forked from OSchip/llvm-project
3308 lines
95 KiB
C
3308 lines
95 KiB
C
/*
|
|
* Copyright 2005-2007 Universiteit Leiden
|
|
* Copyright 2008-2009 Katholieke Universiteit Leuven
|
|
* Copyright 2010 INRIA Saclay
|
|
* Copyright 2012 Universiteit Leiden
|
|
* Copyright 2014 Ecole Normale Superieure
|
|
*
|
|
* Use of this software is governed by the MIT license
|
|
*
|
|
* Written by Sven Verdoolaege, Leiden Institute of Advanced Computer Science,
|
|
* Universiteit Leiden, Niels Bohrweg 1, 2333 CA Leiden, The Netherlands
|
|
* and K.U.Leuven, Departement Computerwetenschappen, Celestijnenlaan 200A,
|
|
* B-3001 Leuven, Belgium
|
|
* and INRIA Saclay - Ile-de-France, Parc Club Orsay Universite,
|
|
* ZAC des vignes, 4 rue Jacques Monod, 91893 Orsay, France
|
|
* and Ecole Normale Superieure, 45 rue d'Ulm, 75230 Paris, France
|
|
*/
|
|
|
|
#include <isl/set.h>
|
|
#include <isl/map.h>
|
|
#include <isl/union_set.h>
|
|
#include <isl/union_map.h>
|
|
#include <isl/flow.h>
|
|
#include <isl/schedule_node.h>
|
|
#include <isl_sort.h>
|
|
#include <isl/stream.h>
|
|
|
|
enum isl_restriction_type {
|
|
isl_restriction_type_empty,
|
|
isl_restriction_type_none,
|
|
isl_restriction_type_input,
|
|
isl_restriction_type_output
|
|
};
|
|
|
|
struct isl_restriction {
|
|
enum isl_restriction_type type;
|
|
|
|
isl_set *source;
|
|
isl_set *sink;
|
|
};
|
|
|
|
/* Create a restriction of the given type.
|
|
*/
|
|
static __isl_give isl_restriction *isl_restriction_alloc(
|
|
__isl_take isl_map *source_map, enum isl_restriction_type type)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_restriction *restr;
|
|
|
|
if (!source_map)
|
|
return NULL;
|
|
|
|
ctx = isl_map_get_ctx(source_map);
|
|
restr = isl_calloc_type(ctx, struct isl_restriction);
|
|
if (!restr)
|
|
goto error;
|
|
|
|
restr->type = type;
|
|
|
|
isl_map_free(source_map);
|
|
return restr;
|
|
error:
|
|
isl_map_free(source_map);
|
|
return NULL;
|
|
}
|
|
|
|
/* Create a restriction that doesn't restrict anything.
|
|
*/
|
|
__isl_give isl_restriction *isl_restriction_none(__isl_take isl_map *source_map)
|
|
{
|
|
return isl_restriction_alloc(source_map, isl_restriction_type_none);
|
|
}
|
|
|
|
/* Create a restriction that removes everything.
|
|
*/
|
|
__isl_give isl_restriction *isl_restriction_empty(
|
|
__isl_take isl_map *source_map)
|
|
{
|
|
return isl_restriction_alloc(source_map, isl_restriction_type_empty);
|
|
}
|
|
|
|
/* Create a restriction on the input of the maximization problem
|
|
* based on the given source and sink restrictions.
|
|
*/
|
|
__isl_give isl_restriction *isl_restriction_input(
|
|
__isl_take isl_set *source_restr, __isl_take isl_set *sink_restr)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_restriction *restr;
|
|
|
|
if (!source_restr || !sink_restr)
|
|
goto error;
|
|
|
|
ctx = isl_set_get_ctx(source_restr);
|
|
restr = isl_calloc_type(ctx, struct isl_restriction);
|
|
if (!restr)
|
|
goto error;
|
|
|
|
restr->type = isl_restriction_type_input;
|
|
restr->source = source_restr;
|
|
restr->sink = sink_restr;
|
|
|
|
return restr;
|
|
error:
|
|
isl_set_free(source_restr);
|
|
isl_set_free(sink_restr);
|
|
return NULL;
|
|
}
|
|
|
|
/* Create a restriction on the output of the maximization problem
|
|
* based on the given source restriction.
|
|
*/
|
|
__isl_give isl_restriction *isl_restriction_output(
|
|
__isl_take isl_set *source_restr)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_restriction *restr;
|
|
|
|
if (!source_restr)
|
|
return NULL;
|
|
|
|
ctx = isl_set_get_ctx(source_restr);
|
|
restr = isl_calloc_type(ctx, struct isl_restriction);
|
|
if (!restr)
|
|
goto error;
|
|
|
|
restr->type = isl_restriction_type_output;
|
|
restr->source = source_restr;
|
|
|
|
return restr;
|
|
error:
|
|
isl_set_free(source_restr);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_null isl_restriction *isl_restriction_free(
|
|
__isl_take isl_restriction *restr)
|
|
{
|
|
if (!restr)
|
|
return NULL;
|
|
|
|
isl_set_free(restr->source);
|
|
isl_set_free(restr->sink);
|
|
free(restr);
|
|
return NULL;
|
|
}
|
|
|
|
isl_ctx *isl_restriction_get_ctx(__isl_keep isl_restriction *restr)
|
|
{
|
|
return restr ? isl_set_get_ctx(restr->source) : NULL;
|
|
}
|
|
|
|
/* A private structure to keep track of a mapping together with
|
|
* a user-specified identifier and a boolean indicating whether
|
|
* the map represents a must or may access/dependence.
|
|
*/
|
|
struct isl_labeled_map {
|
|
struct isl_map *map;
|
|
void *data;
|
|
int must;
|
|
};
|
|
|
|
typedef int (*isl_access_coscheduled)(void *first, void *second);
|
|
|
|
/* A structure containing the input for dependence analysis:
|
|
* - a sink
|
|
* - n_must + n_may (<= max_source) sources
|
|
* - a function for determining the relative order of sources and sink
|
|
* - an optional function "coscheduled" for determining whether sources
|
|
* may be coscheduled. If "coscheduled" is NULL, then the sources
|
|
* are assumed not to be coscheduled.
|
|
* The must sources are placed before the may sources.
|
|
*
|
|
* domain_map is an auxiliary map that maps the sink access relation
|
|
* to the domain of this access relation.
|
|
* This field is only needed when restrict_fn is set and
|
|
* the field itself is set by isl_access_info_compute_flow.
|
|
*
|
|
* restrict_fn is a callback that (if not NULL) will be called
|
|
* right before any lexicographical maximization.
|
|
*/
|
|
struct isl_access_info {
|
|
isl_map *domain_map;
|
|
struct isl_labeled_map sink;
|
|
isl_access_level_before level_before;
|
|
isl_access_coscheduled coscheduled;
|
|
|
|
isl_access_restrict restrict_fn;
|
|
void *restrict_user;
|
|
|
|
int max_source;
|
|
int n_must;
|
|
int n_may;
|
|
struct isl_labeled_map source[1];
|
|
};
|
|
|
|
/* A structure containing the output of dependence analysis:
|
|
* - n_source dependences
|
|
* - a wrapped subset of the sink for which definitely no source could be found
|
|
* - a wrapped subset of the sink for which possibly no source could be found
|
|
*/
|
|
struct isl_flow {
|
|
isl_set *must_no_source;
|
|
isl_set *may_no_source;
|
|
int n_source;
|
|
struct isl_labeled_map *dep;
|
|
};
|
|
|
|
/* Construct an isl_access_info structure and fill it up with
|
|
* the given data. The number of sources is set to 0.
|
|
*/
|
|
__isl_give isl_access_info *isl_access_info_alloc(__isl_take isl_map *sink,
|
|
void *sink_user, isl_access_level_before fn, int max_source)
|
|
{
|
|
isl_ctx *ctx;
|
|
struct isl_access_info *acc;
|
|
|
|
if (!sink)
|
|
return NULL;
|
|
|
|
ctx = isl_map_get_ctx(sink);
|
|
isl_assert(ctx, max_source >= 0, goto error);
|
|
|
|
acc = isl_calloc(ctx, struct isl_access_info,
|
|
sizeof(struct isl_access_info) +
|
|
(max_source - 1) * sizeof(struct isl_labeled_map));
|
|
if (!acc)
|
|
goto error;
|
|
|
|
acc->sink.map = sink;
|
|
acc->sink.data = sink_user;
|
|
acc->level_before = fn;
|
|
acc->max_source = max_source;
|
|
acc->n_must = 0;
|
|
acc->n_may = 0;
|
|
|
|
return acc;
|
|
error:
|
|
isl_map_free(sink);
|
|
return NULL;
|
|
}
|
|
|
|
/* Free the given isl_access_info structure.
|
|
*/
|
|
__isl_null isl_access_info *isl_access_info_free(
|
|
__isl_take isl_access_info *acc)
|
|
{
|
|
int i;
|
|
|
|
if (!acc)
|
|
return NULL;
|
|
isl_map_free(acc->domain_map);
|
|
isl_map_free(acc->sink.map);
|
|
for (i = 0; i < acc->n_must + acc->n_may; ++i)
|
|
isl_map_free(acc->source[i].map);
|
|
free(acc);
|
|
return NULL;
|
|
}
|
|
|
|
isl_ctx *isl_access_info_get_ctx(__isl_keep isl_access_info *acc)
|
|
{
|
|
return acc ? isl_map_get_ctx(acc->sink.map) : NULL;
|
|
}
|
|
|
|
__isl_give isl_access_info *isl_access_info_set_restrict(
|
|
__isl_take isl_access_info *acc, isl_access_restrict fn, void *user)
|
|
{
|
|
if (!acc)
|
|
return NULL;
|
|
acc->restrict_fn = fn;
|
|
acc->restrict_user = user;
|
|
return acc;
|
|
}
|
|
|
|
/* Add another source to an isl_access_info structure, making
|
|
* sure the "must" sources are placed before the "may" sources.
