forked from OSchip/llvm-project
996 lines
35 KiB
C++
996 lines
35 KiB
C++
//===--- XRefs.cpp -----------------------------------------------*- C++-*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "XRefs.h"
|
|
#include "AST.h"
|
|
#include "FindSymbols.h"
|
|
#include "Logger.h"
|
|
#include "SourceCode.h"
|
|
#include "URI.h"
|
|
#include "index/Merge.h"
|
|
#include "index/SymbolCollector.h"
|
|
#include "index/SymbolLocation.h"
|
|
#include "clang/AST/DeclTemplate.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/Type.h"
|
|
#include "clang/Index/IndexDataConsumer.h"
|
|
#include "clang/Index/IndexSymbol.h"
|
|
#include "clang/Index/IndexingAction.h"
|
|
#include "clang/Index/USRGeneration.h"
|
|
#include "llvm/Support/Path.h"
|
|
|
|
namespace clang {
|
|
namespace clangd {
|
|
namespace {
|
|
|
|
// Returns the single definition of the entity declared by D, if visible.
|
|
// In particular:
|
|
// - for non-redeclarable kinds (e.g. local vars), return D
|
|
// - for kinds that allow multiple definitions (e.g. namespaces), return nullptr
|
|
// Kinds of nodes that always return nullptr here will not have definitions
|
|
// reported by locateSymbolAt().
|
|
const Decl *getDefinition(const Decl *D) {
|
|
assert(D);
|
|
// Decl has one definition that we can find.
|
|
if (const auto *TD = dyn_cast<TagDecl>(D))
|
|
return TD->getDefinition();
|
|
if (const auto *VD = dyn_cast<VarDecl>(D))
|
|
return VD->getDefinition();
|
|
if (const auto *FD = dyn_cast<FunctionDecl>(D))
|
|
return FD->getDefinition();
|
|
// Only a single declaration is allowed.
|
|
if (isa<ValueDecl>(D) || isa<TemplateTypeParmDecl>(D) ||
|
|
isa<TemplateTemplateParmDecl>(D)) // except cases above
|
|
return D;
|
|
// Multiple definitions are allowed.
|
|
return nullptr; // except cases above
|
|
}
|
|
|
|
void logIfOverflow(const SymbolLocation &Loc) {
|
|
if (Loc.Start.hasOverflow() || Loc.End.hasOverflow())
|
|
log("Possible overflow in symbol location: {0}", Loc);
|
|
}
|
|
|
|
// Convert a SymbolLocation to LSP's Location.
|
|
// TUPath is used to resolve the path of URI.
|
|
// FIXME: figure out a good home for it, and share the implementation with
|
|
// FindSymbols.
|
|
llvm::Optional<Location> toLSPLocation(const SymbolLocation &Loc,
|
|
llvm::StringRef TUPath) {
|
|
if (!Loc)
|
|
return None;
|
|
auto Uri = URI::parse(Loc.FileURI);
|
|
if (!Uri) {
|
|
elog("Could not parse URI {0}: {1}", Loc.FileURI, Uri.takeError());
|
|
return None;
|
|
}
|
|
auto U = URIForFile::fromURI(*Uri, TUPath);
|
|
if (!U) {
|
|
elog("Could not resolve URI {0}: {1}", Loc.FileURI, U.takeError());
|
|
return None;
|
|
}
|
|
|
|
Location LSPLoc;
|
|
LSPLoc.uri = std::move(*U);
|
|
LSPLoc.range.start.line = Loc.Start.line();
|
|
LSPLoc.range.start.character = Loc.Start.column();
|
|
LSPLoc.range.end.line = Loc.End.line();
|
|
LSPLoc.range.end.character = Loc.End.column();
|
|
logIfOverflow(Loc);
|
|
return LSPLoc;
|
|
}
|
|
|
|
SymbolLocation toIndexLocation(const Location &Loc, std::string &URIStorage) {
|
|
SymbolLocation SymLoc;
|
|
URIStorage = Loc.uri.uri();
|
|
SymLoc.FileURI = URIStorage.c_str();
|
|
SymLoc.Start.setLine(Loc.range.start.line);
|
|
SymLoc.Start.setColumn(Loc.range.start.character);
|
|
SymLoc.End.setLine(Loc.range.end.line);
|
|
SymLoc.End.setColumn(Loc.range.end.character);
|
|
return SymLoc;
|
|
}
|
|
|
|
// Returns the preferred location between an AST location and an index location.
|
|
SymbolLocation getPreferredLocation(const Location &ASTLoc,
|
|
const SymbolLocation &IdxLoc,
|
|
std::string &Scratch) {
|
|
// Also use a dummy symbol for the index location so that other fields (e.g.
|
|
// definition) are not factored into the preferrence.
|
|
Symbol ASTSym, IdxSym;
|
|
ASTSym.ID = IdxSym.ID = SymbolID("dummy_id");
|
|
ASTSym.CanonicalDeclaration = toIndexLocation(ASTLoc, Scratch);
|
|
IdxSym.CanonicalDeclaration = IdxLoc;
|
|
auto Merged = mergeSymbol(ASTSym, IdxSym);
|
|
return Merged.CanonicalDeclaration;
|
|
}
|
|
|
|
struct MacroDecl {
|
|
llvm::StringRef Name;
|
|
const MacroInfo *Info;
|
|
};
|
|
|
|
/// Finds declarations locations that a given source location refers to.
|
|
class DeclarationAndMacrosFinder : public index::IndexDataConsumer {
|
|
std::vector<MacroDecl> MacroInfos;
|
|
llvm::DenseSet<const Decl *> Decls;
|
|
const SourceLocation &SearchedLocation;
|
|
const ASTContext &AST;
|
|
Preprocessor &PP;
|
|
|
|
public:
|
|
DeclarationAndMacrosFinder(const SourceLocation &SearchedLocation,
|
|
ASTContext &AST, Preprocessor &PP)
|
|
: SearchedLocation(SearchedLocation), AST(AST), PP(PP) {}
|
|
|
|
// The results are sorted by declaration location.
