llvm-project/llvm/lib/CodeGen/MIRPrinter.cpp

928 lines
31 KiB
C++

//===- MIRPrinter.cpp - MIR serialization format printer ------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the class that prints out the LLVM IR and machine
// functions using the MIR serialization format.
//
//===----------------------------------------------------------------------===//
#include "llvm/CodeGen/MIRPrinter.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/None.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/ADT/SmallBitVector.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/ADT/Twine.h"
#include "llvm/CodeGen/GlobalISel/RegisterBank.h"
#include "llvm/CodeGen/MIRYamlMapping.h"
#include "llvm/CodeGen/MachineBasicBlock.h"
#include "llvm/CodeGen/MachineConstantPool.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineInstr.h"
#include "llvm/CodeGen/MachineJumpTableInfo.h"
#include "llvm/CodeGen/MachineMemOperand.h"
#include "llvm/CodeGen/MachineOperand.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/PseudoSourceValue.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/CodeGen/TargetRegisterInfo.h"
#include "llvm/CodeGen/TargetSubtargetInfo.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/Constants.h"
#include "llvm/IR/DebugInfo.h"
#include "llvm/IR/DebugLoc.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/GlobalValue.h"
#include "llvm/IR/IRPrintingPasses.h"
#include "llvm/IR/InstrTypes.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/Intrinsics.h"
#include "llvm/IR/Module.h"
#include "llvm/IR/ModuleSlotTracker.h"
#include "llvm/IR/Value.h"
#include "llvm/MC/LaneBitmask.h"
#include "llvm/MC/MCDwarf.h"
#include "llvm/MC/MCSymbol.h"
#include "llvm/Support/AtomicOrdering.h"
#include "llvm/Support/BranchProbability.h"
#include "llvm/Support/Casting.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/ErrorHandling.h"
#include "llvm/Support/Format.h"
#include "llvm/Support/LowLevelTypeImpl.h"
#include "llvm/Support/YAMLTraits.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Target/TargetIntrinsicInfo.h"
#include "llvm/Target/TargetMachine.h"
#include <algorithm>
#include <cassert>
#include <cinttypes>
#include <cstdint>
#include <iterator>
#include <string>
#include <utility>
#include <vector>
using namespace llvm;
static cl::opt<bool> SimplifyMIR(
"simplify-mir", cl::Hidden,
cl::desc("Leave out unnecessary information when printing MIR"));
namespace {
/// This structure describes how to print out stack object references.
struct FrameIndexOperand {
std::string Name;
unsigned ID;
bool IsFixed;
FrameIndexOperand(StringRef Name, unsigned ID, bool IsFixed)
: Name(Name.str()), ID(ID), IsFixed(IsFixed) {}
/// Return an ordinary stack object reference.
static FrameIndexOperand create(StringRef Name, unsigned ID) {
return FrameIndexOperand(Name, ID, /*IsFixed=*/false);
}
/// Return a fixed stack object reference.
static FrameIndexOperand createFixed(unsigned ID) {
return FrameIndexOperand("", ID, /*IsFixed=*/true);
}
};
} // end anonymous namespace
namespace llvm {
/// This class prints out the machine functions using the MIR serialization
/// format.
class MIRPrinter {
raw_ostream &OS;
DenseMap<const uint32_t *, unsigned> RegisterMaskIds;
/// Maps from stack object indices to operand indices which will be used when
/// printing frame index machine operands.
DenseMap<int, FrameIndexOperand> StackObjectOperandMapping;
public:
MIRPrinter(raw_ostream &OS) : OS(OS) {}
void print(const MachineFunction &MF);
void convert(yaml::MachineFunction &MF, const MachineRegisterInfo &RegInfo,
const TargetRegisterInfo *TRI);
void convert(ModuleSlotTracker &MST, yaml::MachineFrameInfo &YamlMFI,
const MachineFrameInfo &MFI);
void convert(yaml::MachineFunction &MF,
const MachineConstantPool &ConstantPool);
void convert(ModuleSlotTracker &MST, yaml::MachineJumpTable &YamlJTI,
const MachineJumpTableInfo &JTI);
void convertStackObjects(yaml::MachineFunction &YMF,
const MachineFunction &MF, ModuleSlotTracker &MST);
private:
void initRegisterMaskIds(const MachineFunction &MF);
};
/// This class prints out the machine instructions using the MIR serialization
/// format.
class MIPrinter {
raw_ostream &OS;
ModuleSlotTracker &MST;
const DenseMap<const uint32_t *, unsigned> &RegisterMaskIds;
const DenseMap<int, FrameIndexOperand> &StackObjectOperandMapping;
/// Synchronization scope names registered with LLVMContext.