|
|
* This function may be called at most max_source times on a
|
|
* given isl_access_info structure, with max_source as specified
|
|
* in the call to isl_access_info_alloc that constructed the structure.
|
|
*/
|
|
__isl_give isl_access_info *isl_access_info_add_source(
|
|
__isl_take isl_access_info *acc, __isl_take isl_map *source,
|
|
int must, void *source_user)
|
|
{
|
|
isl_ctx *ctx;
|
|
|
|
if (!acc)
|
|
goto error;
|
|
ctx = isl_map_get_ctx(acc->sink.map);
|
|
isl_assert(ctx, acc->n_must + acc->n_may < acc->max_source, goto error);
|
|
|
|
if (must) {
|
|
if (acc->n_may)
|
|
acc->source[acc->n_must + acc->n_may] =
|
|
acc->source[acc->n_must];
|
|
acc->source[acc->n_must].map = source;
|
|
acc->source[acc->n_must].data = source_user;
|
|
acc->source[acc->n_must].must = 1;
|
|
acc->n_must++;
|
|
} else {
|
|
acc->source[acc->n_must + acc->n_may].map = source;
|
|
acc->source[acc->n_must + acc->n_may].data = source_user;
|
|
acc->source[acc->n_must + acc->n_may].must = 0;
|
|
acc->n_may++;
|
|
}
|
|
|
|
return acc;
|
|
error:
|
|
isl_map_free(source);
|
|
isl_access_info_free(acc);
|
|
return NULL;
|
|
}
|
|
|
|
/* A helper struct carrying the isl_access_info and an error condition.
|
|
*/
|
|
struct access_sort_info {
|
|
isl_access_info *access_info;
|
|
int error;
|
|
};
|
|
|
|
/* Return -n, 0 or n (with n a positive value), depending on whether
|
|
* the source access identified by p1 should be sorted before, together
|
|
* or after that identified by p2.
|
|
*
|
|
* If p1 appears before p2, then it should be sorted first.
|
|
* For more generic initial schedules, it is possible that neither
|
|
* p1 nor p2 appears before the other, or at least not in any obvious way.
|
|
* We therefore also check if p2 appears before p1, in which case p2
|
|
* should be sorted first.
|
|
* If not, we try to order the two statements based on the description
|
|
* of the iteration domains. This results in an arbitrary, but fairly
|
|
* stable ordering.
|
|
*
|
|
* In case of an error, sort_info.error is set to true and all elements are
|
|
* reported to be equal.
|
|
*/
|
|
static int access_sort_cmp(const void *p1, const void *p2, void *user)
|
|
{
|
|
struct access_sort_info *sort_info = user;
|
|
isl_access_info *acc = sort_info->access_info;
|
|
|
|
if (sort_info->error)
|
|
return 0;
|
|
|
|
const struct isl_labeled_map *i1, *i2;
|
|
int level1, level2;
|
|
uint32_t h1, h2;
|
|
i1 = (const struct isl_labeled_map *) p1;
|
|
i2 = (const struct isl_labeled_map *) p2;
|
|
|
|
level1 = acc->level_before(i1->data, i2->data);
|
|
if (level1 < 0)
|
|
goto error;
|
|
if (level1 % 2)
|
|
return -1;
|
|
|
|
level2 = acc->level_before(i2->data, i1->data);
|
|
if (level2 < 0)
|
|
goto error;
|
|
if (level2 % 2)
|
|
return 1;
|
|
|
|
h1 = isl_map_get_hash(i1->map);
|
|
h2 = isl_map_get_hash(i2->map);
|
|
return h1 > h2 ? 1 : h1 < h2 ? -1 : 0;
|
|
error:
|
|
sort_info->error = 1;
|
|
return 0;
|
|
}
|
|
|
|
/* Sort the must source accesses in their textual order.
|
|
*/
|
|
static __isl_give isl_access_info *isl_access_info_sort_sources(
|
|
__isl_take isl_access_info *acc)
|
|
{
|
|
struct access_sort_info sort_info;
|
|
|
|
sort_info.access_info = acc;
|
|
sort_info.error = 0;
|
|
|
|
if (!acc)
|
|
return NULL;
|
|
if (acc->n_must <= 1)
|
|
return acc;
|
|
|
|
if (isl_sort(acc->source, acc->n_must, sizeof(struct isl_labeled_map),
|
|
access_sort_cmp, &sort_info) < 0)
|
|
return isl_access_info_free(acc);
|
|
if (sort_info.error)
|
|
return isl_access_info_free(acc);
|
|
|
|
return acc;
|
|
}
|
|
|
|
/* Align the parameters of the two spaces if needed and then call
|
|
* isl_space_join.
|
|
*/
|
|
static __isl_give isl_space *space_align_and_join(__isl_take isl_space *left,
|
|
__isl_take isl_space *right)
|
|
{
|
|
isl_bool equal_params;
|
|
|
|
equal_params = isl_space_has_equal_params(left, right);
|
|
if (equal_params < 0)
|
|
goto error;
|
|
if (equal_params)
|
|
return isl_space_join(left, right);
|
|
|
|
left = isl_space_align_params(left, isl_space_copy(right));
|
|
right = isl_space_align_params(right, isl_space_copy(left));
|
|
return isl_space_join(left, right);
|
|
error:
|
|
isl_space_free(left);
|
|
isl_space_free(right);
|
|
return NULL;
|
|
}
|
|
|
|
/* Initialize an empty isl_flow structure corresponding to a given
|
|
* isl_access_info structure.
|
|
* For each must access, two dependences are created (initialized
|
|
* to the empty relation), one for the resulting must dependences
|
|
* and one for the resulting may dependences. May accesses can
|
|
* only lead to may dependences, so only one dependence is created
|
|
* for each of them.
|
|
* This function is private as isl_flow structures are only supposed
|
|
* to be created by isl_access_info_compute_flow.
|
|
*/
|
|
static __isl_give isl_flow *isl_flow_alloc(__isl_keep isl_access_info *acc)
|
|
{
|
|
int i, n;
|
|
struct isl_ctx *ctx;
|
|
struct isl_flow *dep;
|
|
|
|
if (!acc)
|
|
return NULL;
|
|
|
|
ctx = isl_map_get_ctx(acc->sink.map);
|
|
dep = isl_calloc_type(ctx, struct isl_flow);
|
|
if (!dep)
|
|
return NULL;
|
|
|
|
n = 2 * acc->n_must + acc->n_may;
|
|
dep->dep = isl_calloc_array(ctx, struct isl_labeled_map, n);
|
|
if (n && !dep->dep)
|
|
goto error;
|
|
|
|
dep->n_source = n;
|
|
for (i = 0; i < acc->n_must; ++i) {
|
|
isl_space *dim;
|
|
dim = space_align_and_join(
|
|
isl_map_get_space(acc->source[i].map),
|
|
isl_space_reverse(isl_map_get_space(acc->sink.map)));
|
|
dep->dep[2 * i].map = isl_map_empty(dim);
|
|
dep->dep[2 * i + 1].map = isl_map_copy(dep->dep[2 * i].map);
|
|
dep->dep[2 * i].data = acc->source[i].data;
|
|
dep->dep[2 * i + 1].data = acc->source[i].data;
|
|
dep->dep[2 * i].must = 1;
|
|
dep->dep[2 * i + 1].must = 0;
|
|
if (!dep->dep[2 * i].map || !dep->dep[2 * i + 1].map)
|
|
goto error;
|
|
}
|
|
for (i = acc->n_must; i < acc->n_must + acc->n_may; ++i) {
|
|
isl_space *dim;
|
|
dim = space_align_and_join(
|
|
isl_map_get_space(acc->source[i].map),
|
|
isl_space_reverse(isl_map_get_space(acc->sink.map)));
|
|
dep->dep[acc->n_must + i].map = isl_map_empty(dim);
|
|
dep->dep[acc->n_must + i].data = acc->source[i].data;
|
|
dep->dep[acc->n_must + i].must = 0;
|
|
if (!dep->dep[acc->n_must + i].map)
|
|
goto error;
|
|
}
|
|
|
|
return dep;
|
|
error:
|
|
isl_flow_free(dep);
|
|
return NULL;
|
|
}
|
|
|
|
/* Iterate over all sources and for each resulting flow dependence
|
|
* that is not empty, call the user specfied function.
|
|
* The second argument in this function call identifies the source,
|
|
* while the third argument correspond to the final argument of
|
|
* the isl_flow_foreach call.
|
|
*/
|
|
isl_stat isl_flow_foreach(__isl_keep isl_flow *deps,
|
|
isl_stat (*fn)(__isl_take isl_map *dep, int must, void *dep_user,
|
|
void *user),
|
|
void *user)
|
|
{
|
|
int i;
|
|
|
|
if (!deps)
|
|
return isl_stat_error;
|
|
|
|
for (i = 0; i < deps->n_source; ++i) {
|
|
if (isl_map_plain_is_empty(deps->dep[i].map))
|
|
continue;
|
|
if (fn(isl_map_copy(deps->dep[i].map), deps->dep[i].must,
|
|
deps->dep[i].data, user) < 0)
|
|
return isl_stat_error;
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Return a copy of the subset of the sink for which no source could be found.
