llvm-project/llvm/lib/Target/AMDGPU/GCNSchedStrategy.cpp

373 lines
14 KiB
C++

//===-- GCNSchedStrategy.cpp - GCN Scheduler Strategy ---------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// This contains a MachineSchedStrategy implementation for maximizing wave
/// occupancy on GCN hardware.
//===----------------------------------------------------------------------===//
#include "GCNSchedStrategy.h"
#include "AMDGPUSubtarget.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "llvm/CodeGen/RegisterClassInfo.h"
#define DEBUG_TYPE "misched"
using namespace llvm;
GCNMaxOccupancySchedStrategy::GCNMaxOccupancySchedStrategy(
const MachineSchedContext *C) :
GenericScheduler(C) { }
static unsigned getMaxWaves(unsigned SGPRs, unsigned VGPRs,
const MachineFunction &MF) {
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned MinRegOccupancy = std::min(ST.getOccupancyWithNumSGPRs(SGPRs),
ST.getOccupancyWithNumVGPRs(VGPRs));
return std::min(MinRegOccupancy,
ST.getOccupancyWithLocalMemSize(MFI->getLDSSize(),
*MF.getFunction()));
}
void GCNMaxOccupancySchedStrategy::initialize(ScheduleDAGMI *DAG) {
GenericScheduler::initialize(DAG);
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
// FIXME: This is also necessary, because some passes that run after
// scheduling and before regalloc increase register pressure.
const int ErrorMargin = 3;
SGPRExcessLimit = Context->RegClassInfo
->getNumAllocatableRegs(&AMDGPU::SGPR_32RegClass) - ErrorMargin;
VGPRExcessLimit = Context->RegClassInfo
->getNumAllocatableRegs(&AMDGPU::VGPR_32RegClass) - ErrorMargin;
SGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
SRI->getSGPRPressureSet()) - ErrorMargin;
VGPRCriticalLimit = SRI->getRegPressureSetLimit(DAG->MF,
SRI->getVGPRPressureSet()) - ErrorMargin;
}
void GCNMaxOccupancySchedStrategy::initCandidate(SchedCandidate &Cand, SUnit *SU,
bool AtTop, const RegPressureTracker &RPTracker,
const SIRegisterInfo *SRI,
unsigned SGPRPressure,
unsigned VGPRPressure) {
Cand.SU = SU;
Cand.AtTop = AtTop;
// getDownwardPressure() and getUpwardPressure() make temporary changes to
// the the tracker, so we need to pass those function a non-const copy.
RegPressureTracker &TempTracker = const_cast<RegPressureTracker&>(RPTracker);
std::vector<unsigned> Pressure;
std::vector<unsigned> MaxPressure;
if (AtTop)
TempTracker.getDownwardPressure(SU->getInstr(), Pressure, MaxPressure);
else {
// FIXME: I think for bottom up scheduling, the register pressure is cached
// and can be retrieved by DAG->getPressureDif(SU).
TempTracker.getUpwardPressure(SU->getInstr(), Pressure, MaxPressure);
}
unsigned NewSGPRPressure = Pressure[SRI->getSGPRPressureSet()];
unsigned NewVGPRPressure = Pressure[SRI->getVGPRPressureSet()];
// If two instructions increase the pressure of different register sets
// by the same amount, the generic scheduler will prefer to schedule the
// instruction that increases the set with the least amount of registers,
// which in our case would be SGPRs. This is rarely what we want, so
// when we report excess/critical register pressure, we do it either
// only for VGPRs or only for SGPRs.
// FIXME: Better heuristics to determine whether to prefer SGPRs or VGPRs.
const unsigned MaxVGPRPressureInc = 16;
bool ShouldTrackVGPRs = VGPRPressure + MaxVGPRPressureInc >= VGPRExcessLimit;
bool ShouldTrackSGPRs = !ShouldTrackVGPRs && SGPRPressure >= SGPRExcessLimit;
// FIXME: We have to enter REG-EXCESS before we reach the actual threshold
// to increase the likelihood we don't go over the limits. We should improve
// the analysis to look through dependencies to find the path with the least
// register pressure.
