_type_other, CFI_type_struct + 1};
|
|
void *baseAddrCases[]{dummyAddr, nullptr};
|
|
CFI_rank_t rankCases[]{0, 1, CFI_MAX_RANK, CFI_MAX_RANK + 1};
|
|
std::size_t lenCases[]{0, 42};
|
|
CFI_index_t lb1[CFI_MAX_RANK];
|
|
CFI_index_t ub1[CFI_MAX_RANK];
|
|
for (int i{0}; i < CFI_MAX_RANK; ++i) {
|
|
lb1[i] = -1;
|
|
ub1[i] = 0;
|
|
}
|
|
|
|
check_CFI_establish(
|
|
dv, nullptr, CFI_attribute_other, CFI_type_int, 0, 0, nullptr);
|
|
for (CFI_type_t type : typeCases) {
|
|
std::size_t ty_len{ByteSize(type, 12)};
|
|
for (CFI_attribute_t attribute : attrCases) {
|
|
for (void *base_addr : baseAddrCases) {
|
|
for (CFI_rank_t rank : rankCases) {
|
|
for (size_t elem_len : lenCases) {
|
|
dv->base_addr = base_addr;
|
|
dv->rank = rank;
|
|
dv->attribute = attribute;
|
|
dv->type = type;
|
|
dv->elem_len = ty_len;
|
|
check_CFI_allocate(dv, lb1, ub1, elem_len);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static void run_CFI_section_tests() {
|
|
// simple tests
|
|
bool testPreConditions{true};
|
|
constexpr CFI_index_t m{5}, n{6}, o{7};
|
|
constexpr CFI_rank_t rank{3};
|
|
long long array[o][n][m]; // Fortran A(m,n,o)
|
|
long long counter{1};
|
|
|
|
for (CFI_index_t k{0}; k < o; ++k) {
|
|
for (CFI_index_t j{0}; j < n; ++j) {
|
|
for (CFI_index_t i{0}; i < m; ++i) {
|
|
array[k][j][i] = counter++; // Fortran A(i,j,k)
|
|
}
|
|
}
|
|
}
|
|
CFI_CDESC_T(rank) sourceStorage;
|
|
CFI_cdesc_t *source{&sourceStorage};
|
|
CFI_index_t extent[rank] = {m, n, o};
|
|
int retCode{CFI_establish(source, &array, CFI_attribute_other,
|
|
CFI_type_long_long, 0, rank, extent)};
|
|
testPreConditions &= (retCode == CFI_SUCCESS);
|
|
|
|
CFI_index_t lb[rank] = {2, 5, 4};
|
|
CFI_index_t ub[rank] = {4, 5, 6};
|
|
CFI_index_t strides[rank] = {2, 0, 2};
|
|
constexpr CFI_rank_t resultRank{rank - 1};
|
|
|
|
CFI_CDESC_T(resultRank) resultStorage;
|
|
CFI_cdesc_t *result{&resultStorage};
|
|
retCode = CFI_establish(result, nullptr, CFI_attribute_other,
|
|
CFI_type_long_long, 0, resultRank, nullptr);
|
|
testPreConditions &= (retCode == CFI_SUCCESS);
|
|
|
|
if (!testPreConditions) {
|
|
MATCH(true, testPreConditions);
|
|
return;
|
|
}
|
|
|
|
retCode = CFI_section(
|
|
result, source, lb, ub, strides); // Fortran B = A(2:4:2, 5:5:0, 4:6:2)
|
|
MATCH(true, retCode == CFI_SUCCESS);
|
|
|
|
const CFI_index_t lbs0{source->dim[0].lower_bound};
|
|
const CFI_index_t lbs1{source->dim[1].lower_bound};
|
|
const CFI_index_t lbs2{source->dim[2].lower_bound};
|
|
|
|
CFI_index_t resJ{result->dim[1].lower_bound};
|
|
for (CFI_index_t k{lb[2]}; k <= ub[2]; k += strides[2]) {
|
|
for (CFI_index_t j{lb[1]}; j <= ub[1]; j += strides[1] ? strides[1] : 1) {
|
|
CFI_index_t resI{result->dim[0].lower_bound};
|
|
for (CFI_index_t i{lb[0]}; i <= ub[0]; i += strides[0]) {
|
|
// check A(i,j,k) == B(resI, resJ) == array[k-1][j-1][i-1]
|
|
const CFI_index_t resSubcripts[]{resI, resJ};
|
|
const CFI_index_t srcSubcripts[]{i, j, k};
|
|
MATCH(true,
|
|
CFI_address(source, srcSubcripts) ==
|
|