SmallVector<StringRef, 8> SSNs;
bool canPredictBranchProbabilities(const MachineBasicBlock &MBB) const;
bool canPredictSuccessors(const MachineBasicBlock &MBB) const;
public:
MIPrinter(raw_ostream &OS, ModuleSlotTracker &MST,
const DenseMap<const uint32_t *, unsigned> &RegisterMaskIds,
const DenseMap<int, FrameIndexOperand> &StackObjectOperandMapping)
: OS(OS), MST(MST), RegisterMaskIds(RegisterMaskIds),
StackObjectOperandMapping(StackObjectOperandMapping) {}
void print(const MachineBasicBlock &MBB);
void print(const MachineInstr &MI);
void printIRValueReference(const Value &V);
void printStackObjectReference(int FrameIndex);
void print(const MachineInstr &MI, unsigned OpIdx,
const TargetRegisterInfo *TRI, bool ShouldPrintRegisterTies,
LLT TypeToPrint, bool PrintDef = true);
void print(const LLVMContext &Context, const TargetInstrInfo &TII,
const MachineMemOperand &Op);
void printSyncScope(const LLVMContext &Context, SyncScope::ID SSID);
};
} // end namespace llvm
namespace llvm {
namespace yaml {
/// This struct serializes the LLVM IR module.
template <> struct BlockScalarTraits<Module> {
static void output(const Module &Mod, void *Ctxt, raw_ostream &OS) {
Mod.print(OS, nullptr);
}
static StringRef input(StringRef Str, void *Ctxt, Module &Mod) {
llvm_unreachable("LLVM Module is supposed to be parsed separately");
return "";
}
};
} // end namespace yaml
} // end namespace llvm
static void printRegMIR(unsigned Reg, yaml::StringValue &Dest,
const TargetRegisterInfo *TRI) {
raw_string_ostream OS(Dest.Value);
OS << printReg(Reg, TRI);
}
void MIRPrinter::print(const MachineFunction &MF) {
initRegisterMaskIds(MF);
yaml::MachineFunction YamlMF;
YamlMF.Name = MF.getName();
YamlMF.Alignment = MF.getAlignment();
YamlMF.ExposesReturnsTwice = MF.exposesReturnsTwice();
YamlMF.Legalized = MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Legalized);
YamlMF.RegBankSelected = MF.getProperties().hasProperty(
MachineFunctionProperties::Property::RegBankSelected);
YamlMF.Selected = MF.getProperties().hasProperty(
MachineFunctionProperties::Property::Selected);
YamlMF.FailedISel = MF.getProperties().hasProperty(
MachineFunctionProperties::Property::FailedISel);
convert(YamlMF, MF.getRegInfo(), MF.getSubtarget().getRegisterInfo());
ModuleSlotTracker MST(MF.getFunction().getParent());
MST.incorporateFunction(MF.getFunction());
convert(MST, YamlMF.FrameInfo, MF.getFrameInfo());
convertStackObjects(YamlMF, MF, MST);
if (const auto *ConstantPool = MF.getConstantPool())
convert(YamlMF, *ConstantPool);
if (const auto *JumpTableInfo = MF.getJumpTableInfo())
convert(MST, YamlMF.JumpTableInfo, *JumpTableInfo);
raw_string_ostream StrOS(YamlMF.Body.Value.Value);
bool IsNewlineNeeded = false;
for (const auto &MBB : MF) {
if (IsNewlineNeeded)
StrOS << "\n";
MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping)
.print(MBB);
IsNewlineNeeded = true;
}
StrOS.flush();
yaml::Output Out(OS);
if (!SimplifyMIR)
Out.setWriteDefaultValues(true);
Out << YamlMF;
}
static void printCustomRegMask(const uint32_t *RegMask, raw_ostream &OS,
const TargetRegisterInfo *TRI) {
assert(RegMask && "Can't print an empty register mask");
OS << StringRef("CustomRegMask(");
bool IsRegInRegMaskFound = false;
for (int I = 0, E = TRI->getNumRegs(); I < E; I++) {
// Check whether the register is asserted in regmask.