// We only need to update the RPDelata for instructions that increase
// register pressure. Instructions that decrease or keep reg pressure
// the same will be marked as RegExcess in tryCandidate() when they
// are compared with instructions that increase the register pressure.
if (ShouldTrackVGPRs && NewVGPRPressure >= VGPRExcessLimit) {
Cand.RPDelta.Excess = PressureChange(SRI->getVGPRPressureSet());
Cand.RPDelta.Excess.setUnitInc(NewVGPRPressure - VGPRExcessLimit);
}
if (ShouldTrackSGPRs && NewSGPRPressure >= SGPRExcessLimit) {
Cand.RPDelta.Excess = PressureChange(SRI->getSGPRPressureSet());
Cand.RPDelta.Excess.setUnitInc(NewSGPRPressure - SGPRExcessLimit);
}
// Register pressure is considered 'CRITICAL' if it is approaching a value
// that would reduce the wave occupancy for the execution unit. When
// register pressure is 'CRITICAL', increading SGPR and VGPR pressure both
// has the same cost, so we don't need to prefer one over the other.
int SGPRDelta = NewSGPRPressure - SGPRCriticalLimit;
int VGPRDelta = NewVGPRPressure - VGPRCriticalLimit;
if (SGPRDelta >= 0 || VGPRDelta >= 0) {
if (SGPRDelta > VGPRDelta) {
Cand.RPDelta.CriticalMax = PressureChange(SRI->getSGPRPressureSet());
Cand.RPDelta.CriticalMax.setUnitInc(SGPRDelta);
} else {
Cand.RPDelta.CriticalMax = PressureChange(SRI->getVGPRPressureSet());
Cand.RPDelta.CriticalMax.setUnitInc(VGPRDelta);
}
}
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNodeFromQueue()
void GCNMaxOccupancySchedStrategy::pickNodeFromQueue(SchedBoundary &Zone,
const CandPolicy &ZonePolicy,
const RegPressureTracker &RPTracker,
SchedCandidate &Cand) {
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
ArrayRef<unsigned> Pressure = RPTracker.getRegSetPressureAtPos();
unsigned SGPRPressure = Pressure[SRI->getSGPRPressureSet()];
unsigned VGPRPressure = Pressure[SRI->getVGPRPressureSet()];
ReadyQueue &Q = Zone.Available;
for (SUnit *SU : Q) {
SchedCandidate TryCand(ZonePolicy);
initCandidate(TryCand, SU, Zone.isTop(), RPTracker, SRI,
SGPRPressure, VGPRPressure);
// Pass SchedBoundary only when comparing nodes from the same boundary.
SchedBoundary *ZoneArg = Cand.AtTop == TryCand.AtTop ? &Zone : nullptr;
GenericScheduler::tryCandidate(Cand, TryCand, ZoneArg);
if (TryCand.Reason != NoCand) {
// Initialize resource delta if needed in case future heuristics query it.
if (TryCand.ResDelta == SchedResourceDelta())
TryCand.initResourceDelta(Zone.DAG, SchedModel);
Cand.setBest(TryCand);
}
}
}
static int getBidirectionalReasonRank(GenericSchedulerBase::CandReason Reason) {
switch (Reason) {
default:
return Reason;
case GenericSchedulerBase::RegCritical:
case GenericSchedulerBase::RegExcess:
return -Reason;
}
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNodeBidirectional()
SUnit *GCNMaxOccupancySchedStrategy::pickNodeBidirectional(bool &IsTopNode) {
// Schedule as far as possible in the direction of no choice. This is most
// efficient, but also provides the best heuristics for CriticalPSets.
if (SUnit *SU = Bot.pickOnlyChoice()) {
IsTopNode = false;
return SU;
}
if (SUnit *SU = Top.pickOnlyChoice()) {
IsTopNode = true;
return SU;
}
// Set the bottom-up policy based on the state of the current bottom zone and
// the instructions outside the zone, including the top zone.