|
|
std::vector<const Decl *> getFoundDecls() const {
|
|
std::vector<const Decl *> Result;
|
|
for (const Decl *D : Decls)
|
|
Result.push_back(D);
|
|
|
|
llvm::sort(Result, [](const Decl *L, const Decl *R) {
|
|
return L->getBeginLoc() < R->getBeginLoc();
|
|
});
|
|
return Result;
|
|
}
|
|
|
|
std::vector<MacroDecl> takeMacroInfos() {
|
|
// Don't keep the same Macro info multiple times.
|
|
llvm::sort(MacroInfos, [](const MacroDecl &Left, const MacroDecl &Right) {
|
|
return Left.Info < Right.Info;
|
|
});
|
|
|
|
auto Last = std::unique(MacroInfos.begin(), MacroInfos.end(),
|
|
[](const MacroDecl &Left, const MacroDecl &Right) {
|
|
return Left.Info == Right.Info;
|
|
});
|
|
MacroInfos.erase(Last, MacroInfos.end());
|
|
return std::move(MacroInfos);
|
|
}
|
|
|
|
bool
|
|
handleDeclOccurence(const Decl *D, index::SymbolRoleSet Roles,
|
|
llvm::ArrayRef<index::SymbolRelation> Relations,
|
|
SourceLocation Loc,
|
|
index::IndexDataConsumer::ASTNodeInfo ASTNode) override {
|
|
// Skip non-semantic references.
|
|
if (Roles & static_cast<unsigned>(index::SymbolRole::NameReference))
|
|
return true;
|
|
|
|
if (Loc == SearchedLocation) {
|
|
auto IsImplicitExpr = [](const Expr *E) {
|
|
if (!E)
|
|
return false;
|
|
// We assume that a constructor expression is implict (was inserted by
|
|
// clang) if it has an invalid paren/brace location, since such
|
|
// experssion is impossible to write down.
|
|
if (const auto *CtorExpr = dyn_cast<CXXConstructExpr>(E))
|
|
return CtorExpr->getParenOrBraceRange().isInvalid();
|
|
return isa<ImplicitCastExpr>(E);
|
|
};
|
|
|
|
if (IsImplicitExpr(ASTNode.OrigE))
|
|
return true;
|
|
// Find and add definition declarations (for GoToDefinition).
|
|
// We don't use parameter `D`, as Parameter `D` is the canonical
|
|
// declaration, which is the first declaration of a redeclarable
|
|
// declaration, and it could be a forward declaration.
|
|
if (const auto *Def = getDefinition(D)) {
|
|
Decls.insert(Def);
|
|
} else {
|
|
// Couldn't find a definition, fall back to use `D`.
|
|
Decls.insert(D);
|
|
}
|
|
}
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
void finish() override {
|
|
// Also handle possible macro at the searched location.
|
|
Token Result;
|
|
auto &Mgr = AST.getSourceManager();
|
|
if (!Lexer::getRawToken(Mgr.getSpellingLoc(SearchedLocation), Result, Mgr,
|
|
AST.getLangOpts(), false)) {
|
|
if (Result.is(tok::raw_identifier)) {
|
|
PP.LookUpIdentifierInfo(Result);
|
|
}
|
|
IdentifierInfo *IdentifierInfo = Result.getIdentifierInfo();
|
|
if (IdentifierInfo && IdentifierInfo->hadMacroDefinition()) {
|
|
std::pair<FileID, unsigned int> DecLoc =
|
|
Mgr.getDecomposedExpansionLoc(SearchedLocation);
|
|
// Get the definition just before the searched location so that a macro
|
|
// referenced in a '#undef MACRO' can still be found.
|
|
SourceLocation BeforeSearchedLocation = Mgr.getMacroArgExpandedLocation(
|
|
Mgr.getLocForStartOfFile(DecLoc.first)
|
|
.getLocWithOffset(DecLoc.second - 1));
|
|
MacroDefinition MacroDef =
|
|
PP.getMacroDefinitionAtLoc(IdentifierInfo, BeforeSearchedLocation);
|
|
MacroInfo *MacroInf = MacroDef.getMacroInfo();
|
|
if (MacroInf) {
|
|
MacroInfos.push_back(MacroDecl{IdentifierInfo->getName(), MacroInf});
|
|
assert(Decls.empty());
|
|
}
|
|
}
|
|
}
|
|
}
|
|
};
|
|
|
|
struct IdentifiedSymbol {
|
|
std::vector<const Decl *> Decls;
|
|
std::vector<MacroDecl> Macros;
|
|
};
|
|
|
|
IdentifiedSymbol getSymbolAtPosition(ParsedAST &AST, SourceLocation Pos) {
|
|
auto DeclMacrosFinder = DeclarationAndMacrosFinder(Pos, AST.getASTContext(),
|
|
AST.getPreprocessor());
|
|
index::IndexingOptions IndexOpts;
|
|
IndexOpts.SystemSymbolFilter =
|
|
index::IndexingOptions::SystemSymbolFilterKind::All;
|
|
IndexOpts.IndexFunctionLocals = true;
|
|
IndexOpts.IndexParametersInDeclarations = true;
|
|
IndexOpts.IndexTemplateParameters = true;
|
|
indexTopLevelDecls(AST.getASTContext(), AST.getPreprocessor(),
|
|
AST.getLocalTopLevelDecls(), DeclMacrosFinder, IndexOpts);
|
|
|
|
return {DeclMacrosFinder.getFoundDecls(), DeclMacrosFinder.takeMacroInfos()};
|
|
}
|
|
|
|
Range getTokenRange(ParsedAST &AST, SourceLocation TokLoc) {
|
|
const SourceManager &SourceMgr = AST.getASTContext().getSourceManager();
|
|
SourceLocation LocEnd = Lexer::getLocForEndOfToken(
|
|
TokLoc, 0, SourceMgr, AST.getASTContext().getLangOpts());
|
|
return {sourceLocToPosition(SourceMgr, TokLoc),
|
|
sourceLocToPosition(SourceMgr, LocEnd)};
|
|
}
|
|
|
|
llvm::Optional<Location> makeLocation(ParsedAST &AST, SourceLocation TokLoc,
|
|
llvm::StringRef TUPath) {
|
|
const SourceManager &SourceMgr = AST.getASTContext().getSourceManager();
|
|
const FileEntry *F = SourceMgr.getFileEntryForID(SourceMgr.getFileID(TokLoc));
|
|
if (!F)
|
|
return None;
|
|
auto FilePath = getCanonicalPath(F, SourceMgr);
|
|
if (!FilePath) {
|
|
log("failed to get path!");
|
|
return None;
|
|
}
|
|
Location L;
|
|
L.uri = URIForFile::canonicalize(*FilePath, TUPath);
|
|
L.range = getTokenRange(AST, TokLoc);
|
|
return L;
|
|
}
|
|
|
|
} // namespace
|
|
|
|
std::vector<LocatedSymbol> locateSymbolAt(ParsedAST &AST, Position Pos,
|
|
const SymbolIndex *Index) {
|
|
const auto &SM = AST.getASTContext().getSourceManager();
|
|
auto MainFilePath =
|
|
getCanonicalPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
|
|
if (!MainFilePath) {
|
|
elog("Failed to get a path for the main file, so no references");
|
|
return {};
|
|
}
|
|
|
|
// Treat #included files as symbols, to enable go-to-definition on them.