if (RegMask[I / 32] & (1u << (I % 32))) {
if (IsRegInRegMaskFound)
OS << ',';
OS << printReg(I, TRI);
IsRegInRegMaskFound = true;
}
}
OS << ')';
}
static void printRegClassOrBank(unsigned Reg, yaml::StringValue &Dest,
const MachineRegisterInfo &RegInfo,
const TargetRegisterInfo *TRI) {
raw_string_ostream OS(Dest.Value);
OS << printRegClassOrBank(Reg, RegInfo, TRI);
}
void MIRPrinter::convert(yaml::MachineFunction &MF,
const MachineRegisterInfo &RegInfo,
const TargetRegisterInfo *TRI) {
MF.TracksRegLiveness = RegInfo.tracksLiveness();
// Print the virtual register definitions.
for (unsigned I = 0, E = RegInfo.getNumVirtRegs(); I < E; ++I) {
unsigned Reg = TargetRegisterInfo::index2VirtReg(I);
yaml::VirtualRegisterDefinition VReg;
VReg.ID = I;
::printRegClassOrBank(Reg, VReg.Class, RegInfo, TRI);
unsigned PreferredReg = RegInfo.getSimpleHint(Reg);
if (PreferredReg)
printRegMIR(PreferredReg, VReg.PreferredRegister, TRI);
MF.VirtualRegisters.push_back(VReg);
}
// Print the live ins.
for (std::pair<unsigned, unsigned> LI : RegInfo.liveins()) {
yaml::MachineFunctionLiveIn LiveIn;
printRegMIR(LI.first, LiveIn.Register, TRI);
if (LI.second)
printRegMIR(LI.second, LiveIn.VirtualRegister, TRI);
MF.LiveIns.push_back(LiveIn);
}
// Prints the callee saved registers.
if (RegInfo.isUpdatedCSRsInitialized()) {
const MCPhysReg *CalleeSavedRegs = RegInfo.getCalleeSavedRegs();
std::vector<yaml::FlowStringValue> CalleeSavedRegisters;
for (const MCPhysReg *I = CalleeSavedRegs; *I; ++I) {
yaml::FlowStringValue Reg;
printRegMIR(*I, Reg, TRI);
CalleeSavedRegisters.push_back(Reg);
}
MF.CalleeSavedRegisters = CalleeSavedRegisters;
}
}
void MIRPrinter::convert(ModuleSlotTracker &MST,
yaml::MachineFrameInfo &YamlMFI,
const MachineFrameInfo &MFI) {
YamlMFI.IsFrameAddressTaken = MFI.isFrameAddressTaken();
YamlMFI.IsReturnAddressTaken = MFI.isReturnAddressTaken();
YamlMFI.HasStackMap = MFI.hasStackMap();
YamlMFI.HasPatchPoint = MFI.hasPatchPoint();
YamlMFI.StackSize = MFI.getStackSize();
YamlMFI.OffsetAdjustment = MFI.getOffsetAdjustment();
YamlMFI.MaxAlignment = MFI.getMaxAlignment();
YamlMFI.AdjustsStack = MFI.adjustsStack();
YamlMFI.HasCalls = MFI.hasCalls();
YamlMFI.MaxCallFrameSize = MFI.isMaxCallFrameSizeComputed()
? MFI.getMaxCallFrameSize() : ~0u;
YamlMFI.HasOpaqueSPAdjustment = MFI.hasOpaqueSPAdjustment();
YamlMFI.HasVAStart = MFI.hasVAStart();
YamlMFI.HasMustTailInVarArgFunc = MFI.hasMustTailInVarArgFunc();
if (MFI.getSavePoint()) {
raw_string_ostream StrOS(YamlMFI.SavePoint.Value);
StrOS << printMBBReference(*MFI.getSavePoint());
}
if (MFI.getRestorePoint()) {
raw_string_ostream StrOS(YamlMFI.RestorePoint.Value);
StrOS << printMBBReference(*MFI.getRestorePoint());
}
}
void MIRPrinter::convertStackObjects(yaml::MachineFunction &YMF,
const MachineFunction &MF,
ModuleSlotTracker &MST) {
const MachineFrameInfo &MFI = MF.getFrameInfo();
const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
// Process fixed stack objects.
unsigned ID = 0;
for (int I = MFI.getObjectIndexBegin(); I < 0; ++I) {
if (MFI.isDeadObjectIndex(I))
continue;
yaml::FixedMachineStackObject YamlObject;
YamlObject.ID = ID;
YamlObject.Type = MFI.isSpillSlotObjectIndex(I)
? yaml::FixedMachineStackObject::SpillSlot
: yaml::FixedMachineStackObject::DefaultType;
YamlObject.Offset = MFI.getObjectOffset(I);
YamlObject.Size = MFI.getObjectSize(I);
YamlObject.Alignment = MFI.getObjectAlignment(I);
YamlObject.StackID = MFI.getStackID(I);
YamlObject.IsImmutable = MFI.isImmutableObjectIndex(I);
YamlObject.IsAliased = MFI.isAliasedObjectIndex(I);
YMF.FixedStackObjects.push_back(YamlObject);
StackObjectOperandMapping.insert(
std::make_pair(I, FrameIndexOperand::createFixed(ID++)));
}
// Process ordinary stack objects.
