forked from OSchip/llvm-project
1068 lines
33 KiB
C
1068 lines
33 KiB
C
/*
|
|
* Copyright 2011 INRIA Saclay
|
|
* Copyright 2013 Ecole Normale Superieure
|
|
* Copyright 2015 Sven Verdoolaege
|
|
*
|
|
* Use of this software is governed by the MIT license
|
|
*
|
|
* Written by Sven Verdoolaege, INRIA Saclay - Ile-de-France,
|
|
* Parc Club Orsay Universite, ZAC des vignes, 4 rue Jacques Monod,
|
|
* 91893 Orsay, France
|
|
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
|
|
*/
|
|
|
|
#include <assert.h>
|
|
#include <stdio.h>
|
|
#include <stdlib.h>
|
|
#include <string.h>
|
|
#include <isl/ctx.h>
|
|
#include <isl/id.h>
|
|
#include <isl/val.h>
|
|
#include <isl/set.h>
|
|
#include <isl/union_set.h>
|
|
#include <isl/union_map.h>
|
|
#include <isl/aff.h>
|
|
#include <isl/flow.h>
|
|
#include <isl/options.h>
|
|
#include <isl/schedule.h>
|
|
#include <isl/ast.h>
|
|
#include <isl/id_to_ast_expr.h>
|
|
#include <isl/ast_build.h>
|
|
#include <isl/schedule.h>
|
|
#include <pet.h>
|
|
#include "ppcg.h"
|
|
#include "ppcg_options.h"
|
|
#include "cuda.h"
|
|
#include "opencl.h"
|
|
#include "cpu.h"
|
|
|
|
struct options {
|
|
struct pet_options *pet;
|
|
struct ppcg_options *ppcg;
|
|
char *input;
|
|
char *output;
|
|
};
|
|
|
|
const char *ppcg_version(void);
|
|
static void print_version(void)
|
|
{
|
|
printf("%s", ppcg_version());
|
|
}
|
|
|
|
ISL_ARGS_START(struct options, options_args)
|
|
ISL_ARG_CHILD(struct options, pet, "pet", &pet_options_args, "pet options")
|
|
ISL_ARG_CHILD(struct options, ppcg, NULL, &ppcg_options_args, "ppcg options")
|
|
ISL_ARG_STR(struct options, output, 'o', NULL,
|
|
"filename", NULL, "output filename (c and opencl targets)")
|
|
ISL_ARG_ARG(struct options, input, "input", NULL)
|
|
ISL_ARG_VERSION(print_version)
|
|
ISL_ARGS_END
|
|
|
|
ISL_ARG_DEF(options, struct options, options_args)
|
|
|
|
/* Return a pointer to the final path component of "filename" or
|
|
* to "filename" itself if it does not contain any components.
|
|
*/
|
|
const char *ppcg_base_name(const char *filename)
|
|
{
|
|
const char *base;
|
|
|
|
base = strrchr(filename, '/');
|
|
if (base)
|
|
return ++base;
|
|
else
|
|
return filename;
|
|
}
|
|
|
|
/* Copy the base name of "input" to "name" and return its length.
|
|
* "name" is not NULL terminated.
|
|
*
|
|
* In particular, remove all leading directory components and
|
|
* the final extension, if any.
|
|
*/
|
|
int ppcg_extract_base_name(char *name, const char *input)
|
|
{
|
|
const char *base;
|
|
const char *ext;
|
|
int len;
|
|
|
|
base = ppcg_base_name(input);
|
|
ext = strrchr(base, '.');
|
|
len = ext ? ext - base : strlen(base);
|
|
|
|
memcpy(name, base, len);
|
|
|
|
return len;
|
|
}
|
|
|
|
/* Does "scop" refer to any arrays that are declared, but not
|
|
* exposed to the code after the scop?
|
|
*/
|
|
int ppcg_scop_any_hidden_declarations(struct ppcg_scop *scop)
|
|
{
|
|
int i;
|
|
|
|
if (!scop)
|
|
return 0;
|
|
|
|
// This is a pet feature not available in Polly.
|
|
return 0;
|
|
|
|
for (i = 0; i < scop->pet->n_array; ++i)
|
|
if (scop->pet->arrays[i]->declared &&
|
|
!scop->pet->arrays[i]->exposed)
|
|
return 1;
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Collect all variable names that are in use in "scop".
|
|
* In particular, collect all parameters in the context and
|
|
* all the array names.
|
|
* Store these names in an isl_id_to_ast_expr by mapping
|
|
* them to a dummy value (0).
|
|
*/
|
|
static __isl_give isl_id_to_ast_expr *collect_names(struct pet_scop *scop)
|
|
{
|
|
int i, n;
|
|
isl_ctx *ctx;
|
|
isl_ast_expr *zero;
|
|
isl_id_to_ast_expr *names;
|
|
|
|
ctx = isl_set_get_ctx(scop->context);
|
|
|
|
n = isl_set_dim(scop->context, isl_dim_param);
|
|
|
|
names = isl_id_to_ast_expr_alloc(ctx, n + scop->n_array);
|
|
zero = isl_ast_expr_from_val(isl_val_zero(ctx));
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
isl_id *id;
|
|
|
|
id = isl_set_get_dim_id(scop->context, isl_dim_param, i);
|
|
names = isl_id_to_ast_expr_set(names,
|
|
id, isl_ast_expr_copy(zero));
|
|
}
|
|
|
|
for (i = 0; i < scop->n_array; ++i) {
|
|
struct pet_array *array = scop->arrays[i];
|
|
isl_id *id;
|
|
|
|
id = isl_set_get_tuple_id(array->extent);
|
|
names = isl_id_to_ast_expr_set(names,
|
|
id, isl_ast_expr_copy(zero));
|
|
}
|
|
|
|
isl_ast_expr_free(zero);
|
|
|
|
return names;
|
|
}
|
|
|
|
/* Return an isl_id called "prefix%d", with "%d" set to "i".
