forked from OSchip/llvm-project
237 lines
6.9 KiB
C++
237 lines
6.9 KiB
C++
//===- AArch64LegalizerInfo.cpp ----------------------------------*- C++ -*-==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the targeting of the Machinelegalizer class for
|
|
/// AArch64.
|
|
/// \todo This should be generated by TableGen.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "AArch64LegalizerInfo.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/Target/TargetOpcodes.h"
|
|
|
|
using namespace llvm;
|
|
|
|
#ifndef LLVM_BUILD_GLOBAL_ISEL
|
|
#error "You shouldn't build this"
|
|
#endif
|
|
|
|
AArch64LegalizerInfo::AArch64LegalizerInfo() {
|
|
using namespace TargetOpcode;
|
|
const LLT p0 = LLT::pointer(0, 64);
|
|
const LLT s1 = LLT::scalar(1);
|
|
const LLT s8 = LLT::scalar(8);
|
|
const LLT s16 = LLT::scalar(16);
|
|
const LLT s32 = LLT::scalar(32);
|
|
const LLT s64 = LLT::scalar(64);
|
|
const LLT v2s32 = LLT::vector(2, 32);
|
|
const LLT v4s32 = LLT::vector(4, 32);
|
|
const LLT v2s64 = LLT::vector(2, 64);
|
|
|
|
for (unsigned BinOp : {G_ADD, G_SUB, G_MUL, G_AND, G_OR, G_XOR, G_SHL}) {
|
|
// These operations naturally get the right answer when used on
|
|
// GPR32, even if the actual type is narrower.
|
|
for (auto Ty : {s32, s64, v2s32, v4s32, v2s64})
|
|
setAction({BinOp, Ty}, Legal);
|
|
|
|
for (auto Ty : {s1, s8, s16})
|
|
setAction({BinOp, Ty}, WidenScalar);
|
|
}
|
|
|
|
setAction({G_GEP, p0}, Legal);
|
|
setAction({G_GEP, 1, s64}, Legal);
|
|
|
|
for (auto Ty : {s1, s8, s16, s32})
|
|
setAction({G_GEP, 1, Ty}, WidenScalar);
|
|
|
|
for (unsigned BinOp : {G_LSHR, G_ASHR, G_SDIV, G_UDIV}) {
|
|
for (auto Ty : {s32, s64})
|
|
setAction({BinOp, Ty}, Legal);
|
|
|
|
for (auto Ty : {s1, s8, s16})
|
|
setAction({BinOp, Ty}, WidenScalar);
|
|
}
|
|
|
|
for (unsigned BinOp : {G_SREM, G_UREM})
|
|
for (auto Ty : { s1, s8, s16, s32, s64 })
|
|
setAction({BinOp, Ty}, Lower);
|
|
|
|
for (unsigned Op : {G_SMULO, G_UMULO})
|
|
setAction({Op, s64}, Lower);
|
|
|
|
for (unsigned Op : {G_UADDE, G_USUBE, G_SADDO, G_SSUBO, G_SMULH, G_UMULH}) {
|
|
for (auto Ty : { s32, s64 })
|
|
setAction({Op, Ty}, Legal);
|
|
|
|
setAction({Op, 1, s1}, Legal);
|
|
}
|
|
|
|
for (unsigned BinOp : {G_FADD, G_FSUB, G_FMUL, G_FDIV})
|
|
for (auto Ty : {s32, s64})
|
|
setAction({BinOp, Ty}, Legal);
|
|
|
|
for (unsigned BinOp : {G_FREM, G_FPOW}) {
|
|
setAction({BinOp, s32}, Libcall);
|
|
setAction({BinOp, s64}, Libcall);
|
|
}
|
|
|
|
// FIXME: what should we do about G_INSERTs with more than one source value?
|
|
// For now the default of not specifying means we'll fall back.
|
|
for (auto Ty : {s32, s64}) {
|
|
setAction({G_INSERT, Ty}, Legal);
|
|
setAction({G_INSERT, 1, Ty}, Legal);
|
|
}
|
|
for (auto Ty : {s1, s8, s16}) {
|
|
setAction({G_INSERT, Ty}, WidenScalar);
|
|
// FIXME: Can't widen the sources because that violates the constraints on
|
|
// G_INSERT (It seems entirely reasonable that inputs shouldn't overlap).
|
|
}
|
|
|
|
for (unsigned MemOp : {G_LOAD, G_STORE}) {
|
|
for (auto Ty : {s8, s16, s32, s64, p0, v2s32})
|
|
setAction({MemOp, Ty}, Legal);
|
|
|
|
setAction({MemOp, s1}, WidenScalar);
|
|
|
|
// And everything's fine in addrspace 0.