ID = 0;
for (int I = 0, E = MFI.getObjectIndexEnd(); I < E; ++I) {
if (MFI.isDeadObjectIndex(I))
continue;
yaml::MachineStackObject YamlObject;
YamlObject.ID = ID;
if (const auto *Alloca = MFI.getObjectAllocation(I))
YamlObject.Name.Value =
Alloca->hasName() ? Alloca->getName() : "<unnamed alloca>";
YamlObject.Type = MFI.isSpillSlotObjectIndex(I)
? yaml::MachineStackObject::SpillSlot
: MFI.isVariableSizedObjectIndex(I)
? yaml::MachineStackObject::VariableSized
: yaml::MachineStackObject::DefaultType;
YamlObject.Offset = MFI.getObjectOffset(I);
YamlObject.Size = MFI.getObjectSize(I);
YamlObject.Alignment = MFI.getObjectAlignment(I);
YamlObject.StackID = MFI.getStackID(I);
YMF.StackObjects.push_back(YamlObject);
StackObjectOperandMapping.insert(std::make_pair(
I, FrameIndexOperand::create(YamlObject.Name.Value, ID++)));
}
for (const auto &CSInfo : MFI.getCalleeSavedInfo()) {
yaml::StringValue Reg;
printRegMIR(CSInfo.getReg(), Reg, TRI);
auto StackObjectInfo = StackObjectOperandMapping.find(CSInfo.getFrameIdx());
assert(StackObjectInfo != StackObjectOperandMapping.end() &&
"Invalid stack object index");
const FrameIndexOperand &StackObject = StackObjectInfo->second;
if (StackObject.IsFixed) {
YMF.FixedStackObjects[StackObject.ID].CalleeSavedRegister = Reg;
YMF.FixedStackObjects[StackObject.ID].CalleeSavedRestored =
CSInfo.isRestored();
} else {
YMF.StackObjects[StackObject.ID].CalleeSavedRegister = Reg;
YMF.StackObjects[StackObject.ID].CalleeSavedRestored =
CSInfo.isRestored();
}
}
for (unsigned I = 0, E = MFI.getLocalFrameObjectCount(); I < E; ++I) {
auto LocalObject = MFI.getLocalFrameObjectMap(I);
auto StackObjectInfo = StackObjectOperandMapping.find(LocalObject.first);
assert(StackObjectInfo != StackObjectOperandMapping.end() &&
"Invalid stack object index");
const FrameIndexOperand &StackObject = StackObjectInfo->second;
assert(!StackObject.IsFixed && "Expected a locally mapped stack object");
YMF.StackObjects[StackObject.ID].LocalOffset = LocalObject.second;
}
// Print the stack object references in the frame information class after
// converting the stack objects.
if (MFI.hasStackProtectorIndex()) {
raw_string_ostream StrOS(YMF.FrameInfo.StackProtector.Value);
MIPrinter(StrOS, MST, RegisterMaskIds, StackObjectOperandMapping)
.printStackObjectReference(MFI.getStackProtectorIndex());
}
// Print the debug variable information.