CandPolicy BotPolicy;
setPolicy(BotPolicy, /*IsPostRA=*/false, Bot, &Top);
// Set the top-down policy based on the state of the current top zone and
// the instructions outside the zone, including the bottom zone.
CandPolicy TopPolicy;
setPolicy(TopPolicy, /*IsPostRA=*/false, Top, &Bot);
// See if BotCand is still valid (because we previously scheduled from Top).
DEBUG(dbgs() << "Picking from Bot:\n");
if (!BotCand.isValid() || BotCand.SU->isScheduled ||
BotCand.Policy != BotPolicy) {
BotCand.reset(CandPolicy());
pickNodeFromQueue(Bot, BotPolicy, DAG->getBotRPTracker(), BotCand);
assert(BotCand.Reason != NoCand && "failed to find the first candidate");
} else {
DEBUG(traceCandidate(BotCand));
}
// Check if the top Q has a better candidate.
DEBUG(dbgs() << "Picking from Top:\n");
if (!TopCand.isValid() || TopCand.SU->isScheduled ||
TopCand.Policy != TopPolicy) {
TopCand.reset(CandPolicy());
pickNodeFromQueue(Top, TopPolicy, DAG->getTopRPTracker(), TopCand);
assert(TopCand.Reason != NoCand && "failed to find the first candidate");
} else {
DEBUG(traceCandidate(TopCand));
}
// Pick best from BotCand and TopCand.
DEBUG(
dbgs() << "Top Cand: ";
traceCandidate(TopCand);
dbgs() << "Bot Cand: ";
traceCandidate(BotCand);
);
SchedCandidate Cand;
if (TopCand.Reason == BotCand.Reason) {
Cand = BotCand;
GenericSchedulerBase::CandReason TopReason = TopCand.Reason;
TopCand.Reason = NoCand;
GenericScheduler::tryCandidate(Cand, TopCand, nullptr);
if (TopCand.Reason != NoCand) {
Cand.setBest(TopCand);
} else {
TopCand.Reason = TopReason;
}
} else {
if (TopCand.Reason == RegExcess && TopCand.RPDelta.Excess.getUnitInc() <= 0) {
Cand = TopCand;
} else if (BotCand.Reason == RegExcess && BotCand.RPDelta.Excess.getUnitInc() <= 0) {
Cand = BotCand;
} else if (TopCand.Reason == RegCritical && TopCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
Cand = TopCand;
} else if (BotCand.Reason == RegCritical && BotCand.RPDelta.CriticalMax.getUnitInc() <= 0) {
Cand = BotCand;
} else {
int TopRank = getBidirectionalReasonRank(TopCand.Reason);
int BotRank = getBidirectionalReasonRank(BotCand.Reason);
if (TopRank > BotRank) {
Cand = TopCand;
} else {
Cand = BotCand;
}
}
}
DEBUG(
dbgs() << "Picking: ";
traceCandidate(Cand);
);
IsTopNode = Cand.AtTop;
return Cand.SU;
}
// This function is mostly cut and pasted from
// GenericScheduler::pickNode()
SUnit *GCNMaxOccupancySchedStrategy::pickNode(bool &IsTopNode) {
if (DAG->top() == DAG->bottom()) {
assert(Top.Available.empty() && Top.Pending.empty() &&
Bot.Available.empty() && Bot.Pending.empty() && "ReadyQ garbage");
return nullptr;
}
SUnit *SU;
do {
if (RegionPolicy.OnlyTopDown) {
SU = Top.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
TopCand.reset(NoPolicy);
pickNodeFromQueue(Top, NoPolicy, DAG->getTopRPTracker(), TopCand);