|
|
setAction({MemOp, 1, p0}, Legal);
|
|
}
|
|
|
|
// Constants
|
|
for (auto Ty : {s32, s64}) {
|
|
setAction({TargetOpcode::G_CONSTANT, Ty}, Legal);
|
|
setAction({TargetOpcode::G_FCONSTANT, Ty}, Legal);
|
|
}
|
|
|
|
setAction({G_CONSTANT, p0}, Legal);
|
|
|
|
for (auto Ty : {s1, s8, s16})
|
|
setAction({TargetOpcode::G_CONSTANT, Ty}, WidenScalar);
|
|
|
|
setAction({TargetOpcode::G_FCONSTANT, s16}, WidenScalar);
|
|
|
|
setAction({G_ICMP, s1}, Legal);
|
|
setAction({G_ICMP, 1, s32}, Legal);
|
|
setAction({G_ICMP, 1, s64}, Legal);
|
|
setAction({G_ICMP, 1, p0}, Legal);
|
|
|
|
for (auto Ty : {s1, s8, s16}) {
|
|
setAction({G_ICMP, 1, Ty}, WidenScalar);
|
|
}
|
|
|
|
setAction({G_FCMP, s1}, Legal);
|
|
setAction({G_FCMP, 1, s32}, Legal);
|
|
setAction({G_FCMP, 1, s64}, Legal);
|
|
|
|
// Extensions
|
|
for (auto Ty : { s1, s8, s16, s32, s64 }) {
|
|
setAction({G_ZEXT, Ty}, Legal);
|
|
setAction({G_SEXT, Ty}, Legal);
|
|
setAction({G_ANYEXT, Ty}, Legal);
|
|
}
|
|
|
|
for (auto Ty : { s1, s8, s16, s32 }) {
|
|
setAction({G_ZEXT, 1, Ty}, Legal);
|
|
setAction({G_SEXT, 1, Ty}, Legal);
|
|
setAction({G_ANYEXT, 1, Ty}, Legal);
|
|
}
|
|
|
|
setAction({G_FPEXT, s64}, Legal);
|
|
setAction({G_FPEXT, 1, s32}, Legal);
|
|
|
|
// Truncations
|
|
for (auto Ty : { s16, s32 })
|
|
setAction({G_FPTRUNC, Ty}, Legal);
|
|
|
|
for (auto Ty : { s32, s64 })
|
|
setAction({G_FPTRUNC, 1, Ty}, Legal);
|
|
|
|
for (auto Ty : { s1, s8, s16, s32 })
|
|
setAction({G_TRUNC, Ty}, Legal);
|
|
|
|
for (auto Ty : { s8, s16, s32, s64 })
|
|
setAction({G_TRUNC, 1, Ty}, Legal);
|
|
|
|
// Conversions
|
|
for (auto Ty : { s32, s64 }) {
|
|
setAction({G_FPTOSI, 0, Ty}, Legal);
|
|
setAction({G_FPTOUI, 0, Ty}, Legal);
|
|
setAction({G_SITOFP, 1, Ty}, Legal);
|
|
setAction({G_UITOFP, 1, Ty}, Legal);
|
|
}
|
|
for (auto Ty : { s1, s8, s16 }) {
|
|
setAction({G_FPTOSI, 0, Ty}, WidenScalar);
|
|
setAction({G_FPTOUI, 0, Ty}, WidenScalar);
|
|
setAction({G_SITOFP, 1, Ty}, WidenScalar);
|
|
setAction({G_UITOFP, 1, Ty}, WidenScalar);
|
|
}
|
|
|
|
for (auto Ty : { s32, s64 }) {
|
|
setAction({G_FPTOSI, 1, Ty}, Legal);
|
|
setAction({G_FPTOUI, 1, Ty}, Legal);
|
|
setAction({G_SITOFP, 0, Ty}, Legal);
|
|
setAction({G_UITOFP, 0, Ty}, Legal);
|
|
}
|
|
|
|
// Control-flow
|
|
for (auto Ty : {s1, s8, s16, s32})
|
|
setAction({G_BRCOND, Ty}, Legal);
|
|
setAction({G_BRINDIRECT, p0}, Legal);
|
|
|
|
// Select
|
|
for (auto Ty : {s1, s8, s16})
|
|
setAction({G_SELECT, Ty}, WidenScalar);
|
|
|
|
for (auto Ty : {s32, s64, p0})
|
|
setAction({G_SELECT, Ty}, Legal);
|
|
|
|
setAction({G_SELECT, 1, s1}, Legal);
|
|
|
|
// Pointer-handling
|
|
setAction({G_FRAME_INDEX, p0}, Legal);
|
|
setAction({G_GLOBAL_VALUE, p0}, Legal);
|
|
|
|
for (auto Ty : {s1, s8, s16, s32, s64})
|
|
setAction({G_PTRTOINT, 0, Ty}, Legal);
|
|
|
|
setAction({G_PTRTOINT, 1, p0}, Legal);
|
|
|
|
setAction({G_INTTOPTR, 0, p0}, Legal);
|
|
setAction({G_INTTOPTR, 1, s64}, Legal);
|
|
|
|
// Casts for 32 and 64-bit width type are just copies.
|
|
for (auto Ty : {s1, s8, s16, s32, s64}) {
|
|
setAction({G_BITCAST, 0, Ty}, Legal);
|
|
setAction({G_BITCAST, 1, Ty}, Legal);
|
|
}
|
|
|
|
// For the sake of copying bits around, the type does not really
|
|
// matter as long as it fits a register.
|
|
for (int EltSize = 8; EltSize <= 64; EltSize *= 2) {
|
|
setAction({G_BITCAST, 0, LLT::vector(128/EltSize, EltSize)}, Legal);
|
|
setAction({G_BITCAST, 1, LLT::vector(128/EltSize, EltSize)}, Legal);
|
|
if (EltSize >= 64)
|
|
continue;
|
|
|
|
setAction({G_BITCAST, 0, LLT::vector(64/EltSize, EltSize)}, Legal);
|
|
setAction({G_BITCAST, 1, LLT::vector(64/EltSize, EltSize)}, Legal);
|
|
if (EltSize >= 32)
|
|
continue;
|
|
|
|
setAction({G_BITCAST, 0, LLT::vector(32/EltSize, EltSize)}, Legal);
|
|
setAction({G_BITCAST, 1, LLT::vector(32/EltSize, EltSize)}, Legal);
|
|
}
|
|
|
|
setAction({G_VASTART, p0}, Legal);
|
|
|
|
computeTables();
|
|
}
|