|
|
* If an isl_id with such a name already appears among the variable names
|
|
* of "scop", then adjust the name to "prefix%d_%d".
|
|
*/
|
|
static __isl_give isl_id *generate_name(struct ppcg_scop *scop,
|
|
const char *prefix, int i)
|
|
{
|
|
int j;
|
|
char name[16];
|
|
isl_ctx *ctx;
|
|
isl_id *id;
|
|
int has_name;
|
|
|
|
ctx = isl_set_get_ctx(scop->context);
|
|
snprintf(name, sizeof(name), "%s%d", prefix, i);
|
|
id = isl_id_alloc(ctx, name, NULL);
|
|
|
|
j = 0;
|
|
while ((has_name = isl_id_to_ast_expr_has(scop->names, id)) == 1) {
|
|
isl_id_free(id);
|
|
snprintf(name, sizeof(name), "%s%d_%d", prefix, i, j++);
|
|
id = isl_id_alloc(ctx, name, NULL);
|
|
}
|
|
|
|
return has_name < 0 ? isl_id_free(id) : id;
|
|
}
|
|
|
|
/* Return a list of "n" isl_ids of the form "prefix%d".
|
|
* If an isl_id with such a name already appears among the variable names
|
|
* of "scop", then adjust the name to "prefix%d_%d".
|
|
*/
|
|
__isl_give isl_id_list *ppcg_scop_generate_names(struct ppcg_scop *scop,
|
|
int n, const char *prefix)
|
|
{
|
|
int i;
|
|
isl_ctx *ctx;
|
|
isl_id_list *names;
|
|
|
|
ctx = isl_set_get_ctx(scop->context);
|
|
names = isl_id_list_alloc(ctx, n);
|
|
for (i = 0; i < n; ++i) {
|
|
isl_id *id;
|
|
|
|
id = generate_name(scop, prefix, i);
|
|
names = isl_id_list_add(names, id);
|
|
}
|
|
|
|
return names;
|
|
}
|
|
|
|
/* Is "stmt" not a kill statement?
|
|
*/
|
|
static int is_not_kill(struct pet_stmt *stmt)
|
|
{
|
|
return !pet_stmt_is_kill(stmt);
|
|
}
|
|
|
|
/* Collect the iteration domains of the statements in "scop" that
|
|
* satisfy "pred".
|
|
*/
|
|
static __isl_give isl_union_set *collect_domains(struct pet_scop *scop,
|
|
int (*pred)(struct pet_stmt *stmt))
|
|
{
|
|
int i;
|
|
isl_set *domain_i;
|
|
isl_union_set *domain;
|
|
|
|
if (!scop)
|
|
return NULL;
|
|
|
|
domain = isl_union_set_empty(isl_set_get_space(scop->context));
|
|
|
|
for (i = 0; i < scop->n_stmt; ++i) {
|
|
struct pet_stmt *stmt = scop->stmts[i];
|
|
|
|
if (!pred(stmt))
|
|
continue;
|
|
|
|
if (stmt->n_arg > 0)
|
|
isl_die(isl_union_set_get_ctx(domain),
|
|
isl_error_unsupported,
|
|
"data dependent conditions not supported",
|
|
return isl_union_set_free(domain));
|
|
|
|
domain_i = isl_set_copy(scop->stmts[i]->domain);
|
|
domain = isl_union_set_add_set(domain, domain_i);
|
|
}
|
|
|
|
return domain;
|
|
}
|
|
|
|
/* Collect the iteration domains of the statements in "scop",
|
|
* skipping kill statements.
|
|
*/
|
|
static __isl_give isl_union_set *collect_non_kill_domains(struct pet_scop *scop)
|
|
{
|
|
return collect_domains(scop, &is_not_kill);
|
|
}
|
|
|
|
/* This function is used as a callback to pet_expr_foreach_call_expr
|
|
* to detect if there is any call expression in the input expression.
|
|
* Assign the value 1 to the integer that "user" points to and
|
|
* abort the search since we have found what we were looking for.
|
|
*/
|
|
static int set_has_call(__isl_keep pet_expr *expr, void *user)
|
|
{
|
|
int *has_call = user;
|
|
|
|
*has_call = 1;
|
|
|
|
return -1;
|
|
}
|
|
|
|
/* Does "expr" contain any call expressions?
|
|
*/
|
|
static int expr_has_call(__isl_keep pet_expr *expr)
|
|
{
|
|
int has_call = 0;
|
|
|
|
if (pet_expr_foreach_call_expr(expr, &set_has_call, &has_call) < 0 &&
|
|
!has_call)
|
|
return -1;
|
|
|
|
return has_call;
|
|
}
|
|
|
|
/* This function is a callback for pet_tree_foreach_expr.
|
|
* If "expr" contains any call (sub)expressions, then set *has_call
|
|
* and abort the search.
|
|
*/
|
|
static int check_call(__isl_keep pet_expr *expr, void *user)
|
|
{
|
|
int *has_call = user;
|
|
|
|
if (expr_has_call(expr))
|
|
*has_call = 1;
|
|
|
|
return *has_call ? -1 : 0;
|
|
}
|
|
|
|
/* Does "stmt" contain any call expressions?
|
|
*/
|
|
static int has_call(struct pet_stmt *stmt)
|
|
{
|
|
int has_call = 0;
|
|
|
|
if (pet_tree_foreach_expr(stmt->body, &check_call, &has_call) < 0 &&
|
|
!has_call)
|
|
return -1;
|
|
|
|
return has_call;
|
|
}
|
|
|
|
/* Collect the iteration domains of the statements in "scop"
|
|
* that contain a call expression.