for (const MachineFunction::VariableDbgInfo &DebugVar :
MF.getVariableDbgInfo()) {
auto StackObjectInfo = StackObjectOperandMapping.find(DebugVar.Slot);
assert(StackObjectInfo != StackObjectOperandMapping.end() &&
"Invalid stack object index");
const FrameIndexOperand &StackObject = StackObjectInfo->second;
assert(!StackObject.IsFixed && "Expected a non-fixed stack object");
auto &Object = YMF.StackObjects[StackObject.ID];
{
raw_string_ostream StrOS(Object.DebugVar.Value);
DebugVar.Var->printAsOperand(StrOS, MST);
}
{
raw_string_ostream StrOS(Object.DebugExpr.Value);
DebugVar.Expr->printAsOperand(StrOS, MST);
}
{
raw_string_ostream StrOS(Object.DebugLoc.Value);
DebugVar.Loc->printAsOperand(StrOS, MST);
}
}
}
void MIRPrinter::convert(yaml::MachineFunction &MF,
const MachineConstantPool &ConstantPool) {
unsigned ID = 0;
for (const MachineConstantPoolEntry &Constant : ConstantPool.getConstants()) {
std::string Str;
raw_string_ostream StrOS(Str);
if (Constant.isMachineConstantPoolEntry()) {
Constant.Val.MachineCPVal->print(StrOS);
} else {
Constant.Val.ConstVal->printAsOperand(StrOS);
}
yaml::MachineConstantPoolValue YamlConstant;
YamlConstant.ID = ID++;
YamlConstant.Value = StrOS.str();
YamlConstant.Alignment = Constant.getAlignment();
YamlConstant.IsTargetSpecific = Constant.isMachineConstantPoolEntry();
MF.Constants.push_back(YamlConstant);
}
}
void MIRPrinter::convert(ModuleSlotTracker &MST,
yaml::MachineJumpTable &YamlJTI,
const MachineJumpTableInfo &JTI) {
YamlJTI.Kind = JTI.getEntryKind();
unsigned ID = 0;
for (const auto &Table : JTI.getJumpTables()) {
std::string Str;
yaml::MachineJumpTable::Entry Entry;
Entry.ID = ID++;
for (const auto *MBB : Table.MBBs) {
raw_string_ostream StrOS(Str);
StrOS << printMBBReference(*MBB);
Entry.Blocks.push_back(StrOS.str());
Str.clear();
}
YamlJTI.Entries.push_back(Entry);
}
}
void MIRPrinter::initRegisterMaskIds(const MachineFunction &MF) {
const auto *TRI = MF.getSubtarget().getRegisterInfo();
unsigned I = 0;
for (const uint32_t *Mask : TRI->getRegMasks())
RegisterMaskIds.insert(std::make_pair(Mask, I++));
}
void llvm::guessSuccessors(const MachineBasicBlock &MBB,
SmallVectorImpl<MachineBasicBlock*> &Result,
bool &IsFallthrough) {
SmallPtrSet<MachineBasicBlock*,8> Seen;
for (const MachineInstr &MI : MBB) {
if (MI.isPHI())
continue;
for (const MachineOperand &MO : MI.operands()) {
if (!MO.isMBB())
continue;
MachineBasicBlock *Succ = MO.getMBB();
auto RP = Seen.insert(Succ);
if (RP.second)
Result.push_back(Succ);
}
}
MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
IsFallthrough = I == MBB.end() || !I->isBarrier();
}
bool
MIPrinter::canPredictBranchProbabilities(const MachineBasicBlock &MBB) const {
if (MBB.succ_size() <= 1)
return true;
if (!MBB.hasSuccessorProbabilities())
return true;
SmallVector<BranchProbability,8> Normalized(MBB.Probs.begin(),
MBB.Probs.end());
BranchProbability::normalizeProbabilities(Normalized.begin(),
Normalized.end());
SmallVector<BranchProbability,8> Equal(Normalized.size());
BranchProbability::normalizeProbabilities(Equal.begin(), Equal.end());
return std::equal(Normalized.begin(), Normalized.end(), Equal.begin());
}
bool MIPrinter::canPredictSuccessors(const MachineBasicBlock &MBB) const {
SmallVector<MachineBasicBlock*,8> GuessedSuccs;
bool GuessedFallthrough;
guessSuccessors(MBB, GuessedSuccs, GuessedFallthrough);
if (GuessedFallthrough) {
const MachineFunction &MF = *MBB.getParent();
MachineFunction::const_iterator NextI = std::next(MBB.getIterator());
if (NextI != MF.end()) {
MachineBasicBlock *Next = const_cast<MachineBasicBlock*>(&*NextI);
if (!is_contained(GuessedSuccs, Next))
GuessedSuccs.push_back(Next);
}
}
if (GuessedSuccs.size() != MBB.succ_size())
return false;
return std::equal(MBB.succ_begin(), MBB.succ_end(), GuessedSuccs.begin());
}
void MIPrinter::print(const MachineBasicBlock &MBB) {
assert(MBB.getNumber() >= 0 && "Invalid MBB number");
OS << "bb." << MBB.getNumber();
bool HasAttributes = false;
if (const auto *BB = MBB.getBasicBlock()) {
if (BB->hasName()) {
OS << "." << BB->getName();
} else {
HasAttributes = true;
OS << " (";
int Slot = MST.getLocalSlot(BB);
if (Slot == -1)
OS << "<ir-block badref>";
else
OS << (Twine("%ir-block.") + Twine(Slot)).str();
}
}
if (MBB.hasAddressTaken()) {
OS << (HasAttributes ? ", " : " (");
OS << "address-taken";
HasAttributes = true;
}
if (MBB.isEHPad()) {
OS << (HasAttributes ? ", " : " (");
OS << "landing-pad";
HasAttributes = true;
}
if (MBB.getAlignment()) {
OS << (HasAttributes ? ", " : " (");
OS << "align " << MBB.getAlignment();
HasAttributes = true;
}
if (HasAttributes)
OS << ")";
OS << ":\n";
bool HasLineAttributes = false;
// Print the successors
bool canPredictProbs = canPredictBranchProbabilities(MBB);
// Even if the list of successors is empty, if we cannot guess it,
// we need to print it to tell the parser that the list is empty.