|
|
for (auto &Inc : AST.getIncludeStructure().MainFileIncludes) {
|
|
if (!Inc.Resolved.empty() && Inc.R.start.line == Pos.line) {
|
|
LocatedSymbol File;
|
|
File.Name = llvm::sys::path::filename(Inc.Resolved);
|
|
File.PreferredDeclaration = {
|
|
URIForFile::canonicalize(Inc.Resolved, *MainFilePath), Range{}};
|
|
File.Definition = File.PreferredDeclaration;
|
|
// We're not going to find any further symbols on #include lines.
|
|
return {std::move(File)};
|
|
}
|
|
}
|
|
|
|
SourceLocation SourceLocationBeg =
|
|
getBeginningOfIdentifier(AST, Pos, SM.getMainFileID());
|
|
auto Symbols = getSymbolAtPosition(AST, SourceLocationBeg);
|
|
|
|
// Macros are simple: there's no declaration/definition distinction.
|
|
// As a consequence, there's no need to look them up in the index either.
|
|
std::vector<LocatedSymbol> Result;
|
|
for (auto M : Symbols.Macros) {
|
|
if (auto Loc =
|
|
makeLocation(AST, M.Info->getDefinitionLoc(), *MainFilePath)) {
|
|
LocatedSymbol Macro;
|
|
Macro.Name = M.Name;
|
|
Macro.PreferredDeclaration = *Loc;
|
|
Macro.Definition = Loc;
|
|
Result.push_back(std::move(Macro));
|
|
}
|
|
}
|
|
|
|
// Decls are more complicated.
|
|
// The AST contains at least a declaration, maybe a definition.
|
|
// These are up-to-date, and so generally preferred over index results.
|
|
// We perform a single batch index lookup to find additional definitions.
|
|
|
|
// Results follow the order of Symbols.Decls.
|
|
// Keep track of SymbolID -> index mapping, to fill in index data later.
|
|
llvm::DenseMap<SymbolID, size_t> ResultIndex;
|
|
|
|
// Emit all symbol locations (declaration or definition) from AST.
|
|
for (const Decl *D : Symbols.Decls) {
|
|
auto Loc = makeLocation(AST, findNameLoc(D), *MainFilePath);
|
|
if (!Loc)
|
|
continue;
|
|
|
|
Result.emplace_back();
|
|
if (auto *ND = dyn_cast<NamedDecl>(D))
|
|
Result.back().Name = printName(AST.getASTContext(), *ND);
|
|
Result.back().PreferredDeclaration = *Loc;
|
|
// DeclInfo.D is always a definition if possible, so this check works.
|
|
if (getDefinition(D) == D)
|
|
Result.back().Definition = *Loc;
|
|
|
|
// Record SymbolID for index lookup later.
|
|
if (auto ID = getSymbolID(D))
|
|
ResultIndex[*ID] = Result.size() - 1;
|
|
}
|
|
|
|
// Now query the index for all Symbol IDs we found in the AST.
|
|
if (Index && !ResultIndex.empty()) {
|
|
LookupRequest QueryRequest;
|
|
for (auto It : ResultIndex)
|
|
QueryRequest.IDs.insert(It.first);
|
|
std::string Scratch;
|
|
Index->lookup(QueryRequest, [&](const Symbol &Sym) {
|
|
auto &R = Result[ResultIndex.lookup(Sym.ID)];
|
|
|
|
if (R.Definition) { // from AST
|
|
// Special case: if the AST yielded a definition, then it may not be
|
|
// the right *declaration*. Prefer the one from the index.
|
|
if (auto Loc = toLSPLocation(Sym.CanonicalDeclaration, *MainFilePath))
|
|
R.PreferredDeclaration = *Loc;
|
|
|
|
// We might still prefer the definition from the index, e.g. for
|
|
// generated symbols.
|
|
if (auto Loc = toLSPLocation(
|
|
getPreferredLocation(*R.Definition, Sym.Definition, Scratch),
|
|
*MainFilePath))
|
|
R.Definition = *Loc;
|
|
} else {
|
|
R.Definition = toLSPLocation(Sym.Definition, *MainFilePath);
|
|
|
|
// Use merge logic to choose AST or index declaration.