|
|
*/
|
|
__isl_give isl_map *isl_flow_get_no_source(__isl_keep isl_flow *deps, int must)
|
|
{
|
|
if (!deps)
|
|
return NULL;
|
|
|
|
if (must)
|
|
return isl_set_unwrap(isl_set_copy(deps->must_no_source));
|
|
else
|
|
return isl_set_unwrap(isl_set_copy(deps->may_no_source));
|
|
}
|
|
|
|
void isl_flow_free(__isl_take isl_flow *deps)
|
|
{
|
|
int i;
|
|
|
|
if (!deps)
|
|
return;
|
|
isl_set_free(deps->must_no_source);
|
|
isl_set_free(deps->may_no_source);
|
|
if (deps->dep) {
|
|
for (i = 0; i < deps->n_source; ++i)
|
|
isl_map_free(deps->dep[i].map);
|
|
free(deps->dep);
|
|
}
|
|
free(deps);
|
|
}
|
|
|
|
isl_ctx *isl_flow_get_ctx(__isl_keep isl_flow *deps)
|
|
{
|
|
return deps ? isl_set_get_ctx(deps->must_no_source) : NULL;
|
|
}
|
|
|
|
/* Return a map that enforces that the domain iteration occurs after
|
|
* the range iteration at the given level.
|
|
* If level is odd, then the domain iteration should occur after
|
|
* the target iteration in their shared level/2 outermost loops.
|
|
* In this case we simply need to enforce that these outermost
|
|
* loop iterations are the same.
|
|
* If level is even, then the loop iterator of the domain should
|
|
* be greater than the loop iterator of the range at the last
|
|
* of the level/2 shared loops, i.e., loop level/2 - 1.
|
|
*/
|
|
static __isl_give isl_map *after_at_level(__isl_take isl_space *dim, int level)
|
|
{
|
|
struct isl_basic_map *bmap;
|
|
|
|
if (level % 2)
|
|
bmap = isl_basic_map_equal(dim, level/2);
|
|
else
|
|
bmap = isl_basic_map_more_at(dim, level/2 - 1);
|
|
|
|
return isl_map_from_basic_map(bmap);
|
|
}
|
|
|
|
/* Compute the partial lexicographic maximum of "dep" on domain "sink",
|
|
* but first check if the user has set acc->restrict_fn and if so
|
|
* update either the input or the output of the maximization problem
|
|
* with respect to the resulting restriction.
|
|
*
|
|
* Since the user expects a mapping from sink iterations to source iterations,
|
|
* whereas the domain of "dep" is a wrapped map, mapping sink iterations
|
|
* to accessed array elements, we first need to project out the accessed
|
|
* sink array elements by applying acc->domain_map.
|
|
* Similarly, the sink restriction specified by the user needs to be
|
|
* converted back to the wrapped map.
|
|
*/
|
|
static __isl_give isl_map *restricted_partial_lexmax(
|
|
__isl_keep isl_access_info *acc, __isl_take isl_map *dep,
|
|
int source, __isl_take isl_set *sink, __isl_give isl_set **empty)
|
|
{
|
|
isl_map *source_map;
|
|
isl_restriction *restr;
|
|
isl_set *sink_domain;
|
|
isl_set *sink_restr;
|
|
isl_map *res;
|
|
|
|
if (!acc->restrict_fn)
|
|
return isl_map_partial_lexmax(dep, sink, empty);
|
|
|
|
source_map = isl_map_copy(dep);
|
|
source_map = isl_map_apply_domain(source_map,
|
|
isl_map_copy(acc->domain_map));
|
|
sink_domain = isl_set_copy(sink);
|
|
sink_domain = isl_set_apply(sink_domain, isl_map_copy(acc->domain_map));
|
|
restr = acc->restrict_fn(source_map, sink_domain,
|
|
acc->source[source].data, acc->restrict_user);
|
|
isl_set_free(sink_domain);
|
|
isl_map_free(source_map);
|
|
|
|
if (!restr)
|
|
goto error;
|
|
if (restr->type == isl_restriction_type_input) {
|
|
dep = isl_map_intersect_range(dep, isl_set_copy(restr->source));
|
|
sink_restr = isl_set_copy(restr->sink);
|
|
sink_restr = isl_set_apply(sink_restr,
|
|
isl_map_reverse(isl_map_copy(acc->domain_map)));
|
|
sink = isl_set_intersect(sink, sink_restr);
|
|
} else if (restr->type == isl_restriction_type_empty) {
|
|
isl_space *space = isl_map_get_space(dep);
|
|
isl_map_free(dep);
|
|
dep = isl_map_empty(space);
|
|
}
|
|
|
|
res = isl_map_partial_lexmax(dep, sink, empty);
|
|
|
|
if (restr->type == isl_restriction_type_output)
|
|
res = isl_map_intersect_range(res, isl_set_copy(restr->source));
|
|
|
|
isl_restriction_free(restr);
|
|
return res;
|
|
error:
|
|
isl_map_free(dep);
|
|
isl_set_free(sink);
|
|
*empty = NULL;
|
|
return NULL;
|
|
}
|
|
|
|
/* Compute the last iteration of must source j that precedes the sink
|
|
* at the given level for sink iterations in set_C.
|
|
* The subset of set_C for which no such iteration can be found is returned
|
|
* in *empty.
|
|
*/
|
|
static struct isl_map *last_source(struct isl_access_info *acc,
|
|
struct isl_set *set_C,
|
|
int j, int level, struct isl_set **empty)
|
|
{
|
|
struct isl_map *read_map;
|
|
struct isl_map *write_map;
|
|
struct isl_map *dep_map;
|
|
struct isl_map *after;
|
|
struct isl_map *result;
|
|
|
|
read_map = isl_map_copy(acc->sink.map);
|
|
write_map = isl_map_copy(acc->source[j].map);
|
|
write_map = isl_map_reverse(write_map);
|
|
dep_map = isl_map_apply_range(read_map, write_map);
|
|
after = after_at_level(isl_map_get_space(dep_map), level);
|
|
dep_map = isl_map_intersect(dep_map, after);
|
|
result = restricted_partial_lexmax(acc, dep_map, j, set_C, empty);
|
|
result = isl_map_reverse(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* For a given mapping between iterations of must source j and iterations
|
|
* of the sink, compute the last iteration of must source k preceding
|
|
* the sink at level before_level for any of the sink iterations,
|
|
* but following the corresponding iteration of must source j at level
|
|
* after_level.
|
|
*/
|
|
static struct isl_map *last_later_source(struct isl_access_info *acc,
|
|
struct isl_map *old_map,
|
|
int j, int before_level,
|
|
int k, int after_level,
|
|
struct isl_set **empty)
|
|
{
|
|
isl_space *dim;
|
|
struct isl_set *set_C;
|
|
struct isl_map *read_map;
|
|
struct isl_map *write_map;
|
|
struct isl_map *dep_map;
|
|
struct isl_map *after_write;
|
|
struct isl_map *before_read;
|
|
struct isl_map *result;
|
|
|
|
set_C = isl_map_range(isl_map_copy(old_map));
|
|
read_map = isl_map_copy(acc->sink.map);
|
|
write_map = isl_map_copy(acc->source[k].map);
|
|
|
|
write_map = isl_map_reverse(write_map);
|
|
dep_map = isl_map_apply_range(read_map, write_map);
|
|
dim = space_align_and_join(isl_map_get_space(acc->source[k].map),
|
|
isl_space_reverse(isl_map_get_space(acc->source[j].map)));
|
|
after_write = after_at_level(dim, after_level);
|
|
after_write = isl_map_apply_range(after_write, old_map);
|
|
after_write = isl_map_reverse(after_write);
|
|
dep_map = isl_map_intersect(dep_map, after_write);
|
|
before_read = after_at_level(isl_map_get_space(dep_map), before_level);
|
|
dep_map = isl_map_intersect(dep_map, before_read);
|
|
result = restricted_partial_lexmax(acc, dep_map, k, set_C, empty);
|
|
result = isl_map_reverse(result);
|
|
|
|
return result;
|
|
}
|
|
|
|
/* Given a shared_level between two accesses, return 1 if the
|
|
* the first can precede the second at the requested target_level.
|
|
* If the target level is odd, i.e., refers to a statement level
|
|
* dimension, then first needs to precede second at the requested
|
|
* level, i.e., shared_level must be equal to target_level.
|
|
* If the target level is odd, then the two loops should share
|
|
* at least the requested number of outer loops.
|
|
*/
|
|
static int can_precede_at_level(int shared_level, int target_level)
|
|
{
|
|
if (shared_level < target_level)
|
|
return 0;
|
|
if ((target_level % 2) && shared_level > target_level)
|
|
return 0;
|
|
return 1;
|
|
}
|
|
|
|
/* Given a possible flow dependence temp_rel[j] between source j and the sink
|
|
* at level sink_level, remove those elements for which
|
|
* there is an iteration of another source k < j that is closer to the sink.
|
|
* The flow dependences temp_rel[k] are updated with the improved sources.
|
|
* Any improved source needs to precede the sink at the same level
|
|
* and needs to follow source j at the same or a deeper level.
|
|
* The lower this level, the later the execution date of source k.
|
|
* We therefore consider lower levels first.
|
|
*
|
|
* If temp_rel[j] is empty, then there can be no improvement and
|
|
* we return immediately.
|
|
*
|
|
* This function returns isl_stat_ok in case it was executed successfully and
|
|
* isl_stat_error in case of errors during the execution of this function.
|
|
*/
|
|
static isl_stat intermediate_sources(__isl_keep isl_access_info *acc,
|
|
struct isl_map **temp_rel, int j, int sink_level)
|
|
{
|
|
int k, level;
|
|
int depth = 2 * isl_map_dim(acc->source[j].map, isl_dim_in) + 1;
|
|
|
|
if (isl_map_plain_is_empty(temp_rel[j]))
|
|
return isl_stat_ok;
|
|
|
|
for (k = j - 1; k >= 0; --k) {
|
|
int plevel, plevel2;
|
|
plevel = acc->level_before(acc->source[k].data, acc->sink.data);
|
|
if (plevel < 0)
|
|
return isl_stat_error;
|
|
if (!can_precede_at_level(plevel, sink_level))
|
|
continue;
|
|
|
|
plevel2 = acc->level_before(acc->source[j].data,
|
|
acc->source[k].data);
|
|
if (plevel2 < 0)
|
|
return isl_stat_error;
|
|
|
|
for (level = sink_level; level <= depth; ++level) {
|
|
struct isl_map *T;
|
|
struct isl_set *trest;
|
|
struct isl_map *copy;
|
|
|
|
if (!can_precede_at_level(plevel2, level))
|
|
continue;
|
|
|
|
copy = isl_map_copy(temp_rel[j]);
|
|
T = last_later_source(acc, copy, j, sink_level, k,
|
|
level, &trest);
|
|
if (isl_map_plain_is_empty(T)) {
|
|
isl_set_free(trest);
|
|
isl_map_free(T);
|
|
continue;
|
|
}
|
|
temp_rel[j] = isl_map_intersect_range(temp_rel[j], trest);
|
|
temp_rel[k] = isl_map_union_disjoint(temp_rel[k], T);
|
|
}
|
|
}
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* Compute all iterations of may source j that precedes the sink at the given
|
|
* level for sink iterations in set_C.