|
|
*/
|
|
static __isl_give isl_union_set *collect_call_domains(struct pet_scop *scop)
|
|
{
|
|
return collect_domains(scop, &has_call);
|
|
}
|
|
|
|
/* Given a union of "tagged" access relations of the form
|
|
*
|
|
* [S_i[...] -> R_j[]] -> A_k[...]
|
|
*
|
|
* project out the "tags" (R_j[]).
|
|
* That is, return a union of relations of the form
|
|
*
|
|
* S_i[...] -> A_k[...]
|
|
*/
|
|
static __isl_give isl_union_map *project_out_tags(
|
|
__isl_take isl_union_map *umap)
|
|
{
|
|
return isl_union_map_domain_factor_domain(umap);
|
|
}
|
|
|
|
/* Construct a function from tagged iteration domains to the corresponding
|
|
* untagged iteration domains with as range of the wrapped map in the domain
|
|
* the reference tags that appear in any of the reads, writes or kills.
|
|
* Store the result in ps->tagger.
|
|
*
|
|
* For example, if the statement with iteration space S[i,j]
|
|
* contains two array references R_1[] and R_2[], then ps->tagger will contain
|
|
*
|
|
* { [S[i,j] -> R_1[]] -> S[i,j]; [S[i,j] -> R_2[]] -> S[i,j] }
|
|
*/
|
|
void compute_tagger(struct ppcg_scop *ps)
|
|
{
|
|
isl_union_map *tagged;
|
|
isl_union_pw_multi_aff *tagger;
|
|
|
|
tagged = isl_union_map_copy(ps->tagged_reads);
|
|
tagged = isl_union_map_union(tagged,
|
|
isl_union_map_copy(ps->tagged_may_writes));
|
|
tagged = isl_union_map_union(tagged,
|
|
isl_union_map_copy(ps->tagged_must_kills));
|
|
tagged = isl_union_map_universe(tagged);
|
|
tagged = isl_union_set_unwrap(isl_union_map_domain(tagged));
|
|
|
|
tagger = isl_union_map_domain_map_union_pw_multi_aff(tagged);
|
|
|
|
ps->tagger = tagger;
|
|
}
|
|
|
|
/* Compute the live out accesses, i.e., the writes that are
|
|
* potentially not killed by any kills or any other writes, and
|
|
* store them in ps->live_out.
|
|
*
|
|
* We compute the "dependence" of any "kill" (an explicit kill
|
|
* or a must write) on any may write.
|
|
* The elements accessed by the may writes with a "depending" kill
|
|
* also accessing the element are definitely killed.
|
|
* The remaining may writes can potentially be live out.
|
|
*
|
|
* The result of the dependence analysis is
|
|
*
|
|
* { IW -> [IK -> A] }
|
|
*
|
|
* with IW the instance of the write statement, IK the instance of kill
|
|
* statement and A the element that was killed.
|
|
* The range factor range is
|
|
*
|
|
* { IW -> A }
|
|
*
|
|
* containing all such pairs for which there is a kill statement instance,
|
|
* i.e., all pairs that have been killed.
|
|
*/
|
|
static void compute_live_out(struct ppcg_scop *ps)
|
|
{
|
|
isl_schedule *schedule;
|
|
isl_union_map *kills;
|
|
isl_union_map *exposed;
|
|
isl_union_map *covering;
|
|
isl_union_access_info *access;
|
|
isl_union_flow *flow;
|
|
|
|
schedule = isl_schedule_copy(ps->schedule);
|
|
kills = isl_union_map_union(isl_union_map_copy(ps->must_writes),
|
|
isl_union_map_copy(ps->must_kills));
|
|
access = isl_union_access_info_from_sink(kills);
|
|
access = isl_union_access_info_set_may_source(access,
|
|
isl_union_map_copy(ps->may_writes));
|
|
access = isl_union_access_info_set_schedule(access, schedule);
|
|
flow = isl_union_access_info_compute_flow(access);
|
|
covering = isl_union_flow_get_full_may_dependence(flow);
|
|
isl_union_flow_free(flow);
|
|
|
|
covering = isl_union_map_range_factor_range(covering);
|
|
exposed = isl_union_map_copy(ps->may_writes);
|
|
exposed = isl_union_map_subtract(exposed, covering);
|
|
ps->live_out = exposed;
|
|
}
|
|
|
|
/* Compute the tagged flow dependences and the live_in accesses and store
|
|
* the results in ps->tagged_dep_flow and ps->live_in.
|
|
*
|
|
* We allow both the must writes and the must kills to serve as
|
|
* definite sources such that a subsequent read would not depend
|
|
* on any earlier write. The resulting flow dependences with
|
|
* a must kill as source reflect possibly uninitialized reads.
|
|
* No dependences need to be introduced to protect such reads
|
|
* (other than those imposed by potential flows from may writes
|
|
* that follow the kill). We therefore remove those flow dependences.
|
|
* This is also useful for the dead code elimination, which assumes
|
|
* the flow sources are non-kill instances.