CFI_address(result, resSubcripts));
|
|
MATCH(true,
|
|
CFI_address(source, srcSubcripts) ==
|
|
&array[k - lbs2][j - lbs1][i - lbs0]);
|
|
++resI;
|
|
}
|
|
}
|
|
++resJ;
|
|
}
|
|
|
|
strides[0] = -1;
|
|
lb[0] = 4;
|
|
ub[0] = 2;
|
|
retCode = CFI_section(
|
|
result, source, lb, ub, strides); // Fortran B = A(4:2:-1, 5:5:0, 4:6:2)
|
|
MATCH(true, retCode == CFI_SUCCESS);
|
|
|
|
resJ = result->dim[1].lower_bound;
|
|
for (CFI_index_t k{lb[2]}; k <= ub[2]; k += strides[2]) {
|
|
for (CFI_index_t j{lb[1]}; j <= ub[1]; j += 1) {
|
|
CFI_index_t resI{result->dim[1].lower_bound + result->dim[0].extent - 1};
|
|
for (CFI_index_t i{2}; i <= 4; ++i) {
|
|
// check A(i,j,k) == B(resI, resJ) == array[k-1][j-1][i-1]
|
|
const CFI_index_t resSubcripts[]{resI, resJ};
|
|
const CFI_index_t srcSubcripts[]{i, j, k};
|
|
MATCH(true,
|
|
CFI_address(source, srcSubcripts) ==
|
|
CFI_address(result, resSubcripts));
|
|
MATCH(true,
|
|
CFI_address(source, srcSubcripts) ==
|
|
&array[k - lbs2][j - lbs1][i - lbs0]);
|
|
--resI;
|
|
}
|
|
}
|
|
++resJ;
|
|
}
|
|
}
|
|
|
|
static void run_CFI_select_part_tests() {
|
|
constexpr std::size_t name_len{5};
|
|
typedef struct {
|
|
double distance;
|
|
int stars;
|
|
char name[name_len];
|
|
} Galaxy;
|
|
|
|
const CFI_rank_t rank{2};
|
|
constexpr CFI_index_t universeSize[]{2, 3};
|
|
Galaxy universe[universeSize[1]][universeSize[0]];
|
|
|
|
for (int i{0}; i < universeSize[1]; ++i) {
|
|
for (int j{0}; j < universeSize[0]; ++j) {
|
|
// Initializing Fortran var universe(j,i)
|
|
universe[i][j].distance = j + i * 32;
|
|
universe[i][j].stars = j * 2 + i * 64;
|
|
universe[i][j].name[2] = static_cast<char>(j);
|
|
universe[i][j].name[3] = static_cast<char>(i);
|
|
}
|
|
}
|
|
|
|
CFI_CDESC_T(rank) resStorage, srcStorage;
|
|
CFI_cdesc_t *result{&resStorage};
|
|
CFI_cdesc_t *source{&srcStorage};
|
|
|
|
bool testPreConditions{true};
|
|
int retCode{CFI_establish(result, nullptr, CFI_attribute_other, CFI_type_int,
|
|
sizeof(int), rank, nullptr)};
|
|
testPreConditions &= (retCode == CFI_SUCCESS);
|
|
retCode = CFI_establish(source, &universe, CFI_attribute_other,
|
|
CFI_type_struct, sizeof(Galaxy), rank, universeSize);
|
|
testPreConditions &= (retCode == CFI_SUCCESS);
|
|
if (!testPreConditions) {
|
|
MATCH(true, testPreConditions);
|
|
return;
|
|
}
|
|
|
|
std::size_t displacement{offsetof(Galaxy, stars)};
|
|
std::size_t elem_len{0}; // ignored
|
|
retCode = CFI_select_part(result, source, displacement, elem_len);
|
|
MATCH(CFI_SUCCESS, retCode);
|
|
|
|
bool baseAddrShiftedOk{
|
|
static_cast<char *>(source->base_addr) + displacement ==
|
|
result->base_addr};
|
|
MATCH(true, baseAddrShiftedOk);
|
|
if (!baseAddrShiftedOk) {
|
|
return;
|
|
}
|
|
|
|
MATCH(sizeof(int), result->elem_len);
|
|
for (CFI_index_t j{0}; j < universeSize[1]; ++j) {
|
|
for (CFI_index_t i{0}; i < universeSize[0]; ++i) {
|
|
CFI_index_t subscripts[]{
|
|
result->dim[0].lower_bound + i, result->dim[1].lower_bound + j};
|
|
MATCH(
|
|
i * 2 + j * 64, *static_cast<int *>(CFI_address(result, subscripts)));