|
|
*/
|
|
static __isl_give isl_map *all_sources(__isl_keep isl_access_info *acc,
|
|
__isl_take isl_set *set_C, int j, int level)
|
|
{
|
|
isl_map *read_map;
|
|
isl_map *write_map;
|
|
isl_map *dep_map;
|
|
isl_map *after;
|
|
|
|
read_map = isl_map_copy(acc->sink.map);
|
|
read_map = isl_map_intersect_domain(read_map, set_C);
|
|
write_map = isl_map_copy(acc->source[acc->n_must + j].map);
|
|
write_map = isl_map_reverse(write_map);
|
|
dep_map = isl_map_apply_range(read_map, write_map);
|
|
after = after_at_level(isl_map_get_space(dep_map), level);
|
|
dep_map = isl_map_intersect(dep_map, after);
|
|
|
|
return isl_map_reverse(dep_map);
|
|
}
|
|
|
|
/* For a given mapping between iterations of must source k and iterations
|
|
* of the sink, compute all iterations of may source j preceding
|
|
* the sink at level before_level for any of the sink iterations,
|
|
* but following the corresponding iteration of must source k at level
|
|
* after_level.
|
|
*/
|
|
static __isl_give isl_map *all_later_sources(__isl_keep isl_access_info *acc,
|
|
__isl_take isl_map *old_map,
|
|
int j, int before_level, int k, int after_level)
|
|
{
|
|
isl_space *dim;
|
|
isl_set *set_C;
|
|
isl_map *read_map;
|
|
isl_map *write_map;
|
|
isl_map *dep_map;
|
|
isl_map *after_write;
|
|
isl_map *before_read;
|
|
|
|
set_C = isl_map_range(isl_map_copy(old_map));
|
|
read_map = isl_map_copy(acc->sink.map);
|
|
read_map = isl_map_intersect_domain(read_map, set_C);
|
|
write_map = isl_map_copy(acc->source[acc->n_must + j].map);
|
|
|
|
write_map = isl_map_reverse(write_map);
|
|
dep_map = isl_map_apply_range(read_map, write_map);
|
|
dim = isl_space_join(isl_map_get_space(acc->source[acc->n_must + j].map),
|
|
isl_space_reverse(isl_map_get_space(acc->source[k].map)));
|
|
after_write = after_at_level(dim, after_level);
|
|
after_write = isl_map_apply_range(after_write, old_map);
|
|
after_write = isl_map_reverse(after_write);
|
|
dep_map = isl_map_intersect(dep_map, after_write);
|
|
before_read = after_at_level(isl_map_get_space(dep_map), before_level);
|
|
dep_map = isl_map_intersect(dep_map, before_read);
|
|
return isl_map_reverse(dep_map);
|
|
}
|
|
|
|
/* Given the must and may dependence relations for the must accesses
|
|
* for level sink_level, check if there are any accesses of may access j
|
|
* that occur in between and return their union.
|
|
* If some of these accesses are intermediate with respect to
|
|
* (previously thought to be) must dependences, then these
|
|
* must dependences are turned into may dependences.
|
|
*/
|
|
static __isl_give isl_map *all_intermediate_sources(
|
|
__isl_keep isl_access_info *acc, __isl_take isl_map *map,
|
|
struct isl_map **must_rel, struct isl_map **may_rel,
|
|
int j, int sink_level)
|
|
{
|
|
int k, level;
|
|
int depth = 2 * isl_map_dim(acc->source[acc->n_must + j].map,
|
|
isl_dim_in) + 1;
|
|
|
|
for (k = 0; k < acc->n_must; ++k) {
|
|
int plevel;
|
|
|
|
if (isl_map_plain_is_empty(may_rel[k]) &&
|
|
isl_map_plain_is_empty(must_rel[k]))
|
|
continue;
|
|
|
|
plevel = acc->level_before(acc->source[k].data,
|
|
acc->source[acc->n_must + j].data);
|
|
if (plevel < 0)
|
|
return isl_map_free(map);
|
|
|
|
for (level = sink_level; level <= depth; ++level) {
|
|
isl_map *T;
|
|
isl_map *copy;
|
|
isl_set *ran;
|
|
|
|
if (!can_precede_at_level(plevel, level))
|
|
continue;
|
|
|
|
copy = isl_map_copy(may_rel[k]);
|
|
T = all_later_sources(acc, copy, j, sink_level, k, level);
|
|
map = isl_map_union(map, T);
|
|
|
|
copy = isl_map_copy(must_rel[k]);
|
|
T = all_later_sources(acc, copy, j, sink_level, k, level);
|
|
ran = isl_map_range(isl_map_copy(T));
|
|
map = isl_map_union(map, T);
|
|
may_rel[k] = isl_map_union_disjoint(may_rel[k],
|
|
isl_map_intersect_range(isl_map_copy(must_rel[k]),
|
|
isl_set_copy(ran)));
|
|
T = isl_map_from_domain_and_range(
|
|
isl_set_universe(
|
|
isl_space_domain(isl_map_get_space(must_rel[k]))),
|
|
ran);
|
|
must_rel[k] = isl_map_subtract(must_rel[k], T);
|
|
}
|
|
}
|
|
|
|
return map;
|
|
}
|
|
|
|
/* Given a dependence relation "old_map" between a must-source and the sink,
|
|
* return a subset of the dependences, augmented with instances
|
|
* of the source at position "pos" in "acc" that are coscheduled
|
|
* with the must-source and that access the same element.
|
|
* That is, if the input lives in a space T -> K, then the output
|
|
* lives in the space [T -> S] -> K, with S the space of source "pos", and
|
|
* the domain factor of the domain product is a subset of the input.
|
|
* The sources are considered to be coscheduled if they have the same values
|
|
* for the initial "depth" coordinates.
|
|
*
|
|
* First construct a dependence relation S -> K and a mapping
|
|
* between coscheduled sources T -> S.
|
|
* The second is combined with the original dependence relation T -> K
|
|
* to form a relation in T -> [S -> K], which is subsequently
|
|
* uncurried to [T -> S] -> K.
|
|
* This result is then intersected with the dependence relation S -> K
|
|
* to form the output.
|
|
*
|
|
* In case a negative depth is given, NULL is returned to indicate an error.
|
|
*/
|
|
static __isl_give isl_map *coscheduled_source(__isl_keep isl_access_info *acc,
|
|
__isl_keep isl_map *old_map, int pos, int depth)
|
|
{
|
|
isl_space *space;
|
|
isl_set *set_C;
|
|
isl_map *read_map;
|
|
isl_map *write_map;
|
|
isl_map *dep_map;
|
|
isl_map *equal;
|
|
isl_map *map;
|
|
|
|
if (depth < 0)
|
|
return NULL;
|
|
|
|
set_C = isl_map_range(isl_map_copy(old_map));
|
|
read_map = isl_map_copy(acc->sink.map);
|
|
read_map = isl_map_intersect_domain(read_map, set_C);
|
|
write_map = isl_map_copy(acc->source[pos].map);
|
|
dep_map = isl_map_domain_product(write_map, read_map);
|
|
dep_map = isl_set_unwrap(isl_map_domain(dep_map));
|
|
space = isl_space_join(isl_map_get_space(old_map),
|
|
isl_space_reverse(isl_map_get_space(dep_map)));
|
|
equal = isl_map_from_basic_map(isl_basic_map_equal(space, depth));
|
|
map = isl_map_range_product(equal, isl_map_copy(old_map));
|
|
map = isl_map_uncurry(map);
|
|
map = isl_map_intersect_domain_factor_range(map, dep_map);
|
|
|
|
return map;
|
|
}
|
|
|
|
/* After the dependences derived from a must-source have been computed
|
|
* at a certain level, check if any of the sources of the must-dependences
|
|
* may be coscheduled with other sources.
|
|
* If they are any such sources, then there is no way of determining
|
|
* which of the sources actually comes last and the must-dependences
|
|
* need to be turned into may-dependences, while dependences from
|
|
* the other sources need to be added to the may-dependences as well.
|
|
* "acc" describes the sources and a callback for checking whether
|
|
* two sources may be coscheduled. If acc->coscheduled is NULL then
|
|
* the sources are assumed not to be coscheduled.
|
|
* "must_rel" and "may_rel" describe the must and may-dependence relations
|
|
* computed at the current level for the must-sources. Some of the dependences
|
|
* may be moved from "must_rel" to "may_rel".
|
|
* "flow" contains all dependences computed so far (apart from those
|
|
* in "must_rel" and "may_rel") and may be updated with additional
|
|
* dependences derived from may-sources.
|
|
*
|
|
* In particular, consider all the must-sources with a non-empty
|
|
* dependence relation in "must_rel". They are considered in reverse
|
|
* order because that is the order in which they are considered in the caller.
|
|
* If any of the must-sources are coscheduled, then the last one
|
|
* is the one that will have a corresponding dependence relation.
|
|
* For each must-source i, consider both all the previous must-sources
|
|
* and all the may-sources. If any of those may be coscheduled with
|
|
* must-source i, then compute the coscheduled instances that access
|
|
* the same memory elements. The result is a relation [T -> S] -> K.