// This is needed, because MI model unreachable as empty blocks
// with an empty successor list. If the parser would see that
// without the successor list, it would guess the code would
// fallthrough.
if ((!MBB.succ_empty() && !SimplifyMIR) || !canPredictProbs ||
!canPredictSuccessors(MBB)) {
OS.indent(2) << "successors: ";
for (auto I = MBB.succ_begin(), E = MBB.succ_end(); I != E; ++I) {
if (I != MBB.succ_begin())
OS << ", ";
OS << printMBBReference(**I);
if (!SimplifyMIR || !canPredictProbs)
OS << '('
<< format("0x%08" PRIx32, MBB.getSuccProbability(I).getNumerator())
<< ')';
}
OS << "\n";
HasLineAttributes = true;
}
// Print the live in registers.
const MachineRegisterInfo &MRI = MBB.getParent()->getRegInfo();
if (MRI.tracksLiveness() && !MBB.livein_empty()) {
const TargetRegisterInfo &TRI = *MRI.getTargetRegisterInfo();
OS.indent(2) << "liveins: ";
bool First = true;
for (const auto &LI : MBB.liveins()) {
if (!First)
OS << ", ";
First = false;
OS << printReg(LI.PhysReg, &TRI);
if (!LI.LaneMask.all())
OS << ":0x" << PrintLaneMask(LI.LaneMask);
}
OS << "\n";
HasLineAttributes = true;
}
if (HasLineAttributes)
OS << "\n";
bool IsInBundle = false;
for (auto I = MBB.instr_begin(), E = MBB.instr_end(); I != E; ++I) {
const MachineInstr &MI = *I;
if (IsInBundle && !MI.isInsideBundle()) {
OS.indent(2) << "}\n";
IsInBundle = false;
}
OS.indent(IsInBundle ? 4 : 2);
print(MI);
if (!IsInBundle && MI.getFlag(MachineInstr::BundledSucc)) {
OS << " {";
IsInBundle = true;
}
OS << "\n";
}
if (IsInBundle)
OS.indent(2) << "}\n";
}
void MIPrinter::print(const MachineInstr &MI) {
const auto *MF = MI.getMF();
const auto &MRI = MF->getRegInfo();
const auto &SubTarget = MF->getSubtarget();
const auto *TRI = SubTarget.getRegisterInfo();
assert(TRI && "Expected target register info");
const auto *TII = SubTarget.getInstrInfo();
assert(TII && "Expected target instruction info");
if (MI.isCFIInstruction())
assert(MI.getNumOperands() == 1 && "Expected 1 operand in CFI instruction");
SmallBitVector PrintedTypes(8);
bool ShouldPrintRegisterTies = MI.hasComplexRegisterTies();
unsigned I = 0, E = MI.getNumOperands();
for (; I < E && MI.getOperand(I).isReg() && MI.getOperand(I).isDef() &&
!MI.getOperand(I).isImplicit();
++I) {
if (I)
OS << ", ";
print(MI, I, TRI, ShouldPrintRegisterTies,
MI.getTypeToPrint(I, PrintedTypes, MRI),
/*PrintDef=*/false);
}
if (I)
OS << " = ";
if (MI.getFlag(MachineInstr::FrameSetup))
OS << "frame-setup ";
else if (MI.getFlag(MachineInstr::FrameDestroy))
OS << "frame-destroy ";
OS << TII->getName(MI.getOpcode());
if (I < E)
OS << ' ';
bool NeedComma = false;
for (; I < E; ++I) {
if (NeedComma)
OS << ", ";
print(MI, I, TRI, ShouldPrintRegisterTies,
MI.getTypeToPrint(I, PrintedTypes, MRI));
NeedComma = true;
}
if (const DebugLoc &DL = MI.getDebugLoc()) {
if (NeedComma)
OS << ',';
OS << " debug-location ";
DL->printAsOperand(OS, MST);
}
if (!MI.memoperands_empty()) {
OS << " :: ";
const LLVMContext &Context = MF->getFunction().getContext();
bool NeedComma = false;
for (const auto *Op : MI.memoperands()) {
if (NeedComma)
OS << ", ";
print(Context, *TII, *Op);
NeedComma = true;
}
}
}
void MIPrinter::printIRValueReference(const Value &V) {
if (isa<GlobalValue>(V)) {
V.printAsOperand(OS, /*PrintType=*/false, MST);
return;
}
if (isa<Constant>(V)) {
// Machine memory operands can load/store to/from constant value pointers.