|
|
*/
|
|
static void compute_tagged_flow_dep_only(struct ppcg_scop *ps)
|
|
{
|
|
isl_union_pw_multi_aff *tagger;
|
|
isl_schedule *schedule;
|
|
isl_union_map *live_in;
|
|
isl_union_access_info *access;
|
|
isl_union_flow *flow;
|
|
isl_union_map *must_source;
|
|
isl_union_map *kills;
|
|
isl_union_map *tagged_flow;
|
|
|
|
tagger = isl_union_pw_multi_aff_copy(ps->tagger);
|
|
schedule = isl_schedule_copy(ps->schedule);
|
|
schedule = isl_schedule_pullback_union_pw_multi_aff(schedule, tagger);
|
|
kills = isl_union_map_copy(ps->tagged_must_kills);
|
|
must_source = isl_union_map_copy(ps->tagged_must_writes);
|
|
must_source = isl_union_map_union(must_source,
|
|
isl_union_map_copy(kills));
|
|
access = isl_union_access_info_from_sink(
|
|
isl_union_map_copy(ps->tagged_reads));
|
|
access = isl_union_access_info_set_must_source(access, must_source);
|
|
access = isl_union_access_info_set_may_source(access,
|
|
isl_union_map_copy(ps->tagged_may_writes));
|
|
access = isl_union_access_info_set_schedule(access, schedule);
|
|
flow = isl_union_access_info_compute_flow(access);
|
|
tagged_flow = isl_union_flow_get_may_dependence(flow);
|
|
tagged_flow = isl_union_map_subtract_domain(tagged_flow,
|
|
isl_union_map_domain(kills));
|
|
ps->tagged_dep_flow = tagged_flow;
|
|
live_in = isl_union_flow_get_may_no_source(flow);
|
|
ps->live_in = project_out_tags(live_in);
|
|
isl_union_flow_free(flow);
|
|
}
|
|
|
|
/* Compute ps->dep_flow from ps->tagged_dep_flow
|
|
* by projecting out the reference tags.
|
|
*/
|
|
static void derive_flow_dep_from_tagged_flow_dep(struct ppcg_scop *ps)
|
|
{
|
|
ps->dep_flow = isl_union_map_copy(ps->tagged_dep_flow);
|
|
ps->dep_flow = isl_union_map_factor_domain(ps->dep_flow);
|
|
}
|
|
|
|
/* Compute the flow dependences and the live_in accesses and store
|
|
* the results in ps->dep_flow and ps->live_in.
|
|
* A copy of the flow dependences, tagged with the reference tags
|
|
* is stored in ps->tagged_dep_flow.
|
|
*
|
|
* We first compute ps->tagged_dep_flow, i.e., the tagged flow dependences
|
|
* and then project out the tags.
|
|
*/
|
|
static void compute_tagged_flow_dep(struct ppcg_scop *ps)
|
|
{
|
|
compute_tagged_flow_dep_only(ps);
|
|
derive_flow_dep_from_tagged_flow_dep(ps);
|
|
}
|
|
|
|
/* Compute the order dependences that prevent the potential live ranges
|
|
* from overlapping.
|
|
*
|
|
* In particular, construct a union of relations
|
|
*
|
|
* [R[...] -> R_1[]] -> [W[...] -> R_2[]]
|
|
*
|
|
* where [R[...] -> R_1[]] is the range of one or more live ranges
|
|
* (i.e., a read) and [W[...] -> R_2[]] is the domain of one or more
|
|
* live ranges (i.e., a write). Moreover, the read and the write
|
|
* access the same memory element and the read occurs before the write
|
|
* in the original schedule.
|
|
* The scheduler allows some of these dependences to be violated, provided
|
|
* the adjacent live ranges are all local (i.e., their domain and range
|
|
* are mapped to the same point by the current schedule band).
|
|
*
|
|
* Note that if a live range is not local, then we need to make
|
|
* sure it does not overlap with _any_ other live range, and not
|
|
* just with the "previous" and/or the "next" live range.
|
|
* We therefore add order dependences between reads and
|
|
* _any_ later potential write.
|
|
*
|
|
* We also need to be careful about writes without a corresponding read.
|
|
* They are already prevented from moving past non-local preceding
|
|
* intervals, but we also need to prevent them from moving past non-local
|
|
* following intervals. We therefore also add order dependences from
|
|
* potential writes that do not appear in any intervals
|
|
* to all later potential writes.
|
|
* Note that dead code elimination should have removed most of these
|
|
* dead writes, but the dead code elimination may not remove all dead writes,
|
|
* so we need to consider them to be safe.
|
|
*
|
|
* The order dependences are computed by computing the "dataflow"
|
|
* from the above unmatched writes and the reads to the may writes.
|
|
* The unmatched writes and the reads are treated as may sources
|
|
* such that they would not kill order dependences from earlier
|
|
* such writes and reads.
|
|
*/
|
|
static void compute_order_dependences(struct ppcg_scop *ps)
|
|
{
|
|
isl_union_map *reads;
|
|
isl_union_map *shared_access;
|
|
isl_union_set *matched;
|
|
isl_union_map *unmatched;
|
|
isl_union_pw_multi_aff *tagger;
|
|
isl_schedule *schedule;
|
|
isl_union_access_info *access;
|
|
isl_union_flow *flow;
|
|
|
|
tagger = isl_union_pw_multi_aff_copy(ps->tagger);
|
|
schedule = isl_schedule_copy(ps->schedule);
|
|
schedule = isl_schedule_pullback_union_pw_multi_aff(schedule, tagger);
|
|
reads = isl_union_map_copy(ps->tagged_reads);
|
|
matched = isl_union_map_domain(isl_union_map_copy(ps->tagged_dep_flow));
|
|
unmatched = isl_union_map_copy(ps->tagged_may_writes);
|
|
unmatched = isl_union_map_subtract_domain(unmatched, matched);
|
|
reads = isl_union_map_union(reads, unmatched);
|
|
access = isl_union_access_info_from_sink(
|
|
isl_union_map_copy(ps->tagged_may_writes));
|
|
access = isl_union_access_info_set_may_source(access, reads);
|
|
access = isl_union_access_info_set_schedule(access, schedule);
|
|
flow = isl_union_access_info_compute_flow(access);
|
|
shared_access = isl_union_flow_get_may_dependence(flow);
|
|
isl_union_flow_free(flow);
|
|
|
|
ps->tagged_dep_order = isl_union_map_copy(shared_access);
|
|
ps->dep_order = isl_union_map_factor_domain(shared_access);
|
|
}
|
|
|
|
/* Compute those validity dependences of the program represented by "scop"
|
|
* that should be unconditionally enforced even when live-range reordering
|
|
* is used.