|
|
* The projection onto T -> K is a subset of the must-dependence relation
|
|
* that needs to be turned into may-dependences.
|
|
* The projection onto S -> K needs to be added to the may-dependences
|
|
* of source S.
|
|
* Since a given must-source instance may be coscheduled with several
|
|
* other source instances, the dependences that need to be turned
|
|
* into may-dependences are first collected and only actually removed
|
|
* from the must-dependences after all other sources have been considered.
|
|
*/
|
|
static __isl_give isl_flow *handle_coscheduled(__isl_keep isl_access_info *acc,
|
|
__isl_keep isl_map **must_rel, __isl_keep isl_map **may_rel,
|
|
__isl_take isl_flow *flow)
|
|
{
|
|
int i, j;
|
|
|
|
if (!acc->coscheduled)
|
|
return flow;
|
|
for (i = acc->n_must - 1; i >= 0; --i) {
|
|
isl_map *move;
|
|
|
|
if (isl_map_plain_is_empty(must_rel[i]))
|
|
continue;
|
|
move = isl_map_empty(isl_map_get_space(must_rel[i]));
|
|
for (j = i - 1; j >= 0; --j) {
|
|
int depth;
|
|
isl_map *map, *factor;
|
|
|
|
if (!acc->coscheduled(acc->source[i].data,
|
|
acc->source[j].data))
|
|
continue;
|
|
depth = acc->level_before(acc->source[i].data,
|
|
acc->source[j].data) / 2;
|
|
map = coscheduled_source(acc, must_rel[i], j, depth);
|
|
factor = isl_map_domain_factor_range(isl_map_copy(map));
|
|
may_rel[j] = isl_map_union(may_rel[j], factor);
|
|
map = isl_map_domain_factor_domain(map);
|
|
move = isl_map_union(move, map);
|
|
}
|
|
for (j = 0; j < acc->n_may; ++j) {
|
|
int depth, pos;
|
|
isl_map *map, *factor;
|
|
|
|
pos = acc->n_must + j;
|
|
if (!acc->coscheduled(acc->source[i].data,
|
|
acc->source[pos].data))
|
|
continue;
|
|
depth = acc->level_before(acc->source[i].data,
|
|
acc->source[pos].data) / 2;
|
|
map = coscheduled_source(acc, must_rel[i], pos, depth);
|
|
factor = isl_map_domain_factor_range(isl_map_copy(map));
|
|
pos = 2 * acc->n_must + j;
|
|
flow->dep[pos].map = isl_map_union(flow->dep[pos].map,
|
|
factor);
|
|
map = isl_map_domain_factor_domain(map);
|
|
move = isl_map_union(move, map);
|
|
}
|
|
must_rel[i] = isl_map_subtract(must_rel[i], isl_map_copy(move));
|
|
may_rel[i] = isl_map_union(may_rel[i], move);
|
|
}
|
|
|
|
return flow;
|
|
}
|
|
|
|
/* Compute dependences for the case where all accesses are "may"
|
|
* accesses, which boils down to computing memory based dependences.
|
|
* The generic algorithm would also work in this case, but it would
|
|
* be overkill to use it.
|
|
*/
|
|
static __isl_give isl_flow *compute_mem_based_dependences(
|
|
__isl_keep isl_access_info *acc)
|
|
{
|
|
int i;
|
|
isl_set *mustdo;
|
|
isl_set *maydo;
|
|
isl_flow *res;
|
|
|
|
res = isl_flow_alloc(acc);
|
|
if (!res)
|
|
return NULL;
|
|
|
|
mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
|
|
maydo = isl_set_copy(mustdo);
|
|
|
|
for (i = 0; i < acc->n_may; ++i) {
|
|
int plevel;
|
|
int is_before;
|
|
isl_space *dim;
|
|
isl_map *before;
|
|
isl_map *dep;
|
|
|
|
plevel = acc->level_before(acc->source[i].data, acc->sink.data);
|
|
if (plevel < 0)
|
|
goto error;
|
|
|
|
is_before = plevel & 1;
|
|
plevel >>= 1;
|
|
|
|
dim = isl_map_get_space(res->dep[i].map);
|
|
if (is_before)
|
|
before = isl_map_lex_le_first(dim, plevel);
|
|
else
|
|
before = isl_map_lex_lt_first(dim, plevel);
|
|
dep = isl_map_apply_range(isl_map_copy(acc->source[i].map),
|
|
isl_map_reverse(isl_map_copy(acc->sink.map)));
|
|
dep = isl_map_intersect(dep, before);
|
|
mustdo = isl_set_subtract(mustdo,
|
|
isl_map_range(isl_map_copy(dep)));
|
|
res->dep[i].map = isl_map_union(res->dep[i].map, dep);
|
|
}
|
|
|
|
res->may_no_source = isl_set_subtract(maydo, isl_set_copy(mustdo));
|
|
res->must_no_source = mustdo;
|
|
|
|
return res;
|
|
error:
|
|
isl_set_free(mustdo);
|
|
isl_set_free(maydo);
|
|
isl_flow_free(res);
|
|
return NULL;
|
|
}
|
|
|
|
/* Compute dependences for the case where there is at least one
|
|
* "must" access.
|
|
*
|
|
* The core algorithm considers all levels in which a source may precede
|
|
* the sink, where a level may either be a statement level or a loop level.
|
|
* The outermost statement level is 1, the first loop level is 2, etc...
|
|
* The algorithm basically does the following:
|
|
* for all levels l of the read access from innermost to outermost
|
|
* for all sources w that may precede the sink access at that level
|
|
* compute the last iteration of the source that precedes the sink access
|
|
* at that level
|
|
* add result to possible last accesses at level l of source w
|
|
* for all sources w2 that we haven't considered yet at this level that may
|
|
* also precede the sink access
|
|
* for all levels l2 of w from l to innermost
|
|
* for all possible last accesses dep of w at l
|
|
* compute last iteration of w2 between the source and sink
|
|
* of dep
|
|
* add result to possible last accesses at level l of write w2
|
|
* and replace possible last accesses dep by the remainder
|
|
*
|
|
*
|
|
* The above algorithm is applied to the must access. During the course
|
|
* of the algorithm, we keep track of sink iterations that still
|
|
* need to be considered. These iterations are split into those that
|
|
* haven't been matched to any source access (mustdo) and those that have only
|
|
* been matched to may accesses (maydo).
|
|
* At the end of each level, must-sources and may-sources that are coscheduled
|
|
* with the sources of the must-dependences at that level are considered.
|
|
* If any coscheduled instances are found, then corresponding may-dependences
|
|
* are added and the original must-dependences are turned into may-dependences.
|
|
* Afterwards, the may accesses that occur after must-dependence sources
|
|
* are considered.
|
|
* In particular, we consider may accesses that precede the remaining
|
|
* sink iterations, moving elements from mustdo to maydo when appropriate,
|
|
* and may accesses that occur between a must source and a sink of any
|
|
* dependences found at the current level, turning must dependences into
|
|
* may dependences when appropriate.