|
|
if (auto Loc = toLSPLocation(
|
|
getPreferredLocation(R.PreferredDeclaration,
|
|
Sym.CanonicalDeclaration, Scratch),
|
|
*MainFilePath))
|
|
R.PreferredDeclaration = *Loc;
|
|
}
|
|
});
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
namespace {
|
|
|
|
/// Collects references to symbols within the main file.
|
|
class ReferenceFinder : public index::IndexDataConsumer {
|
|
public:
|
|
struct Reference {
|
|
const Decl *CanonicalTarget;
|
|
SourceLocation Loc;
|
|
index::SymbolRoleSet Role;
|
|
};
|
|
|
|
ReferenceFinder(ASTContext &AST, Preprocessor &PP,
|
|
const std::vector<const Decl *> &TargetDecls)
|
|
: AST(AST) {
|
|
for (const Decl *D : TargetDecls)
|
|
CanonicalTargets.insert(D->getCanonicalDecl());
|
|
}
|
|
|
|
std::vector<Reference> take() && {
|
|
llvm::sort(References, [](const Reference &L, const Reference &R) {
|
|
return std::tie(L.Loc, L.CanonicalTarget, L.Role) <
|
|
std::tie(R.Loc, R.CanonicalTarget, R.Role);
|
|
});
|
|
// We sometimes see duplicates when parts of the AST get traversed twice.
|
|
References.erase(
|
|
std::unique(References.begin(), References.end(),
|
|
[](const Reference &L, const Reference &R) {
|
|
return std::tie(L.CanonicalTarget, L.Loc, L.Role) ==
|
|
std::tie(R.CanonicalTarget, R.Loc, R.Role);
|
|
}),
|
|
References.end());
|
|
return std::move(References);
|
|
}
|
|
|
|
bool
|
|
handleDeclOccurence(const Decl *D, index::SymbolRoleSet Roles,
|
|
llvm::ArrayRef<index::SymbolRelation> Relations,
|
|
SourceLocation Loc,
|
|
index::IndexDataConsumer::ASTNodeInfo ASTNode) override {
|
|
assert(D->isCanonicalDecl() && "expect D to be a canonical declaration");
|
|
const SourceManager &SM = AST.getSourceManager();
|
|
Loc = SM.getFileLoc(Loc);
|
|
if (SM.isWrittenInMainFile(Loc) && CanonicalTargets.count(D))
|
|
References.push_back({D, Loc, Roles});
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
llvm::SmallSet<const Decl *, 4> CanonicalTargets;
|
|
std::vector<Reference> References;
|
|
const ASTContext &AST;
|
|
};
|
|
|
|
std::vector<ReferenceFinder::Reference>
|
|
findRefs(const std::vector<const Decl *> &Decls, ParsedAST &AST) {
|
|
ReferenceFinder RefFinder(AST.getASTContext(), AST.getPreprocessor(), Decls);
|
|
index::IndexingOptions IndexOpts;
|
|
IndexOpts.SystemSymbolFilter =
|
|
index::IndexingOptions::SystemSymbolFilterKind::All;
|
|
IndexOpts.IndexFunctionLocals = true;
|
|
IndexOpts.IndexParametersInDeclarations = true;
|
|
IndexOpts.IndexTemplateParameters = true;
|
|
indexTopLevelDecls(AST.getASTContext(), AST.getPreprocessor(),
|
|
AST.getLocalTopLevelDecls(), RefFinder, IndexOpts);
|
|
return std::move(RefFinder).take();
|
|
}
|
|
|
|
} // namespace
|
|
|
|
std::vector<DocumentHighlight> findDocumentHighlights(ParsedAST &AST,
|
|
Position Pos) {
|
|
const SourceManager &SM = AST.getASTContext().getSourceManager();
|
|
auto Symbols = getSymbolAtPosition(
|
|
AST, getBeginningOfIdentifier(AST, Pos, SM.getMainFileID()));
|
|
auto References = findRefs(Symbols.Decls, AST);
|
|
|
|
std::vector<DocumentHighlight> Result;
|
|
for (const auto &Ref : References) {
|
|
DocumentHighlight DH;
|
|
DH.range = getTokenRange(AST, Ref.Loc);
|
|
if (Ref.Role & index::SymbolRoleSet(index::SymbolRole::Write))
|
|
DH.kind = DocumentHighlightKind::Write;
|
|
else if (Ref.Role & index::SymbolRoleSet(index::SymbolRole::Read))
|
|
DH.kind = DocumentHighlightKind::Read;
|
|
else
|
|
DH.kind = DocumentHighlightKind::Text;
|
|
Result.push_back(std::move(DH));
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
static PrintingPolicy printingPolicyForDecls(PrintingPolicy Base) {
|
|
PrintingPolicy Policy(Base);
|
|
|
|
Policy.AnonymousTagLocations = false;
|
|
Policy.TerseOutput = true;
|
|
Policy.PolishForDeclaration = true;
|
|
Policy.ConstantsAsWritten = true;
|
|
Policy.SuppressTagKeyword = false;
|
|
|
|
return Policy;
|
|
}
|
|
|
|
/// Return a string representation (e.g. "class MyNamespace::MyClass") of
|
|
/// the type declaration \p TD.
|
|
static std::string typeDeclToString(const TypeDecl *TD) {
|
|
QualType Type = TD->getASTContext().getTypeDeclType(TD);
|
|
|
|
PrintingPolicy Policy =
|
|
printingPolicyForDecls(TD->getASTContext().getPrintingPolicy());
|
|
|
|
std::string Name;
|
|
llvm::raw_string_ostream Stream(Name);
|
|
Type.print(Stream, Policy);
|
|
|
|
return Stream.str();
|
|
}
|
|
|
|
/// Return a string representation (e.g. "namespace ns1::ns2") of
|
|
/// the named declaration \p ND.