|
|
*
|
|
* In particular, compute the external false dependences
|
|
* as well as order dependences between sources with the same sink.
|
|
* The anti-dependences are already taken care of by the order dependences.
|
|
* The external false dependences are only used to ensure that live-in and
|
|
* live-out data is not overwritten by any writes inside the scop.
|
|
* The independences are removed from the external false dependences,
|
|
* but not from the order dependences between sources with the same sink.
|
|
*
|
|
* In particular, the reads from live-in data need to precede any
|
|
* later write to the same memory element.
|
|
* As to live-out data, the last writes need to remain the last writes.
|
|
* That is, any earlier write in the original schedule needs to precede
|
|
* the last write to the same memory element in the computed schedule.
|
|
* The possible last writes have been computed by compute_live_out.
|
|
* They may include kills, but if the last access is a kill,
|
|
* then the corresponding dependences will effectively be ignored
|
|
* since we do not schedule any kill statements.
|
|
*
|
|
* Note that the set of live-in and live-out accesses may be
|
|
* an overapproximation. There may therefore be potential writes
|
|
* before a live-in access and after a live-out access.
|
|
*
|
|
* In the presence of may-writes, there may be multiple live-ranges
|
|
* with the same sink, accessing the same memory element.
|
|
* The sources of these live-ranges need to be executed
|
|
* in the same relative order as in the original program
|
|
* since we do not know which of the may-writes will actually
|
|
* perform a write. Consider all sources that share a sink and
|
|
* that may write to the same memory element and compute
|
|
* the order dependences among them.
|
|
*/
|
|
static void compute_forced_dependences(struct ppcg_scop *ps)
|
|
{
|
|
isl_union_map *shared_access;
|
|
isl_union_map *exposed;
|
|
isl_union_map *live_in;
|
|
isl_union_map *sink_access;
|
|
isl_union_map *shared_sink;
|
|
isl_union_access_info *access;
|
|
isl_union_flow *flow;
|
|
isl_schedule *schedule;
|
|
|
|
exposed = isl_union_map_copy(ps->live_out);
|
|
schedule = isl_schedule_copy(ps->schedule);
|
|
access = isl_union_access_info_from_sink(exposed);
|
|
access = isl_union_access_info_set_may_source(access,
|
|
isl_union_map_copy(ps->may_writes));
|
|
access = isl_union_access_info_set_schedule(access, schedule);
|
|
flow = isl_union_access_info_compute_flow(access);
|
|
shared_access = isl_union_flow_get_may_dependence(flow);
|
|
isl_union_flow_free(flow);
|
|
ps->dep_forced = shared_access;
|
|
|
|
schedule = isl_schedule_copy(ps->schedule);
|
|
access = isl_union_access_info_from_sink(
|
|
isl_union_map_copy(ps->may_writes));
|
|
access = isl_union_access_info_set_may_source(access,
|
|
isl_union_map_copy(ps->live_in));
|
|
access = isl_union_access_info_set_schedule(access, schedule);
|
|
flow = isl_union_access_info_compute_flow(access);
|
|
live_in = isl_union_flow_get_may_dependence(flow);
|
|
isl_union_flow_free(flow);
|
|
|
|
ps->dep_forced = isl_union_map_union(ps->dep_forced, live_in);
|
|
ps->dep_forced = isl_union_map_subtract(ps->dep_forced,
|
|
isl_union_map_copy(ps->independence));
|
|
|
|
schedule = isl_schedule_copy(ps->schedule);
|
|
sink_access = isl_union_map_copy(ps->tagged_dep_flow);
|
|
sink_access = isl_union_map_range_product(sink_access,
|
|
isl_union_map_copy(ps->tagged_may_writes));
|
|
sink_access = isl_union_map_domain_factor_domain(sink_access);
|
|
access = isl_union_access_info_from_sink(
|
|
isl_union_map_copy(sink_access));
|
|
access = isl_union_access_info_set_may_source(access, sink_access);
|
|
access = isl_union_access_info_set_schedule(access, schedule);
|
|
flow = isl_union_access_info_compute_flow(access);
|
|
shared_sink = isl_union_flow_get_may_dependence(flow);
|
|
isl_union_flow_free(flow);
|
|
ps->dep_forced = isl_union_map_union(ps->dep_forced, shared_sink);
|
|
}
|
|
|
|
/* Remove independence from the tagged flow dependences.
|
|
* Since the user has guaranteed that source and sink of an independence
|
|
* can be executed in any order, there cannot be a flow dependence
|
|
* between them, so they can be removed from the set of flow dependences.
|
|
* However, if the source of such a flow dependence is a must write,
|
|
* then it may have killed other potential sources, which would have
|
|
* to be recovered if we were to remove those flow dependences.
|
|
* We therefore keep the flow dependences that originate in a must write,
|
|
* even if it corresponds to a known independence.
|
|
*/
|
|
static void remove_independences_from_tagged_flow(struct ppcg_scop *ps)
|
|
{
|
|
isl_union_map *tf;
|
|
isl_union_set *indep;
|
|
isl_union_set *mw;
|
|
|
|
tf = isl_union_map_copy(ps->tagged_dep_flow);
|
|
tf = isl_union_map_zip(tf);
|
|
indep = isl_union_map_wrap(isl_union_map_copy(ps->independence));
|
|
tf = isl_union_map_intersect_domain(tf, indep);
|
|
tf = isl_union_map_zip(tf);
|
|
mw = isl_union_map_domain(isl_union_map_copy(ps->tagged_must_writes));
|
|
tf = isl_union_map_subtract_domain(tf, mw);
|
|
ps->tagged_dep_flow = isl_union_map_subtract(ps->tagged_dep_flow, tf);
|
|
}
|
|
|
|
/* Compute the dependences of the program represented by "scop"
|
|
* in case live range reordering is allowed.