|
|
*
|
|
*/
|
|
static __isl_give isl_flow *compute_val_based_dependences(
|
|
__isl_keep isl_access_info *acc)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_flow *res;
|
|
isl_set *mustdo = NULL;
|
|
isl_set *maydo = NULL;
|
|
int level, j;
|
|
int depth;
|
|
isl_map **must_rel = NULL;
|
|
isl_map **may_rel = NULL;
|
|
|
|
if (!acc)
|
|
return NULL;
|
|
|
|
res = isl_flow_alloc(acc);
|
|
if (!res)
|
|
goto error;
|
|
ctx = isl_map_get_ctx(acc->sink.map);
|
|
|
|
depth = 2 * isl_map_dim(acc->sink.map, isl_dim_in) + 1;
|
|
mustdo = isl_map_domain(isl_map_copy(acc->sink.map));
|
|
maydo = isl_set_empty(isl_set_get_space(mustdo));
|
|
if (!mustdo || !maydo)
|
|
goto error;
|
|
if (isl_set_plain_is_empty(mustdo))
|
|
goto done;
|
|
|
|
must_rel = isl_calloc_array(ctx, struct isl_map *, acc->n_must);
|
|
may_rel = isl_calloc_array(ctx, struct isl_map *, acc->n_must);
|
|
if (!must_rel || !may_rel)
|
|
goto error;
|
|
|
|
for (level = depth; level >= 1; --level) {
|
|
for (j = acc->n_must-1; j >=0; --j) {
|
|
isl_space *space;
|
|
space = isl_map_get_space(res->dep[2 * j].map);
|
|
must_rel[j] = isl_map_empty(space);
|
|
may_rel[j] = isl_map_copy(must_rel[j]);
|
|
}
|
|
|
|
for (j = acc->n_must - 1; j >= 0; --j) {
|
|
struct isl_map *T;
|
|
struct isl_set *rest;
|
|
int plevel;
|
|
|
|
plevel = acc->level_before(acc->source[j].data,
|
|
acc->sink.data);
|
|
if (plevel < 0)
|
|
goto error;
|
|
if (!can_precede_at_level(plevel, level))
|
|
continue;
|
|
|
|
T = last_source(acc, mustdo, j, level, &rest);
|
|
must_rel[j] = isl_map_union_disjoint(must_rel[j], T);
|
|
mustdo = rest;
|
|
|
|
if (intermediate_sources(acc, must_rel, j, level) < 0)
|
|
goto error;
|
|
|
|
T = last_source(acc, maydo, j, level, &rest);
|
|
may_rel[j] = isl_map_union_disjoint(may_rel[j], T);
|
|
maydo = rest;
|
|
|
|
if (intermediate_sources(acc, may_rel, j, level) < 0)
|
|
goto error;
|
|
|
|
if (isl_set_plain_is_empty(mustdo) &&
|
|
isl_set_plain_is_empty(maydo))
|
|
break;
|
|
}
|
|
for (j = j - 1; j >= 0; --j) {
|
|
int plevel;
|
|
|
|
plevel = acc->level_before(acc->source[j].data,
|
|
acc->sink.data);
|
|
if (plevel < 0)
|
|
goto error;
|
|
if (!can_precede_at_level(plevel, level))
|
|
continue;
|
|
|
|
if (intermediate_sources(acc, must_rel, j, level) < 0)
|
|
goto error;
|
|
if (intermediate_sources(acc, may_rel, j, level) < 0)
|
|
goto error;
|
|
}
|
|
|
|
handle_coscheduled(acc, must_rel, may_rel, res);
|
|
|
|
for (j = 0; j < acc->n_may; ++j) {
|
|
int plevel;
|
|
isl_map *T;
|
|
isl_set *ran;
|
|
|
|
plevel = acc->level_before(acc->source[acc->n_must + j].data,
|
|
acc->sink.data);
|
|
if (plevel < 0)
|
|
goto error;
|
|
if (!can_precede_at_level(plevel, level))
|
|
continue;
|
|
|
|
T = all_sources(acc, isl_set_copy(maydo), j, level);
|
|
res->dep[2 * acc->n_must + j].map =
|
|
isl_map_union(res->dep[2 * acc->n_must + j].map, T);
|
|
T = all_sources(acc, isl_set_copy(mustdo), j, level);
|
|
ran = isl_map_range(isl_map_copy(T));
|
|
res->dep[2 * acc->n_must + j].map =
|
|
isl_map_union(res->dep[2 * acc->n_must + j].map, T);
|
|
mustdo = isl_set_subtract(mustdo, isl_set_copy(ran));
|
|
maydo = isl_set_union_disjoint(maydo, ran);
|
|
|
|
T = res->dep[2 * acc->n_must + j].map;
|
|
T = all_intermediate_sources(acc, T, must_rel, may_rel,
|
|
j, level);
|
|
res->dep[2 * acc->n_must + j].map = T;
|
|
}
|
|
|
|
for (j = acc->n_must - 1; j >= 0; --j) {
|
|
res->dep[2 * j].map =
|
|
isl_map_union_disjoint(res->dep[2 * j].map,
|
|
must_rel[j]);
|
|
res->dep[2 * j + 1].map =
|
|
isl_map_union_disjoint(res->dep[2 * j + 1].map,
|
|
may_rel[j]);
|
|
}
|
|
|
|
if (isl_set_plain_is_empty(mustdo) &&
|
|
isl_set_plain_is_empty(maydo))
|
|
break;
|
|
}
|
|
|
|
free(must_rel);
|
|
free(may_rel);
|
|
done:
|
|
res->must_no_source = mustdo;
|
|
res->may_no_source = maydo;
|
|
return res;
|
|
error:
|
|
if (must_rel)
|
|
for (j = 0; j < acc->n_must; ++j)
|
|
isl_map_free(must_rel[j]);
|
|
if (may_rel)
|
|
for (j = 0; j < acc->n_must; ++j)
|
|
isl_map_free(may_rel[j]);
|
|
isl_flow_free(res);
|
|
isl_set_free(mustdo);
|
|
isl_set_free(maydo);
|
|
free(must_rel);
|
|
free(may_rel);
|
|
return NULL;
|
|
}
|
|
|
|
/* Given a "sink" access, a list of n "source" accesses,
|
|
* compute for each iteration of the sink access
|
|
* and for each element accessed by that iteration,
|
|
* the source access in the list that last accessed the
|
|
* element accessed by the sink access before this sink access.
|
|
* Each access is given as a map from the loop iterators
|
|
* to the array indices.
|
|
* The result is a list of n relations between source and sink
|
|
* iterations and a subset of the domain of the sink access,
|
|
* corresponding to those iterations that access an element
|
|
* not previously accessed.
|
|
*
|
|
* To deal with multi-valued sink access relations, the sink iteration
|
|
* domain is first extended with dimensions that correspond to the data
|
|
* space. However, these extra dimensions are not projected out again.
|
|
* It is up to the caller to decide whether these dimensions should be kept.
|
|
*/
|
|
static __isl_give isl_flow *access_info_compute_flow_core(
|
|
__isl_take isl_access_info *acc)
|
|
{
|
|
struct isl_flow *res = NULL;
|
|
|
|
if (!acc)
|
|
return NULL;
|
|
|
|
acc->sink.map = isl_map_range_map(acc->sink.map);
|
|
if (!acc->sink.map)
|
|
goto error;
|
|
|
|
if (acc->n_must == 0)
|
|
res = compute_mem_based_dependences(acc);
|
|
else {
|
|
acc = isl_access_info_sort_sources(acc);
|
|
res = compute_val_based_dependences(acc);
|
|
}
|
|
acc = isl_access_info_free(acc);
|
|
if (!res)
|
|
return NULL;
|
|
if (!res->must_no_source || !res->may_no_source)
|
|
goto error;
|
|
return res;
|
|
error:
|
|
isl_access_info_free(acc);
|
|
isl_flow_free(res);
|
|
return NULL;
|
|
}
|
|
|
|
/* Given a "sink" access, a list of n "source" accesses,
|
|
* compute for each iteration of the sink access
|
|
* and for each element accessed by that iteration,
|
|
* the source access in the list that last accessed the
|
|
* element accessed by the sink access before this sink access.
|
|
* Each access is given as a map from the loop iterators
|
|
* to the array indices.
|
|
* The result is a list of n relations between source and sink
|
|
* iterations and a subset of the domain of the sink access,
|
|
* corresponding to those iterations that access an element
|
|
* not previously accessed.
|
|
*
|
|
* To deal with multi-valued sink access relations,
|
|
* access_info_compute_flow_core extends the sink iteration domain
|
|
* with dimensions that correspond to the data space. These extra dimensions
|
|
* are projected out from the result of access_info_compute_flow_core.
|
|
*/
|
|
__isl_give isl_flow *isl_access_info_compute_flow(__isl_take isl_access_info *acc)
|
|
{
|
|
int j;
|
|
struct isl_flow *res;
|
|
|
|
if (!acc)
|
|
return NULL;
|
|
|
|
acc->domain_map = isl_map_domain_map(isl_map_copy(acc->sink.map));
|
|
res = access_info_compute_flow_core(acc);
|
|
if (!res)
|
|
return NULL;
|
|
|
|
for (j = 0; j < res->n_source; ++j) {
|
|
res->dep[j].map = isl_map_range_factor_domain(res->dep[j].map);
|
|
if (!res->dep[j].map)
|
|
goto error;
|
|
}
|
|
|
|
return res;
|
|
error:
|
|
isl_flow_free(res);
|
|
return NULL;
|
|
}
|
|
|
|
|
|
/* Keep track of some information about a schedule for a given
|
|
* access. In particular, keep track of which dimensions
|
|
* have a constant value and of the actual constant values.
|
|
*/
|
|
struct isl_sched_info {
|
|
int *is_cst;
|
|
isl_vec *cst;
|
|
};
|
|
|
|
static void sched_info_free(__isl_take struct isl_sched_info *info)
|
|
{
|
|
if (!info)
|
|
return;
|
|
isl_vec_free(info->cst);
|
|
free(info->is_cst);
|
|
free(info);
|
|
}
|
|
|
|
/* Extract information on the constant dimensions of the schedule
|
|
* for a given access. The "map" is of the form
|
|
*
|
|
* [S -> D] -> A
|
|
*
|
|
* with S the schedule domain, D the iteration domain and A the data domain.
|
|
*/
|
|
static __isl_give struct isl_sched_info *sched_info_alloc(
|
|
__isl_keep isl_map *map)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_space *dim;
|
|
struct isl_sched_info *info;
|
|
int i, n;
|
|
|
|
if (!map)
|
|
return NULL;
|
|
|
|
dim = isl_space_unwrap(isl_space_domain(isl_map_get_space(map)));
|
|
if (!dim)
|
|
return NULL;
|
|
n = isl_space_dim(dim, isl_dim_in);
|
|
isl_space_free(dim);
|
|
|
|
ctx = isl_map_get_ctx(map);
|
|
info = isl_alloc_type(ctx, struct isl_sched_info);
|
|
if (!info)
|
|
return NULL;
|
|
info->is_cst = isl_alloc_array(ctx, int, n);
|
|
info->cst = isl_vec_alloc(ctx, n);
|
|
if (n && (!info->is_cst || !info->cst))
|
|
goto error;
|
|
|
|
for (i = 0; i < n; ++i) {
|
|
isl_val *v;
|
|
|
|
v = isl_map_plain_get_val_if_fixed(map, isl_dim_in, i);
|
|
if (!v)
|
|
goto error;
|
|
info->is_cst[i] = !isl_val_is_nan(v);
|
|
if (info->is_cst[i])
|
|
info->cst = isl_vec_set_element_val(info->cst, i, v);
|
|
else
|
|
isl_val_free(v);
|
|
}
|
|
|
|
return info;
|
|
error:
|
|
sched_info_free(info);
|
|
return NULL;
|
|
}
|
|
|
|
/* The different types of access relations that isl_union_access_info
|
|
* keeps track of.
|
|
|
|
* "isl_access_sink" represents the sink accesses.
|
|
* "isl_access_must_source" represents the definite source accesses.
|
|
* "isl_access_may_source" represents the possible source accesses.
|
|
* "isl_access_kill" represents the kills.
|
|
*
|
|
* isl_access_sink is sometimes treated differently and
|
|
* should therefore appear first.
|
|
*/
|
|
enum isl_access_type {
|
|
isl_access_sink,
|
|
isl_access_must_source,
|
|
isl_access_may_source,
|
|
isl_access_kill,
|
|
isl_access_end
|
|
};
|
|
|
|
/* This structure represents the input for a dependence analysis computation.