OS << '`';
V.printAsOperand(OS, /*PrintType=*/true, MST);
OS << '`';
return;
}
OS << "%ir.";
if (V.hasName()) {
printLLVMNameWithoutPrefix(OS, V.getName());
return;
}
MachineOperand::printIRSlotNumber(OS, MST.getLocalSlot(&V));
}
void MIPrinter::printStackObjectReference(int FrameIndex) {
auto ObjectInfo = StackObjectOperandMapping.find(FrameIndex);
assert(ObjectInfo != StackObjectOperandMapping.end() &&
"Invalid frame index");
const FrameIndexOperand &Operand = ObjectInfo->second;
MachineOperand::printStackObjectReference(OS, Operand.ID, Operand.IsFixed,
Operand.Name);
}
void MIPrinter::print(const MachineInstr &MI, unsigned OpIdx,
const TargetRegisterInfo *TRI,
bool ShouldPrintRegisterTies, LLT TypeToPrint,
bool PrintDef) {
const MachineOperand &Op = MI.getOperand(OpIdx);
switch (Op.getType()) {
case MachineOperand::MO_Immediate:
if (MI.isOperandSubregIdx(OpIdx)) {
MachineOperand::printTargetFlags(OS, Op);
MachineOperand::printSubRegIdx(OS, Op.getImm(), TRI);
break;
}
LLVM_FALLTHROUGH;
case MachineOperand::MO_Register:
case MachineOperand::MO_CImmediate:
case MachineOperand::MO_FPImmediate:
case MachineOperand::MO_MachineBasicBlock:
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_TargetIndex:
case MachineOperand::MO_JumpTableIndex:
case MachineOperand::MO_ExternalSymbol:
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_RegisterLiveOut:
case MachineOperand::MO_Metadata:
case MachineOperand::MO_MCSymbol:
case MachineOperand::MO_CFIIndex:
case MachineOperand::MO_IntrinsicID:
case MachineOperand::MO_Predicate:
case MachineOperand::MO_BlockAddress: {
unsigned TiedOperandIdx = 0;
if (ShouldPrintRegisterTies && Op.isReg() && Op.isTied() && !Op.isDef())
TiedOperandIdx = Op.getParent()->findTiedOperandIdx(OpIdx);
const TargetIntrinsicInfo *TII = MI.getMF()->getTarget().getIntrinsicInfo();
Op.print(OS, MST, TypeToPrint, PrintDef, /*IsStandalone=*/false,
ShouldPrintRegisterTies, TiedOperandIdx, TRI, TII);
break;
}
case MachineOperand::MO_FrameIndex:
printStackObjectReference(Op.getIndex());
break;
case MachineOperand::MO_RegisterMask: {
auto RegMaskInfo = RegisterMaskIds.find(Op.getRegMask());
if (RegMaskInfo != RegisterMaskIds.end())
OS << StringRef(TRI->getRegMaskNames()[RegMaskInfo->second]).lower();
else
printCustomRegMask(Op.getRegMask(), OS, TRI);
break;
}
}
}
static const char *getTargetMMOFlagName(const TargetInstrInfo &TII,
unsigned TMMOFlag) {
auto Flags = TII.getSerializableMachineMemOperandTargetFlags();
for (const auto &I : Flags) {
if (I.first == TMMOFlag) {
return I.second;
}
}
return nullptr;
}
void MIPrinter::print(const LLVMContext &Context, const TargetInstrInfo &TII,
const MachineMemOperand &Op) {
OS << '(';
if (Op.isVolatile())
OS << "volatile ";
if (Op.isNonTemporal())
OS << "non-temporal ";
if (Op.isDereferenceable())
OS << "dereferenceable ";
if (Op.isInvariant())
OS << "invariant ";
if (Op.getFlags() & MachineMemOperand::MOTargetFlag1)
OS << '"' << getTargetMMOFlagName(TII, MachineMemOperand::MOTargetFlag1)
<< "\" ";