|
|
*
|
|
* We compute the actual live ranges and the corresponding order
|
|
* false dependences.
|
|
*
|
|
* The independences are removed from the flow dependences
|
|
* (provided the source is not a must-write) as well as
|
|
* from the external false dependences (by compute_forced_dependences).
|
|
*/
|
|
static void compute_live_range_reordering_dependences(struct ppcg_scop *ps)
|
|
{
|
|
compute_tagged_flow_dep_only(ps);
|
|
remove_independences_from_tagged_flow(ps);
|
|
derive_flow_dep_from_tagged_flow_dep(ps);
|
|
compute_order_dependences(ps);
|
|
compute_forced_dependences(ps);
|
|
}
|
|
|
|
/* Compute the potential flow dependences and the potential live in
|
|
* accesses.
|
|
*/
|
|
static void compute_flow_dep(struct ppcg_scop *ps)
|
|
{
|
|
isl_union_access_info *access;
|
|
isl_union_flow *flow;
|
|
|
|
access = isl_union_access_info_from_sink(isl_union_map_copy(ps->reads));
|
|
access = isl_union_access_info_set_must_source(access,
|
|
isl_union_map_copy(ps->must_writes));
|
|
access = isl_union_access_info_set_may_source(access,
|
|
isl_union_map_copy(ps->may_writes));
|
|
access = isl_union_access_info_set_schedule(access,
|
|
isl_schedule_copy(ps->schedule));
|
|
flow = isl_union_access_info_compute_flow(access);
|
|
|
|
ps->dep_flow = isl_union_flow_get_may_dependence(flow);
|
|
ps->live_in = isl_union_flow_get_may_no_source(flow);
|
|
isl_union_flow_free(flow);
|
|
}
|
|
|
|
/* Compute the dependences of the program represented by "scop".
|
|
* Store the computed potential flow dependences
|
|
* in scop->dep_flow and the reads with potentially no corresponding writes in
|
|
* scop->live_in.
|
|
* Store the potential live out accesses in scop->live_out.
|
|
* Store the potential false (anti and output) dependences in scop->dep_false.
|
|
*
|
|
* If live range reordering is allowed, then we compute a separate
|
|
* set of order dependences and a set of external false dependences
|
|
* in compute_live_range_reordering_dependences.
|
|
*/
|
|
void compute_dependences(struct ppcg_scop *scop)
|
|
{
|
|
isl_union_map *may_source;
|
|
isl_union_access_info *access;
|
|
isl_union_flow *flow;
|
|
|
|
if (!scop)
|
|
return;
|
|
|
|
compute_live_out(scop);
|
|
|
|
if (scop->options->live_range_reordering)
|
|
compute_live_range_reordering_dependences(scop);
|
|
else if (scop->options->target != PPCG_TARGET_C)
|
|
compute_tagged_flow_dep(scop);
|
|
else
|
|
compute_flow_dep(scop);
|
|
|
|
may_source = isl_union_map_union(isl_union_map_copy(scop->may_writes),
|
|
isl_union_map_copy(scop->reads));
|
|
access = isl_union_access_info_from_sink(
|
|
isl_union_map_copy(scop->may_writes));
|
|
access = isl_union_access_info_set_must_source(access,
|
|
isl_union_map_copy(scop->must_writes));
|
|
access = isl_union_access_info_set_may_source(access, may_source);
|
|
access = isl_union_access_info_set_schedule(access,
|
|
isl_schedule_copy(scop->schedule));
|
|
flow = isl_union_access_info_compute_flow(access);
|
|
|
|
scop->dep_false = isl_union_flow_get_may_dependence(flow);
|
|
scop->dep_false = isl_union_map_coalesce(scop->dep_false);
|
|
isl_union_flow_free(flow);
|
|
}
|
|
|
|
/* Eliminate dead code from ps->domain.
|
|
*
|
|
* In particular, intersect both ps->domain and the domain of
|
|
* ps->schedule with the (parts of) iteration
|
|
* domains that are needed to produce the output or for statement
|
|
* iterations that call functions.
|
|
* Also intersect the range of the dataflow dependences with
|
|
* this domain such that the removed instances will no longer
|
|
* be considered as targets of dataflow.
|
|
*
|
|
* We start with the iteration domains that call functions
|
|
* and the set of iterations that last write to an array
|
|
* (except those that are later killed).
|
|
*
|
|
* Then we add those statement iterations that produce
|
|
* something needed by the "live" statements iterations.
|
|
* We keep doing this until no more statement iterations can be added.
|
|
* To ensure that the procedure terminates, we compute the affine
|
|
* hull of the live iterations (bounded to the original iteration
|
|
* domains) each time we have added extra iterations.