|
|
static std::string namedDeclQualifiedName(const NamedDecl *ND,
|
|
llvm::StringRef Prefix) {
|
|
PrintingPolicy Policy =
|
|
printingPolicyForDecls(ND->getASTContext().getPrintingPolicy());
|
|
|
|
std::string Name;
|
|
llvm::raw_string_ostream Stream(Name);
|
|
Stream << Prefix << ' ';
|
|
ND->printQualifiedName(Stream, Policy);
|
|
|
|
return Stream.str();
|
|
}
|
|
|
|
/// Given a declaration \p D, return a human-readable string representing the
|
|
/// scope in which it is declared. If the declaration is in the global scope,
|
|
/// return the string "global namespace".
|
|
static llvm::Optional<std::string> getScopeName(const Decl *D) {
|
|
const DeclContext *DC = D->getDeclContext();
|
|
|
|
if (isa<TranslationUnitDecl>(DC))
|
|
return std::string("global namespace");
|
|
if (const TypeDecl *TD = dyn_cast<TypeDecl>(DC))
|
|
return typeDeclToString(TD);
|
|
else if (const NamespaceDecl *ND = dyn_cast<NamespaceDecl>(DC))
|
|
return namedDeclQualifiedName(ND, "namespace");
|
|
else if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(DC))
|
|
return namedDeclQualifiedName(FD, "function");
|
|
|
|
return None;
|
|
}
|
|
|
|
/// Generate a \p Hover object given the declaration \p D.
|
|
static Hover getHoverContents(const Decl *D) {
|
|
Hover H;
|
|
llvm::Optional<std::string> NamedScope = getScopeName(D);
|
|
|
|
// Generate the "Declared in" section.
|
|
if (NamedScope) {
|
|
assert(!NamedScope->empty());
|
|
|
|
H.contents.value += "Declared in ";
|
|
H.contents.value += *NamedScope;
|
|
H.contents.value += "\n\n";
|
|
}
|
|
|
|
// We want to include the template in the Hover.
|
|
if (TemplateDecl *TD = D->getDescribedTemplate())
|
|
D = TD;
|
|
|
|
std::string DeclText;
|
|
llvm::raw_string_ostream OS(DeclText);
|
|
|
|
PrintingPolicy Policy =
|
|
printingPolicyForDecls(D->getASTContext().getPrintingPolicy());
|
|
|
|
D->print(OS, Policy);
|
|
|
|
OS.flush();
|
|
|
|
H.contents.value += DeclText;
|
|
return H;
|
|
}
|
|
|
|
/// Generate a \p Hover object given the type \p T.
|
|
static Hover getHoverContents(QualType T, ASTContext &ASTCtx) {
|
|
Hover H;
|
|
std::string TypeText;
|
|
llvm::raw_string_ostream OS(TypeText);
|
|
PrintingPolicy Policy = printingPolicyForDecls(ASTCtx.getPrintingPolicy());
|
|
T.print(OS, Policy);
|
|
OS.flush();
|
|
H.contents.value += TypeText;
|
|
return H;
|
|
}
|
|
|
|
/// Generate a \p Hover object given the macro \p MacroDecl.
|
|
static Hover getHoverContents(MacroDecl Decl, ParsedAST &AST) {
|
|
SourceManager &SM = AST.getASTContext().getSourceManager();
|
|
std::string Definition = Decl.Name;
|
|
|
|
// Try to get the full definition, not just the name
|
|
SourceLocation StartLoc = Decl.Info->getDefinitionLoc();
|
|
SourceLocation EndLoc = Decl.Info->getDefinitionEndLoc();
|
|
if (EndLoc.isValid()) {
|
|
EndLoc = Lexer::getLocForEndOfToken(EndLoc, 0, SM,
|
|
AST.getASTContext().getLangOpts());
|
|
bool Invalid;
|
|
StringRef Buffer = SM.getBufferData(SM.getFileID(StartLoc), &Invalid);
|
|
if (!Invalid) {
|
|
unsigned StartOffset = SM.getFileOffset(StartLoc);
|
|
unsigned EndOffset = SM.getFileOffset(EndLoc);
|
|
if (EndOffset <= Buffer.size() && StartOffset < EndOffset)
|
|
Definition = Buffer.substr(StartOffset, EndOffset - StartOffset).str();
|
|
}
|
|
}
|
|
|
|
Hover H;
|
|
H.contents.kind = MarkupKind::PlainText;
|
|
H.contents.value = "#define " + Definition;
|
|
return H;
|
|
}
|
|
|
|
namespace {
|
|
/// Computes the deduced type at a given location by visiting the relevant
|
|
/// nodes. We use this to display the actual type when hovering over an "auto"
|
|
/// keyword or "decltype()" expression.
|
|
/// FIXME: This could have been a lot simpler by visiting AutoTypeLocs but it
|
|
/// seems that the AutoTypeLocs that can be visited along with their AutoType do
|
|
/// not have the deduced type set. Instead, we have to go to the appropriate
|
|
/// DeclaratorDecl/FunctionDecl and work our back to the AutoType that does have
|
|
/// a deduced type set. The AST should be improved to simplify this scenario.
|
|
class DeducedTypeVisitor : public RecursiveASTVisitor<DeducedTypeVisitor> {
|
|
SourceLocation SearchedLocation;
|
|
llvm::Optional<QualType> DeducedType;
|
|
|
|
public:
|
|
DeducedTypeVisitor(SourceLocation SearchedLocation)
|
|
: SearchedLocation(SearchedLocation) {}
|
|
|
|
llvm::Optional<QualType> getDeducedType() { return DeducedType; }
|
|
|
|
// Handle auto initializers:
|
|
//- auto i = 1;
|
|
//- decltype(auto) i = 1;
|
|
//- auto& i = 1;
|
|
//- auto* i = &a;
|
|
bool VisitDeclaratorDecl(DeclaratorDecl *D) {
|
|
if (!D->getTypeSourceInfo() ||
|
|
D->getTypeSourceInfo()->getTypeLoc().getBeginLoc() != SearchedLocation)
|
|
return true;
|
|
|
|
if (auto *AT = D->getType()->getContainedAutoType()) {
|
|
if (!AT->getDeducedType().isNull())
|
|
DeducedType = AT->getDeducedType();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Handle auto return types:
|
|
//- auto foo() {}
|
|
//- auto& foo() {}
|
|
//- auto foo() -> int {}
|
|
//- auto foo() -> decltype(1+1) {}
|
|
//- operator auto() const { return 10; }
|
|
bool VisitFunctionDecl(FunctionDecl *D) {
|
|
if (!D->getTypeSourceInfo())
|
|
return true;
|
|
// Loc of auto in return type (c++14).