|
|
*
|
|
* "access" contains the access relations.
|
|
*
|
|
* "schedule" or "schedule_map" represents the execution order.
|
|
* Exactly one of these fields should be NULL. The other field
|
|
* determines the execution order.
|
|
*
|
|
* The domains of these four maps refer to the same iteration spaces(s).
|
|
* The ranges of the first three maps also refer to the same data space(s).
|
|
*
|
|
* After a call to isl_union_access_info_introduce_schedule,
|
|
* the "schedule_map" field no longer contains useful information.
|
|
*/
|
|
struct isl_union_access_info {
|
|
isl_union_map *access[isl_access_end];
|
|
|
|
isl_schedule *schedule;
|
|
isl_union_map *schedule_map;
|
|
};
|
|
|
|
/* Free "access" and return NULL.
|
|
*/
|
|
__isl_null isl_union_access_info *isl_union_access_info_free(
|
|
__isl_take isl_union_access_info *access)
|
|
{
|
|
enum isl_access_type i;
|
|
|
|
if (!access)
|
|
return NULL;
|
|
|
|
for (i = isl_access_sink; i < isl_access_end; ++i)
|
|
isl_union_map_free(access->access[i]);
|
|
isl_schedule_free(access->schedule);
|
|
isl_union_map_free(access->schedule_map);
|
|
free(access);
|
|
|
|
return NULL;
|
|
}
|
|
|
|
/* Return the isl_ctx to which "access" belongs.
|
|
*/
|
|
isl_ctx *isl_union_access_info_get_ctx(__isl_keep isl_union_access_info *access)
|
|
{
|
|
if (!access)
|
|
return NULL;
|
|
return isl_union_map_get_ctx(access->access[isl_access_sink]);
|
|
}
|
|
|
|
/* Construct an empty (invalid) isl_union_access_info object.
|
|
* The caller is responsible for setting the sink access relation and
|
|
* initializing all the other fields, e.g., by calling
|
|
* isl_union_access_info_init.
|
|
*/
|
|
static __isl_give isl_union_access_info *isl_union_access_info_alloc(
|
|
isl_ctx *ctx)
|
|
{
|
|
return isl_calloc_type(ctx, isl_union_access_info);
|
|
}
|
|
|
|
/* Initialize all the fields of "info", except the sink access relation,
|
|
* which is assumed to have been set by the caller.
|
|
*
|
|
* By default, we use the schedule field of the isl_union_access_info,
|
|
* but this may be overridden by a call
|
|
* to isl_union_access_info_set_schedule_map.
|
|
*/
|
|
static __isl_give isl_union_access_info *isl_union_access_info_init(
|
|
__isl_take isl_union_access_info *info)
|
|
{
|
|
isl_space *space;
|
|
isl_union_map *empty;
|
|
enum isl_access_type i;
|
|
|
|
if (!info)
|
|
return NULL;
|
|
if (!info->access[isl_access_sink])
|
|
return isl_union_access_info_free(info);
|
|
|
|
space = isl_union_map_get_space(info->access[isl_access_sink]);
|
|
empty = isl_union_map_empty(isl_space_copy(space));
|
|
for (i = isl_access_sink + 1; i < isl_access_end; ++i)
|
|
if (!info->access[i])
|
|
info->access[i] = isl_union_map_copy(empty);
|
|
isl_union_map_free(empty);
|
|
if (!info->schedule && !info->schedule_map)
|
|
info->schedule = isl_schedule_empty(isl_space_copy(space));
|
|
isl_space_free(space);
|
|
|
|
for (i = isl_access_sink + 1; i < isl_access_end; ++i)
|
|
if (!info->access[i])
|
|
return isl_union_access_info_free(info);
|
|
if (!info->schedule && !info->schedule_map)
|
|
return isl_union_access_info_free(info);
|
|
|
|
return info;
|
|
}
|
|
|
|
/* Create a new isl_union_access_info with the given sink accesses and
|
|
* and no other accesses or schedule information.
|
|
*/
|
|
__isl_give isl_union_access_info *isl_union_access_info_from_sink(
|
|
__isl_take isl_union_map *sink)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_union_access_info *access;
|
|
|
|
if (!sink)
|
|
return NULL;
|
|
ctx = isl_union_map_get_ctx(sink);
|
|
access = isl_union_access_info_alloc(ctx);
|
|
if (!access)
|
|
goto error;
|
|
access->access[isl_access_sink] = sink;
|
|
return isl_union_access_info_init(access);
|
|
error:
|
|
isl_union_map_free(sink);
|
|
return NULL;
|
|
}
|
|
|
|
/* Replace the access relation of type "type" of "info" by "access".
|
|
*/
|
|
static __isl_give isl_union_access_info *isl_union_access_info_set(
|
|
__isl_take isl_union_access_info *info,
|
|
enum isl_access_type type, __isl_take isl_union_map *access)
|
|
{
|
|
if (!info || !access)
|
|
goto error;
|
|
|
|
isl_union_map_free(info->access[type]);
|
|
info->access[type] = access;
|
|
|
|
return info;
|
|
error:
|
|
isl_union_access_info_free(info);
|
|
isl_union_map_free(access);
|
|
return NULL;
|
|
}
|
|
|
|
/* Replace the definite source accesses of "access" by "must_source".
|
|
*/
|
|
__isl_give isl_union_access_info *isl_union_access_info_set_must_source(
|
|
__isl_take isl_union_access_info *access,
|
|
__isl_take isl_union_map *must_source)
|
|
{
|
|
return isl_union_access_info_set(access, isl_access_must_source,
|
|
must_source);
|
|
}
|
|
|
|
/* Replace the possible source accesses of "access" by "may_source".
|
|
*/
|
|
__isl_give isl_union_access_info *isl_union_access_info_set_may_source(
|
|
__isl_take isl_union_access_info *access,
|
|
__isl_take isl_union_map *may_source)
|
|
{
|
|
return isl_union_access_info_set(access, isl_access_may_source,
|
|
may_source);
|
|
}
|
|
|
|
/* Replace the kills of "info" by "kill".
|
|
*/
|
|
__isl_give isl_union_access_info *isl_union_access_info_set_kill(
|
|
__isl_take isl_union_access_info *info, __isl_take isl_union_map *kill)
|
|
{
|
|
return isl_union_access_info_set(info, isl_access_kill, kill);
|
|
}
|
|
|
|
/* Return the access relation of type "type" of "info".
|
|
*/
|
|
static __isl_give isl_union_map *isl_union_access_info_get(
|
|
__isl_keep isl_union_access_info *info, enum isl_access_type type)
|
|
{
|
|
if (!info)
|
|
return NULL;
|
|
return isl_union_map_copy(info->access[type]);
|
|
}
|
|
|
|
/* Return the definite source accesses of "info".
|
|
*/
|
|
__isl_give isl_union_map *isl_union_access_info_get_must_source(
|
|
__isl_keep isl_union_access_info *info)
|
|
{
|
|
return isl_union_access_info_get(info, isl_access_must_source);
|
|
}
|
|
|
|
/* Return the possible source accesses of "info".
|
|
*/
|
|
__isl_give isl_union_map *isl_union_access_info_get_may_source(
|
|
__isl_keep isl_union_access_info *info)
|
|
{
|
|
return isl_union_access_info_get(info, isl_access_may_source);
|
|
}
|
|
|
|
/* Return the kills of "info".
|
|
*/
|
|
__isl_give isl_union_map *isl_union_access_info_get_kill(
|
|
__isl_keep isl_union_access_info *info)
|
|
{
|
|
return isl_union_access_info_get(info, isl_access_kill);
|
|
}
|
|
|
|
/* Does "info" specify any kills?
|
|
*/
|
|
static isl_bool isl_union_access_has_kill(
|
|
__isl_keep isl_union_access_info *info)
|
|
{
|
|
isl_bool empty;
|
|
|
|
if (!info)
|
|
return isl_bool_error;
|
|
empty = isl_union_map_is_empty(info->access[isl_access_kill]);
|
|
return isl_bool_not(empty);
|
|
}
|
|
|
|
/* Replace the schedule of "access" by "schedule".
|
|
* Also free the schedule_map in case it was set last.
|
|
*/
|
|
__isl_give isl_union_access_info *isl_union_access_info_set_schedule(
|
|
__isl_take isl_union_access_info *access,
|
|
__isl_take isl_schedule *schedule)
|
|
{
|
|
if (!access || !schedule)
|
|
goto error;
|
|
|
|
access->schedule_map = isl_union_map_free(access->schedule_map);
|
|
isl_schedule_free(access->schedule);
|
|
access->schedule = schedule;
|
|
|
|
return access;
|
|
error:
|
|
isl_union_access_info_free(access);
|
|
isl_schedule_free(schedule);
|
|
return NULL;
|
|
}
|
|
|
|
/* Replace the schedule map of "access" by "schedule_map".
|
|
* Also free the schedule in case it was set last.
|
|
*/
|
|
__isl_give isl_union_access_info *isl_union_access_info_set_schedule_map(
|
|
__isl_take isl_union_access_info *access,
|
|
__isl_take isl_union_map *schedule_map)
|
|
{
|
|
if (!access || !schedule_map)
|
|
goto error;
|
|
|
|
isl_union_map_free(access->schedule_map);
|
|
access->schedule = isl_schedule_free(access->schedule);
|
|
access->schedule_map = schedule_map;
|
|
|
|
return access;
|
|
error:
|
|
isl_union_access_info_free(access);
|
|
isl_union_map_free(schedule_map);
|
|
return NULL;
|
|
}
|
|
|
|
__isl_give isl_union_access_info *isl_union_access_info_copy(
|
|
__isl_keep isl_union_access_info *access)
|
|
{
|
|
isl_union_access_info *copy;
|
|
enum isl_access_type i;
|
|
|
|
if (!access)
|
|
return NULL;
|
|
copy = isl_union_access_info_from_sink(
|
|
isl_union_map_copy(access->access[isl_access_sink]));
|
|
for (i = isl_access_sink + 1; i < isl_access_end; ++i)
|
|
copy = isl_union_access_info_set(copy, i,
|
|
isl_union_map_copy(access->access[i]));
|
|
if (access->schedule)
|
|
copy = isl_union_access_info_set_schedule(copy,
|
|
isl_schedule_copy(access->schedule));
|
|
else
|
|
copy = isl_union_access_info_set_schedule_map(copy,
|
|
isl_union_map_copy(access->schedule_map));
|
|
|
|
return copy;
|
|
}
|
|
|
|
/* Print a key-value pair of a YAML mapping to "p",
|
|
* with key "name" and value "umap".