|
|
*/
|
|
void eliminate_dead_code(struct ppcg_scop *ps)
|
|
{
|
|
isl_union_set *live;
|
|
isl_union_map *dep;
|
|
isl_union_pw_multi_aff *tagger;
|
|
|
|
live = isl_union_map_domain(isl_union_map_copy(ps->live_out));
|
|
if (!isl_union_set_is_empty(ps->call)) {
|
|
live = isl_union_set_union(live, isl_union_set_copy(ps->call));
|
|
live = isl_union_set_coalesce(live);
|
|
}
|
|
|
|
dep = isl_union_map_copy(ps->dep_flow);
|
|
dep = isl_union_map_reverse(dep);
|
|
|
|
for (;;) {
|
|
isl_union_set *extra;
|
|
|
|
extra = isl_union_set_apply(isl_union_set_copy(live),
|
|
isl_union_map_copy(dep));
|
|
if (isl_union_set_is_subset(extra, live)) {
|
|
isl_union_set_free(extra);
|
|
break;
|
|
}
|
|
|
|
live = isl_union_set_union(live, extra);
|
|
live = isl_union_set_affine_hull(live);
|
|
live = isl_union_set_intersect(live,
|
|
isl_union_set_copy(ps->domain));
|
|
}
|
|
|
|
isl_union_map_free(dep);
|
|
|
|
ps->domain = isl_union_set_intersect(ps->domain,
|
|
isl_union_set_copy(live));
|
|
ps->schedule = isl_schedule_intersect_domain(ps->schedule,
|
|
isl_union_set_copy(live));
|
|
ps->dep_flow = isl_union_map_intersect_range(ps->dep_flow,
|
|
isl_union_set_copy(live));
|
|
tagger = isl_union_pw_multi_aff_copy(ps->tagger);
|
|
live = isl_union_set_preimage_union_pw_multi_aff(live, tagger);
|
|
ps->tagged_dep_flow = isl_union_map_intersect_range(ps->tagged_dep_flow,
|
|
live);
|
|
}
|
|
|
|
/* Intersect "set" with the set described by "str", taking the NULL
|
|
* string to represent the universal set.
|
|
*/
|
|
static __isl_give isl_set *set_intersect_str(__isl_take isl_set *set,
|
|
const char *str)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_set *set2;
|
|
|
|
if (!str)
|
|
return set;
|
|
|
|
ctx = isl_set_get_ctx(set);
|
|
set2 = isl_set_read_from_str(ctx, str);
|
|
set = isl_set_intersect(set, set2);
|
|
|
|
return set;
|
|
}
|
|
|
|
void *ppcg_scop_free(struct ppcg_scop *ps)
|
|
{
|
|
if (!ps)
|
|
return NULL;
|
|
|
|
isl_set_free(ps->context);
|
|
isl_union_set_free(ps->domain);
|
|
isl_union_set_free(ps->call);
|
|
isl_union_map_free(ps->tagged_reads);
|
|
isl_union_map_free(ps->reads);
|
|
isl_union_map_free(ps->live_in);
|
|
isl_union_map_free(ps->tagged_may_writes);
|
|
isl_union_map_free(ps->tagged_must_writes);
|
|
isl_union_map_free(ps->may_writes);
|
|
isl_union_map_free(ps->must_writes);
|
|
isl_union_map_free(ps->live_out);
|
|
isl_union_map_free(ps->tagged_must_kills);
|
|
isl_union_map_free(ps->must_kills);
|
|
isl_union_map_free(ps->tagged_dep_flow);
|
|
isl_union_map_free(ps->dep_flow);
|
|
isl_union_map_free(ps->dep_false);
|
|
isl_union_map_free(ps->dep_forced);
|
|
isl_union_map_free(ps->tagged_dep_order);
|
|
isl_union_map_free(ps->dep_order);
|
|
isl_schedule_free(ps->schedule);
|
|
isl_union_pw_multi_aff_free(ps->tagger);
|
|
isl_union_map_free(ps->independence);
|
|
isl_id_to_ast_expr_free(ps->names);
|
|
|
|
free(ps);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Extract a ppcg_scop from a pet_scop.
|
|
*
|
|
* The constructed ppcg_scop refers to elements from the pet_scop
|
|
* so the pet_scop should not be freed before the ppcg_scop.
|
|
*/
|
|
static struct ppcg_scop *ppcg_scop_from_pet_scop(struct pet_scop *scop,
|
|
struct ppcg_options *options)
|
|
{
|
|
int i;
|
|
isl_ctx *ctx;
|
|
struct ppcg_scop *ps;
|
|
|
|
if (!scop)
|
|
return NULL;
|
|
|
|
ctx = isl_set_get_ctx(scop->context);
|
|
|
|
ps = isl_calloc_type(ctx, struct ppcg_scop);
|
|
if (!ps)
|
|
return NULL;
|
|
|
|
ps->names = collect_names(scop);
|
|
ps->options = options;
|
|
ps->start = pet_loc_get_start(scop->loc);
|
|
ps->end = pet_loc_get_end(scop->loc);
|
|
ps->context = isl_set_copy(scop->context);
|
|
ps->context = set_intersect_str(ps->context, options->ctx);
|
|
if (options->non_negative_parameters) {
|
|
isl_space *space = isl_set_get_space(ps->context);
|
|
isl_set *nn = isl_set_nat_universe(space);
|
|
ps->context = isl_set_intersect(ps->context, nn);
|
|
}
|
|
ps->domain = collect_non_kill_domains(scop);
|
|
ps->call = collect_call_domains(scop);
|
|
ps->tagged_reads = pet_scop_get_tagged_may_reads(scop);
|
|
ps->reads = pet_scop_get_may_reads(scop);
|
|
ps->tagged_may_writes = pet_scop_get_tagged_may_writes(scop);
|
|
ps->may_writes = pet_scop_get_may_writes(scop);
|
|
ps->tagged_must_writes = pet_scop_get_tagged_must_writes(scop);
|
|
ps->must_writes = pet_scop_get_must_writes(scop);
|
|
ps->tagged_must_kills = pet_scop_get_tagged_must_kills(scop);
|
|
ps->must_kills = pet_scop_get_must_kills(scop);
|
|
ps->schedule = isl_schedule_copy(scop->schedule);
|
|
ps->pet = scop;
|
|
ps->independence = isl_union_map_empty(isl_set_get_space(ps->context));
|
|
for (i = 0; i < scop->n_independence; ++i)
|
|
ps->independence = isl_union_map_union(ps->independence,
|
|
isl_union_map_copy(scop->independences[i]->filter));
|
|
|
|
compute_tagger(ps);
|
|
compute_dependences(ps);
|
|
eliminate_dead_code(ps);
|
|
|
|
if (!ps->context || !ps->domain || !ps->call || !ps->reads ||
|
|
!ps->may_writes || !ps->must_writes || !ps->tagged_must_kills ||
|
|
!ps->must_kills || !ps->schedule || !ps->independence || !ps->names)
|
|
return ppcg_scop_free(ps);
|
|
|
|
return ps;
|
|
}
|
|
|
|
/* Internal data structure for ppcg_transform.