|
|
auto CurLoc = D->getReturnTypeSourceRange().getBegin();
|
|
// Loc of "auto" in operator auto()
|
|
if (CurLoc.isInvalid() && dyn_cast<CXXConversionDecl>(D))
|
|
CurLoc = D->getTypeSourceInfo()->getTypeLoc().getBeginLoc();
|
|
// Loc of "auto" in function with traling return type (c++11).
|
|
if (CurLoc.isInvalid())
|
|
CurLoc = D->getSourceRange().getBegin();
|
|
if (CurLoc != SearchedLocation)
|
|
return true;
|
|
|
|
const AutoType *AT = D->getReturnType()->getContainedAutoType();
|
|
if (AT && !AT->getDeducedType().isNull()) {
|
|
DeducedType = AT->getDeducedType();
|
|
} else if (auto DT = dyn_cast<DecltypeType>(D->getReturnType())) {
|
|
// auto in a trailing return type just points to a DecltypeType and
|
|
// getContainedAutoType does not unwrap it.
|
|
if (!DT->getUnderlyingType().isNull())
|
|
DeducedType = DT->getUnderlyingType();
|
|
} else if (!D->getReturnType().isNull()) {
|
|
DeducedType = D->getReturnType();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
// Handle non-auto decltype, e.g.:
|
|
// - auto foo() -> decltype(expr) {}
|
|
// - decltype(expr);
|
|
bool VisitDecltypeTypeLoc(DecltypeTypeLoc TL) {
|
|
if (TL.getBeginLoc() != SearchedLocation)
|
|
return true;
|
|
|
|
// A DecltypeType's underlying type can be another DecltypeType! E.g.
|
|
// int I = 0;
|
|
// decltype(I) J = I;
|
|
// decltype(J) K = J;
|
|
const DecltypeType *DT = dyn_cast<DecltypeType>(TL.getTypePtr());
|
|
while (DT && !DT->getUnderlyingType().isNull()) {
|
|
DeducedType = DT->getUnderlyingType();
|
|
DT = dyn_cast<DecltypeType>(DeducedType->getTypePtr());
|
|
}
|
|
return true;
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// Retrieves the deduced type at a given location (auto, decltype).
|
|
llvm::Optional<QualType> getDeducedType(ParsedAST &AST,
|
|
SourceLocation SourceLocationBeg) {
|
|
Token Tok;
|
|
auto &ASTCtx = AST.getASTContext();
|
|
// Only try to find a deduced type if the token is auto or decltype.
|
|
if (!SourceLocationBeg.isValid() ||
|
|
Lexer::getRawToken(SourceLocationBeg, Tok, ASTCtx.getSourceManager(),
|
|
ASTCtx.getLangOpts(), false) ||
|
|
!Tok.is(tok::raw_identifier)) {
|
|
return {};
|
|
}
|
|
AST.getPreprocessor().LookUpIdentifierInfo(Tok);
|
|
if (!(Tok.is(tok::kw_auto) || Tok.is(tok::kw_decltype)))
|
|
return {};
|
|
|
|
DeducedTypeVisitor V(SourceLocationBeg);
|
|
V.TraverseAST(AST.getASTContext());
|
|
return V.getDeducedType();
|
|
}
|
|
|
|
llvm::Optional<Hover> getHover(ParsedAST &AST, Position Pos) {
|
|
const SourceManager &SourceMgr = AST.getASTContext().getSourceManager();
|
|
SourceLocation SourceLocationBeg =
|
|
getBeginningOfIdentifier(AST, Pos, SourceMgr.getMainFileID());
|
|
// Identified symbols at a specific position.
|
|
auto Symbols = getSymbolAtPosition(AST, SourceLocationBeg);
|
|
|
|
if (!Symbols.Macros.empty())
|
|
return getHoverContents(Symbols.Macros[0], AST);
|
|
|
|
if (!Symbols.Decls.empty())
|
|
return getHoverContents(Symbols.Decls[0]);
|
|
|
|
auto DeducedType = getDeducedType(AST, SourceLocationBeg);
|
|
if (DeducedType && !DeducedType->isNull())
|
|
return getHoverContents(*DeducedType, AST.getASTContext());
|
|
|
|
return None;
|
|
}
|
|
|
|
std::vector<Location> findReferences(ParsedAST &AST, Position Pos,
|
|
uint32_t Limit, const SymbolIndex *Index) {
|
|
if (!Limit)
|
|
Limit = std::numeric_limits<uint32_t>::max();
|
|
std::vector<Location> Results;
|
|
const SourceManager &SM = AST.getASTContext().getSourceManager();
|
|
auto MainFilePath =
|
|
getCanonicalPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
|
|
if (!MainFilePath) {
|
|
elog("Failed to get a path for the main file, so no references");
|
|
return Results;
|
|
}
|
|
auto Loc = getBeginningOfIdentifier(AST, Pos, SM.getMainFileID());
|
|
auto Symbols = getSymbolAtPosition(AST, Loc);
|
|
|
|
// We traverse the AST to find references in the main file.
|
|
// TODO: should we handle macros, too?