|
|
}
|
|
}
|
|
|
|
// Test for Fortran character type
|
|
retCode = CFI_establish(
|
|
result, nullptr, CFI_attribute_other, CFI_type_char, 2, rank, nullptr);
|
|
testPreConditions &= (retCode == CFI_SUCCESS);
|
|
if (!testPreConditions) {
|
|
MATCH(true, testPreConditions);
|
|
return;
|
|
}
|
|
|
|
displacement = offsetof(Galaxy, name) + 2;
|
|
elem_len = 2; // not ignored this time
|
|
retCode = CFI_select_part(result, source, displacement, elem_len);
|
|
MATCH(CFI_SUCCESS, retCode);
|
|
|
|
baseAddrShiftedOk = static_cast<char *>(source->base_addr) + displacement ==
|
|
result->base_addr;
|
|
MATCH(true, baseAddrShiftedOk);
|
|
if (!baseAddrShiftedOk) {
|
|
return;
|
|
}
|
|
|
|
MATCH(elem_len, result->elem_len);
|
|
for (CFI_index_t j{0}; j < universeSize[1]; ++j) {
|
|
for (CFI_index_t i{0}; i < universeSize[0]; ++i) {
|
|
CFI_index_t subscripts[]{
|
|
result->dim[0].lower_bound + i, result->dim[1].lower_bound + j};
|
|
MATCH(static_cast<char>(i),
|
|
static_cast<char *>(CFI_address(result, subscripts))[0]);
|
|
MATCH(static_cast<char>(j),
|
|
static_cast<char *>(CFI_address(result, subscripts))[1]);
|
|
}
|
|
}
|
|
}
|
|
|
|
static void run_CFI_setpointer_tests() {
|
|
constexpr CFI_rank_t rank{3};
|
|
CFI_CDESC_T(rank) resStorage, srcStorage;
|
|
CFI_cdesc_t *result{&resStorage};
|
|
CFI_cdesc_t *source{&srcStorage};
|
|
CFI_index_t lower_bounds[rank];
|
|
CFI_index_t extents[rank];
|
|
for (int i{0}; i < rank; ++i) {
|
|
lower_bounds[i] = i;
|
|
extents[i] = 2;
|
|
}
|
|
|
|
char target;
|
|
char *dummyBaseAddress{&target};
|
|
bool testPreConditions{true};
|
|
CFI_type_t type{CFI_type_int};
|
|
std::size_t elem_len{ByteSize(type, 42)};
|
|
int retCode{CFI_establish(
|
|
result, nullptr, CFI_attribute_pointer, type, elem_len, rank, nullptr)};
|
|
testPreConditions &= (retCode == CFI_SUCCESS);
|
|
retCode = CFI_establish(source, dummyBaseAddress, CFI_attribute_other, type,
|
|
elem_len, rank, extents);
|
|
testPreConditions &= (retCode == CFI_SUCCESS);
|
|
if (!testPreConditions) {
|
|
MATCH(true, testPreConditions);
|
|
return;
|
|
}
|
|
|
|
retCode = CFI_setpointer(result, source, lower_bounds);
|
|
MATCH(CFI_SUCCESS, retCode);
|
|
|
|
// The following members must be invariant
|
|
MATCH(rank, result->rank);
|
|
MATCH(elem_len, result->elem_len);
|
|
MATCH(type, result->type);
|
|
// check pointer association
|
|
MATCH(true, result->base_addr == source->base_addr);
|
|
for (int j{0}; j < rank; ++j) {
|
|
MATCH(source->dim[j].extent, result->dim[j].extent);
|
|
MATCH(source->dim[j].sm, result->dim[j].sm);
|
|
MATCH(lower_bounds[j], result->dim[j].lower_bound);
|
|
}
|
|
}
|
|
|
|
int main() {
|
|
TestCdescMacroForAllRanksSmallerThan<CFI_MAX_RANK>();
|
|
run_CFI_establish_tests();
|
|
run_CFI_address_tests();
|
|
run_CFI_allocate_tests();
|
|
// TODO: test CFI_deallocate
|
|
// TODO: test CFI_is_contiguous
|
|
run_CFI_section_tests();
|
|
run_CFI_select_part_tests();
|
|
run_CFI_setpointer_tests();
|
|
return testing::Complete();
|
|
}
|