if (Op.getFlags() & MachineMemOperand::MOTargetFlag2)
OS << '"' << getTargetMMOFlagName(TII, MachineMemOperand::MOTargetFlag2)
<< "\" ";
if (Op.getFlags() & MachineMemOperand::MOTargetFlag3)
OS << '"' << getTargetMMOFlagName(TII, MachineMemOperand::MOTargetFlag3)
<< "\" ";
assert((Op.isLoad() || Op.isStore()) && "machine memory operand must be a load or store (or both)");
if (Op.isLoad())
OS << "load ";
if (Op.isStore())
OS << "store ";
printSyncScope(Context, Op.getSyncScopeID());
if (Op.getOrdering() != AtomicOrdering::NotAtomic)
OS << toIRString(Op.getOrdering()) << ' ';
if (Op.getFailureOrdering() != AtomicOrdering::NotAtomic)
OS << toIRString(Op.getFailureOrdering()) << ' ';
OS << Op.getSize();
if (const Value *Val = Op.getValue()) {
OS << ((Op.isLoad() && Op.isStore()) ? " on "
: Op.isLoad() ? " from " : " into ");
printIRValueReference(*Val);
} else if (const PseudoSourceValue *PVal = Op.getPseudoValue()) {
OS << ((Op.isLoad() && Op.isStore()) ? " on "
: Op.isLoad() ? " from " : " into ");
assert(PVal && "Expected a pseudo source value");
switch (PVal->kind()) {
case PseudoSourceValue::Stack:
OS << "stack";
break;
case PseudoSourceValue::GOT:
OS << "got";
break;
case PseudoSourceValue::JumpTable:
OS << "jump-table";
break;
case PseudoSourceValue::ConstantPool:
OS << "constant-pool";
break;
case PseudoSourceValue::FixedStack:
printStackObjectReference(
cast<FixedStackPseudoSourceValue>(PVal)->getFrameIndex());
break;
case PseudoSourceValue::GlobalValueCallEntry:
OS << "call-entry ";
cast<GlobalValuePseudoSourceValue>(PVal)->getValue()->printAsOperand(
OS, /*PrintType=*/false, MST);
break;
case PseudoSourceValue::ExternalSymbolCallEntry:
OS << "call-entry &";
printLLVMNameWithoutPrefix(
OS, cast<ExternalSymbolPseudoSourceValue>(PVal)->getSymbol());
break;
case PseudoSourceValue::TargetCustom:
llvm_unreachable("TargetCustom pseudo source values are not supported");
break;
}
}
MachineOperand::printOperandOffset(OS, Op.getOffset());
if (Op.getBaseAlignment() != Op.getSize())
OS << ", align " << Op.getBaseAlignment();
auto AAInfo = Op.getAAInfo();
if (AAInfo.TBAA) {
OS << ", !tbaa ";
AAInfo.TBAA->printAsOperand(OS, MST);
}
if (AAInfo.Scope) {
OS << ", !alias.scope ";
AAInfo.Scope->printAsOperand(OS, MST);
}
if (AAInfo.NoAlias) {
OS << ", !noalias ";
AAInfo.NoAlias->printAsOperand(OS, MST);
}
if (Op.getRanges()) {
OS << ", !range ";
Op.getRanges()->printAsOperand(OS, MST);
}
if (unsigned AS = Op.getAddrSpace())
OS << ", addrspace " << AS;
OS << ')';
}
void MIPrinter::printSyncScope(const LLVMContext &Context, SyncScope::ID SSID) {
switch (SSID) {
case SyncScope::System: {
break;
}
default: {
if (SSNs.empty())
Context.getSyncScopeNames(SSNs);
OS << "syncscope(\"";
PrintEscapedString(SSNs[SSID], OS);
OS << "\") ";
break;
}
}
}
void llvm::printMIR(raw_ostream &OS, const Module &M) {
yaml::Output Out(OS);
Out << const_cast<Module &>(M);
}
void llvm::printMIR(raw_ostream &OS, const MachineFunction &MF) {
MIRPrinter Printer(OS);
Printer.print(MF);
}