|
|
auto MainFileRefs = findRefs(Symbols.Decls, AST);
|
|
for (const auto &Ref : MainFileRefs) {
|
|
Location Result;
|
|
Result.range = getTokenRange(AST, Ref.Loc);
|
|
Result.uri = URIForFile::canonicalize(*MainFilePath, *MainFilePath);
|
|
Results.push_back(std::move(Result));
|
|
}
|
|
|
|
// Now query the index for references from other files.
|
|
if (Index && Results.size() < Limit) {
|
|
RefsRequest Req;
|
|
Req.Limit = Limit;
|
|
|
|
for (const Decl *D : Symbols.Decls) {
|
|
// Not all symbols can be referenced from outside (e.g. function-locals).
|
|
// TODO: we could skip TU-scoped symbols here (e.g. static functions) if
|
|
// we know this file isn't a header. The details might be tricky.
|
|
if (D->getParentFunctionOrMethod())
|
|
continue;
|
|
if (auto ID = getSymbolID(D))
|
|
Req.IDs.insert(*ID);
|
|
}
|
|
if (Req.IDs.empty())
|
|
return Results;
|
|
Index->refs(Req, [&](const Ref &R) {
|
|
auto LSPLoc = toLSPLocation(R.Location, *MainFilePath);
|
|
// Avoid indexed results for the main file - the AST is authoritative.
|
|
if (LSPLoc && LSPLoc->uri.file() != *MainFilePath)
|
|
Results.push_back(std::move(*LSPLoc));
|
|
});
|
|
}
|
|
if (Results.size() > Limit)
|
|
Results.resize(Limit);
|
|
return Results;
|
|
}
|
|
|
|
std::vector<SymbolDetails> getSymbolInfo(ParsedAST &AST, Position Pos) {
|
|
const SourceManager &SM = AST.getASTContext().getSourceManager();
|
|
|
|
auto Loc = getBeginningOfIdentifier(AST, Pos, SM.getMainFileID());
|
|
auto Symbols = getSymbolAtPosition(AST, Loc);
|
|
|
|
std::vector<SymbolDetails> Results;
|
|
|
|
for (const Decl *D : Symbols.Decls) {
|
|
SymbolDetails NewSymbol;
|
|
if (const NamedDecl *ND = dyn_cast<NamedDecl>(D)) {
|
|
std::string QName = printQualifiedName(*ND);
|
|
std::tie(NewSymbol.containerName, NewSymbol.name) =
|
|
splitQualifiedName(QName);
|
|
|
|
if (NewSymbol.containerName.empty()) {
|
|
if (const auto *ParentND =
|
|
dyn_cast_or_null<NamedDecl>(ND->getDeclContext()))
|
|
NewSymbol.containerName = printQualifiedName(*ParentND);
|
|
}
|
|
}
|
|
llvm::SmallString<32> USR;
|
|
if (!index::generateUSRForDecl(D, USR)) {
|
|
NewSymbol.USR = USR.str();
|
|
NewSymbol.ID = SymbolID(NewSymbol.USR);
|
|
}
|
|
Results.push_back(std::move(NewSymbol));
|
|
}
|
|
|
|
for (const auto &Macro : Symbols.Macros) {
|
|
SymbolDetails NewMacro;
|
|
NewMacro.name = Macro.Name;
|
|
llvm::SmallString<32> USR;
|
|
if (!index::generateUSRForMacro(NewMacro.name,
|
|
Macro.Info->getDefinitionLoc(), SM, USR)) {
|
|
NewMacro.USR = USR.str();
|
|
NewMacro.ID = SymbolID(NewMacro.USR);
|
|
}
|
|
Results.push_back(std::move(NewMacro));
|
|
}
|
|
|
|
return Results;
|
|
}
|
|
|
|
llvm::raw_ostream &operator<<(llvm::raw_ostream &OS, const LocatedSymbol &S) {
|
|
OS << S.Name << ": " << S.PreferredDeclaration;
|
|
if (S.Definition)
|
|
OS << " def=" << *S.Definition;
|
|
return OS;
|
|
}
|
|
|
|
// FIXME(nridge): Reduce duplication between this function and declToSym().
|
|
static llvm::Optional<TypeHierarchyItem>
|
|
declToTypeHierarchyItem(ASTContext &Ctx, const NamedDecl &ND) {
|
|
auto &SM = Ctx.getSourceManager();
|
|
|
|
SourceLocation NameLoc = findNameLoc(&ND);
|
|
// getFileLoc is a good choice for us, but we also need to make sure
|
|
// sourceLocToPosition won't switch files, so we call getSpellingLoc on top of
|
|
// that to make sure it does not switch files.
|
|
// FIXME: sourceLocToPosition should not switch files!
|
|
SourceLocation BeginLoc = SM.getSpellingLoc(SM.getFileLoc(ND.getBeginLoc()));
|
|
SourceLocation EndLoc = SM.getSpellingLoc(SM.getFileLoc(ND.getEndLoc()));
|
|
if (NameLoc.isInvalid() || BeginLoc.isInvalid() || EndLoc.isInvalid())
|
|
return llvm::None;
|
|
|
|
Position NameBegin = sourceLocToPosition(SM, NameLoc);
|
|
Position NameEnd = sourceLocToPosition(
|
|
SM, Lexer::getLocForEndOfToken(NameLoc, 0, SM, Ctx.getLangOpts()));
|
|
|
|
index::SymbolInfo SymInfo = index::getSymbolInfo(&ND);
|
|
// FIXME: this is not classifying constructors, destructors and operators
|
|
// correctly (they're all "methods").