assert(TopCand.Reason != NoCand && "failed to find a candidate");
SU = TopCand.SU;
}
IsTopNode = true;
} else if (RegionPolicy.OnlyBottomUp) {
SU = Bot.pickOnlyChoice();
if (!SU) {
CandPolicy NoPolicy;
BotCand.reset(NoPolicy);
pickNodeFromQueue(Bot, NoPolicy, DAG->getBotRPTracker(), BotCand);
assert(BotCand.Reason != NoCand && "failed to find a candidate");
SU = BotCand.SU;
}
IsTopNode = false;
} else {
SU = pickNodeBidirectional(IsTopNode);
}
} while (SU->isScheduled);
if (SU->isTopReady())
Top.removeReady(SU);
if (SU->isBottomReady())
Bot.removeReady(SU);
DEBUG(dbgs() << "Scheduling SU(" << SU->NodeNum << ") " << *SU->getInstr());
return SU;
}
void GCNScheduleDAGMILive::schedule() {
const SIRegisterInfo *SRI = static_cast<const SIRegisterInfo*>(TRI);
std::vector<MachineInstr*> Unsched;
Unsched.reserve(NumRegionInstrs);
for (auto &I : *this)
Unsched.push_back(&I);
ScheduleDAGMILive::schedule();
// Check the results of scheduling.
GCNMaxOccupancySchedStrategy &S = (GCNMaxOccupancySchedStrategy&)*SchedImpl;
std::vector<unsigned> UnschedPressure = getRegPressure().MaxSetPressure;
unsigned MaxSGPRs = std::max(
getTopRPTracker().getPressure().MaxSetPressure[SRI->getSGPRPressureSet()],
getBotRPTracker().getPressure().MaxSetPressure[SRI->getSGPRPressureSet()]);
unsigned MaxVGPRs = std::max(
getTopRPTracker().getPressure().MaxSetPressure[SRI->getVGPRPressureSet()],
getBotRPTracker().getPressure().MaxSetPressure[SRI->getVGPRPressureSet()]);
DEBUG(dbgs() << "Pressure after scheduling:\nSGPR = " << MaxSGPRs
<< "\nVGPR = " << MaxVGPRs << '\n');
if (MaxSGPRs <= S.SGPRCriticalLimit &&
MaxVGPRs <= S.VGPRCriticalLimit) {
DEBUG(dbgs() << "Pressure in desired limits, done.\n");
return;
}
unsigned WavesAfter = getMaxWaves(MaxSGPRs, MaxVGPRs, MF);
unsigned WavesUnsched = getMaxWaves(UnschedPressure[SRI->getSGPRPressureSet()],
UnschedPressure[SRI->getVGPRPressureSet()], MF);
DEBUG(dbgs() << "Occupancy before scheduling: " << WavesUnsched <<
", after " << WavesAfter << ".\n");
if (WavesAfter >= WavesUnsched)
return;
DEBUG(dbgs() << "Attempting to revert scheduling.\n");
RegionEnd = RegionBegin;
for (MachineInstr *MI : Unsched) {
if (MI->getIterator() != RegionEnd) {
BB->remove(MI);
BB->insert(RegionEnd, MI);
if (LIS) {
LIS->handleMove(*MI, true);
RegisterOperands RegOpers;
RegOpers.collect(*MI, *TRI, MRI, ShouldTrackLaneMasks, false);
if (ShouldTrackLaneMasks) {
// Adjust liveness and add missing dead+read-undef flags.
SlotIndex SlotIdx = LIS->getInstructionIndex(*MI).getRegSlot();
RegOpers.adjustLaneLiveness(*LIS, MRI, SlotIdx, MI);
} else {
// Adjust for missing dead-def flags.
RegOpers.detectDeadDefs(*MI, *LIS);
}
}
}
RegionEnd = MI->getIterator();
++RegionEnd;
DEBUG(dbgs() << "Scheduling " << *MI);
}
RegionBegin = Unsched.front()->getIterator();
placeDebugValues();
}