|
|
*/
|
|
struct ppcg_transform_data {
|
|
struct ppcg_options *options;
|
|
__isl_give isl_printer *(*transform)(__isl_take isl_printer *p,
|
|
struct ppcg_scop *scop, void *user);
|
|
void *user;
|
|
};
|
|
|
|
/* Should we print the original code?
|
|
* That is, does "scop" involve any data dependent conditions or
|
|
* nested expressions that cannot be handled by pet_stmt_build_ast_exprs?
|
|
*/
|
|
static int print_original(struct pet_scop *scop, struct ppcg_options *options)
|
|
{
|
|
if (!pet_scop_can_build_ast_exprs(scop)) {
|
|
if (options->debug->verbose)
|
|
fprintf(stdout, "Printing original code because "
|
|
"some index expressions cannot currently "
|
|
"be printed\n");
|
|
return 1;
|
|
}
|
|
|
|
if (pet_scop_has_data_dependent_conditions(scop)) {
|
|
if (options->debug->verbose)
|
|
fprintf(stdout, "Printing original code because "
|
|
"input involves data dependent conditions\n");
|
|
return 1;
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
/* Callback for pet_transform_C_source that transforms
|
|
* the given pet_scop to a ppcg_scop before calling the
|
|
* ppcg_transform callback.
|
|
*
|
|
* If "scop" contains any data dependent conditions or if we may
|
|
* not be able to print the transformed program, then just print
|
|
* the original code.
|
|
*/
|
|
static __isl_give isl_printer *transform(__isl_take isl_printer *p,
|
|
struct pet_scop *scop, void *user)
|
|
{
|
|
struct ppcg_transform_data *data = user;
|
|
struct ppcg_scop *ps;
|
|
|
|
if (print_original(scop, data->options)) {
|
|
p = pet_scop_print_original(scop, p);
|
|
pet_scop_free(scop);
|
|
return p;
|
|
}
|
|
|
|
scop = pet_scop_align_params(scop);
|
|
ps = ppcg_scop_from_pet_scop(scop, data->options);
|
|
|
|
p = data->transform(p, ps, data->user);
|
|
|
|
ppcg_scop_free(ps);
|
|
pet_scop_free(scop);
|
|
|
|
return p;
|
|
}
|
|
|
|
/* Transform the C source file "input" by rewriting each scop
|
|
* through a call to "transform".
|
|
* The transformed C code is written to "out".
|
|
*
|
|
* This is a wrapper around pet_transform_C_source that transforms
|
|
* the pet_scop to a ppcg_scop before calling "fn".
|
|
*/
|
|
int ppcg_transform(isl_ctx *ctx, const char *input, FILE *out,
|
|
struct ppcg_options *options,
|
|
__isl_give isl_printer *(*fn)(__isl_take isl_printer *p,
|
|
struct ppcg_scop *scop, void *user), void *user)
|
|
{
|
|
struct ppcg_transform_data data = { options, fn, user };
|
|
return pet_transform_C_source(ctx, input, out, &transform, &data);
|
|
}
|
|
|
|
/* Check consistency of options.
|
|
*
|
|
* Return -1 on error.
|
|
*/
|
|
static int check_options(isl_ctx *ctx)
|
|
{
|
|
struct options *options;
|
|
|
|
options = isl_ctx_peek_options(ctx, &options_args);
|
|
if (!options)
|
|
isl_die(ctx, isl_error_internal,
|
|
"unable to find options", return -1);
|
|
|
|
if (options->ppcg->openmp &&
|
|
!isl_options_get_ast_build_atomic_upper_bound(ctx))
|
|
isl_die(ctx, isl_error_invalid,
|
|
"OpenMP requires atomic bounds", return -1);
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if 0
|
|
int main(int argc, char **argv)
|
|
{
|
|
int r;
|
|
isl_ctx *ctx;
|
|
struct options *options;
|
|
|
|
options = options_new_with_defaults();
|
|
assert(options);
|
|
|
|
ctx = isl_ctx_alloc_with_options(&options_args, options);
|
|
ppcg_options_set_target_defaults(options->ppcg);
|
|
isl_options_set_ast_build_detect_min_max(ctx, 1);
|
|
isl_options_set_ast_print_macro_once(ctx, 1);
|
|
isl_options_set_schedule_whole_component(ctx, 0);
|
|
isl_options_set_schedule_maximize_band_depth(ctx, 1);
|
|
isl_options_set_schedule_maximize_coincidence(ctx, 1);
|
|
pet_options_set_encapsulate_dynamic_control(ctx, 1);
|
|
argc = options_parse(options, argc, argv, ISL_ARG_ALL);
|
|
|
|
if (check_options(ctx) < 0)
|
|
r = EXIT_FAILURE;
|
|
else if (options->ppcg->target == PPCG_TARGET_CUDA)
|
|
r = generate_cuda(ctx, options->ppcg, options->input);
|
|
else if (options->ppcg->target == PPCG_TARGET_OPENCL)
|
|
r = generate_opencl(ctx, options->ppcg, options->input,
|
|
options->output);
|
|
else
|
|
r = generate_cpu(ctx, options->ppcg, options->input,
|
|
options->output);
|
|
|
|
isl_ctx_free(ctx);
|
|
|
|
return r;
|
|
}
|
|
#endif
|