|
|
SymbolKind SK = indexSymbolKindToSymbolKind(SymInfo.Kind);
|
|
|
|
TypeHierarchyItem THI;
|
|
THI.name = printName(Ctx, ND);
|
|
THI.kind = SK;
|
|
THI.deprecated = ND.isDeprecated();
|
|
THI.range =
|
|
Range{sourceLocToPosition(SM, BeginLoc), sourceLocToPosition(SM, EndLoc)};
|
|
THI.selectionRange = Range{NameBegin, NameEnd};
|
|
if (!THI.range.contains(THI.selectionRange)) {
|
|
// 'selectionRange' must be contained in 'range', so in cases where clang
|
|
// reports unrelated ranges we need to reconcile somehow.
|
|
THI.range = THI.selectionRange;
|
|
}
|
|
|
|
auto FilePath =
|
|
getCanonicalPath(SM.getFileEntryForID(SM.getFileID(BeginLoc)), SM);
|
|
auto TUPath = getCanonicalPath(SM.getFileEntryForID(SM.getMainFileID()), SM);
|
|
if (!FilePath || !TUPath)
|
|
return llvm::None; // Not useful without a uri.
|
|
THI.uri = URIForFile::canonicalize(*FilePath, *TUPath);
|
|
|
|
return THI;
|
|
}
|
|
|
|
using RecursionProtectionSet = llvm::SmallSet<const CXXRecordDecl *, 4>;
|
|
|
|
static Optional<TypeHierarchyItem>
|
|
getTypeAncestors(const CXXRecordDecl &CXXRD, ASTContext &ASTCtx,
|
|
RecursionProtectionSet &RPSet) {
|
|
Optional<TypeHierarchyItem> Result = declToTypeHierarchyItem(ASTCtx, CXXRD);
|
|
if (!Result)
|
|
return Result;
|
|
|
|
Result->parents.emplace();
|
|
|
|
// typeParents() will replace dependent template specializations
|
|
// with their class template, so to avoid infinite recursion for
|
|
// certain types of hierarchies, keep the templates encountered
|
|
// along the parent chain in a set, and stop the recursion if one
|
|
// starts to repeat.
|
|
auto *Pattern = CXXRD.getDescribedTemplate() ? &CXXRD : nullptr;
|
|
if (Pattern) {
|
|
if (!RPSet.insert(Pattern).second) {
|
|
return Result;
|
|
}
|
|
}
|
|
|
|
for (const CXXRecordDecl *ParentDecl : typeParents(&CXXRD)) {
|
|
if (Optional<TypeHierarchyItem> ParentSym =
|
|
getTypeAncestors(*ParentDecl, ASTCtx, RPSet)) {
|
|
Result->parents->emplace_back(std::move(*ParentSym));
|
|
}
|
|
}
|
|
|
|
if (Pattern) {
|
|
RPSet.erase(Pattern);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
const CXXRecordDecl *findRecordTypeAt(ParsedAST &AST, Position Pos) {
|
|
ASTContext &ASTCtx = AST.getASTContext();
|
|
const SourceManager &SourceMgr = ASTCtx.getSourceManager();
|
|
SourceLocation SourceLocationBeg =
|
|
getBeginningOfIdentifier(AST, Pos, SourceMgr.getMainFileID());
|
|
IdentifiedSymbol Symbols = getSymbolAtPosition(AST, SourceLocationBeg);
|
|
if (Symbols.Decls.empty())
|
|
return nullptr;
|
|
|
|
const Decl *D = Symbols.Decls[0];
|
|
|
|
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
|
|
// If this is a variable, use the type of the variable.
|
|
return VD->getType().getTypePtr()->getAsCXXRecordDecl();
|
|
}
|
|
|
|
if (const CXXMethodDecl *Method = dyn_cast<CXXMethodDecl>(D)) {
|
|
// If this is a method, use the type of the class.
|
|
return Method->getParent();
|
|
}
|
|
|
|
// We don't handle FieldDecl because it's not clear what behaviour
|
|
// the user would expect: the enclosing class type (as with a
|
|
// method), or the field's type (as with a variable).
|
|
|
|
return dyn_cast<CXXRecordDecl>(D);
|
|
}
|
|
|
|
std::vector<const CXXRecordDecl *> typeParents(const CXXRecordDecl *CXXRD) {
|
|
std::vector<const CXXRecordDecl *> Result;
|
|
|
|
for (auto Base : CXXRD->bases()) {
|
|
const CXXRecordDecl *ParentDecl = nullptr;
|
|
|
|
const Type *Type = Base.getType().getTypePtr();
|
|
if (const RecordType *RT = Type->getAs<RecordType>()) {
|
|
ParentDecl = RT->getAsCXXRecordDecl();
|
|
}
|
|
|
|
if (!ParentDecl) {
|
|
// Handle a dependent base such as "Base<T>" by using the primary
|
|
// template.
|
|
if (const TemplateSpecializationType *TS =
|
|
Type->getAs<TemplateSpecializationType>()) {
|
|
TemplateName TN = TS->getTemplateName();
|
|
if (TemplateDecl *TD = TN.getAsTemplateDecl()) {
|
|
ParentDecl = dyn_cast<CXXRecordDecl>(TD->getTemplatedDecl());
|
|
}
|
|
}
|
|
}
|
|
|
|
if (ParentDecl)
|
|
Result.push_back(ParentDecl);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
llvm::Optional<TypeHierarchyItem>
|
|
getTypeHierarchy(ParsedAST &AST, Position Pos, int ResolveLevels,
|
|
TypeHierarchyDirection Direction) {
|
|
const CXXRecordDecl *CXXRD = findRecordTypeAt(AST, Pos);
|
|
if (!CXXRD)
|
|
return llvm::None;
|
|
|
|
RecursionProtectionSet RPSet;
|
|
Optional<TypeHierarchyItem> Result =
|
|
getTypeAncestors(*CXXRD, AST.getASTContext(), RPSet);
|
|
|
|
// FIXME(nridge): Resolve type descendants if direction is Children or Both,
|
|
// and ResolveLevels > 0.
|
|
|
|
return Result;
|
|
}
|
|
|
|
} // namespace clangd
|
|
} // namespace clang
|