|
|
*/
|
|
static __isl_give isl_printer *print_union_map_field(__isl_take isl_printer *p,
|
|
const char *name, __isl_keep isl_union_map *umap)
|
|
{
|
|
p = isl_printer_print_str(p, name);
|
|
p = isl_printer_yaml_next(p);
|
|
p = isl_printer_print_str(p, "\"");
|
|
p = isl_printer_print_union_map(p, umap);
|
|
p = isl_printer_print_str(p, "\"");
|
|
p = isl_printer_yaml_next(p);
|
|
|
|
return p;
|
|
}
|
|
|
|
/* An enumeration of the various keys that may appear in a YAML mapping
|
|
* of an isl_union_access_info object.
|
|
* The keys for the access relation types are assumed to have the same values
|
|
* as the access relation types in isl_access_type.
|
|
*/
|
|
enum isl_ai_key {
|
|
isl_ai_key_error = -1,
|
|
isl_ai_key_sink = isl_access_sink,
|
|
isl_ai_key_must_source = isl_access_must_source,
|
|
isl_ai_key_may_source = isl_access_may_source,
|
|
isl_ai_key_kill = isl_access_kill,
|
|
isl_ai_key_schedule_map,
|
|
isl_ai_key_schedule,
|
|
isl_ai_key_end
|
|
};
|
|
|
|
/* Textual representations of the YAML keys for an isl_union_access_info
|
|
* object.
|
|
*/
|
|
static char *key_str[] = {
|
|
[isl_ai_key_sink] = "sink",
|
|
[isl_ai_key_must_source] = "must_source",
|
|
[isl_ai_key_may_source] = "may_source",
|
|
[isl_ai_key_kill] = "kill",
|
|
[isl_ai_key_schedule_map] = "schedule_map",
|
|
[isl_ai_key_schedule] = "schedule",
|
|
};
|
|
|
|
/* Print a key-value pair corresponding to the access relation of type "type"
|
|
* of a YAML mapping of "info" to "p".
|
|
*
|
|
* The sink access relation is always printed, but any other access relation
|
|
* is only printed if it is non-empty.
|
|
*/
|
|
static __isl_give isl_printer *print_access_field(__isl_take isl_printer *p,
|
|
__isl_keep isl_union_access_info *info, enum isl_access_type type)
|
|
{
|
|
if (type != isl_access_sink) {
|
|
isl_bool empty;
|
|
|
|
empty = isl_union_map_is_empty(info->access[type]);
|
|
if (empty < 0)
|
|
return isl_printer_free(p);
|
|
if (empty)
|
|
return p;
|
|
}
|
|
return print_union_map_field(p, key_str[type], info->access[type]);
|
|
}
|
|
|
|
/* Print the information contained in "access" to "p".
|
|
* The information is printed as a YAML document.
|
|
*/
|
|
__isl_give isl_printer *isl_printer_print_union_access_info(
|
|
__isl_take isl_printer *p, __isl_keep isl_union_access_info *access)
|
|
{
|
|
enum isl_access_type i;
|
|
|
|
if (!access)
|
|
return isl_printer_free(p);
|
|
|
|
p = isl_printer_yaml_start_mapping(p);
|
|
for (i = isl_access_sink; i < isl_access_end; ++i)
|
|
p = print_access_field(p, access, i);
|
|
if (access->schedule) {
|
|
p = isl_printer_print_str(p, key_str[isl_ai_key_schedule]);
|
|
p = isl_printer_yaml_next(p);
|
|
p = isl_printer_print_schedule(p, access->schedule);
|
|
p = isl_printer_yaml_next(p);
|
|
} else {
|
|
p = print_union_map_field(p, key_str[isl_ai_key_schedule_map],
|
|
access->schedule_map);
|
|
}
|
|
p = isl_printer_yaml_end_mapping(p);
|
|
|
|
return p;
|
|
}
|
|
|
|
/* Return a string representation of the information in "access".
|
|
* The information is printed in flow format.
|
|
*/
|
|
__isl_give char *isl_union_access_info_to_str(
|
|
__isl_keep isl_union_access_info *access)
|
|
{
|
|
isl_printer *p;
|
|
char *s;
|
|
|
|
if (!access)
|
|
return NULL;
|
|
|
|
p = isl_printer_to_str(isl_union_access_info_get_ctx(access));
|
|
p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW);
|
|
p = isl_printer_print_union_access_info(p, access);
|
|
s = isl_printer_get_str(p);
|
|
isl_printer_free(p);
|
|
|
|
return s;
|
|
}
|
|
|
|
#undef KEY
|
|
#define KEY enum isl_ai_key
|
|
#undef KEY_ERROR
|
|
#define KEY_ERROR isl_ai_key_error
|
|
#undef KEY_END
|
|
#define KEY_END isl_ai_key_end
|
|
#include "extract_key.c"
|
|
|
|
#undef BASE
|
|
#define BASE union_map
|
|
#include "read_in_string_templ.c"
|
|
|
|
/* Read an isl_union_access_info object from "s".
|
|
*
|
|
* Start off with an empty (invalid) isl_union_access_info object and
|
|
* then fill up the fields based on the input.
|
|
* The input needs to contain at least a description of the sink
|
|
* access relation as well as some form of schedule.
|
|
* The other access relations are set to empty relations
|
|
* by isl_union_access_info_init if they are not specified in the input.
|
|
*/
|
|
__isl_give isl_union_access_info *isl_stream_read_union_access_info(
|
|
isl_stream *s)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_union_access_info *info;
|
|
int more;
|
|
int sink_set = 0;
|
|
int schedule_set = 0;
|
|
|
|
if (isl_stream_yaml_read_start_mapping(s))
|
|
return NULL;
|
|
|
|
ctx = isl_stream_get_ctx(s);
|
|
info = isl_union_access_info_alloc(ctx);
|
|
while ((more = isl_stream_yaml_next(s)) > 0) {
|
|
enum isl_ai_key key;
|
|
isl_union_map *access, *schedule_map;
|
|
isl_schedule *schedule;
|
|
|
|
key = get_key(s);
|
|
if (isl_stream_yaml_next(s) < 0)
|
|
return isl_union_access_info_free(info);
|
|
switch (key) {
|
|
case isl_ai_key_end:
|
|
case isl_ai_key_error:
|
|
return isl_union_access_info_free(info);
|
|
case isl_ai_key_sink:
|
|
sink_set = 1;
|
|
case isl_ai_key_must_source:
|
|
case isl_ai_key_may_source:
|
|
case isl_ai_key_kill:
|
|
access = read_union_map(s);
|
|
info = isl_union_access_info_set(info, key, access);
|
|
if (!info)
|
|
return NULL;
|
|
break;
|
|
case isl_ai_key_schedule_map:
|
|
schedule_set = 1;
|
|
schedule_map = read_union_map(s);
|
|
info = isl_union_access_info_set_schedule_map(info,
|
|
schedule_map);
|
|
if (!info)
|
|
return NULL;
|
|
break;
|
|
case isl_ai_key_schedule:
|
|
schedule_set = 1;
|
|
schedule = isl_stream_read_schedule(s);
|
|
info = isl_union_access_info_set_schedule(info,
|
|
schedule);
|
|
if (!info)
|
|
return NULL;
|
|
break;
|
|
}
|
|
}
|
|
if (more < 0)
|
|
return isl_union_access_info_free(info);
|
|
|
|
if (isl_stream_yaml_read_end_mapping(s) < 0) {
|
|
isl_stream_error(s, NULL, "unexpected extra elements");
|
|
return isl_union_access_info_free(info);
|
|
}
|
|
|
|
if (!sink_set) {
|
|
isl_stream_error(s, NULL, "no sink specified");
|
|
return isl_union_access_info_free(info);
|
|
}
|
|
|
|
if (!schedule_set) {
|
|
isl_stream_error(s, NULL, "no schedule specified");
|
|
return isl_union_access_info_free(info);
|
|
}
|
|
|
|
return isl_union_access_info_init(info);
|
|
}
|
|
|
|
/* Read an isl_union_access_info object from the file "input".
|
|
*/
|
|
__isl_give isl_union_access_info *isl_union_access_info_read_from_file(
|
|
isl_ctx *ctx, FILE *input)
|
|
{
|
|
isl_stream *s;
|
|
isl_union_access_info *access;
|
|
|
|
s = isl_stream_new_file(ctx, input);
|
|
if (!s)
|
|
return NULL;
|
|
access = isl_stream_read_union_access_info(s);
|
|
isl_stream_free(s);
|
|
|
|
return access;
|
|
}
|
|
|
|
/* Update the fields of "access" such that they all have the same parameters,
|
|
* keeping in mind that the schedule_map field may be NULL and ignoring
|
|
* the schedule field.
|
|
*/
|
|
static __isl_give isl_union_access_info *isl_union_access_info_align_params(
|
|
__isl_take isl_union_access_info *access)
|
|
{
|
|
isl_space *space;
|
|
enum isl_access_type i;
|
|
|
|
if (!access)
|
|
return NULL;
|
|
|
|
space = isl_union_map_get_space(access->access[isl_access_sink]);
|
|
for (i = isl_access_sink + 1; i < isl_access_end; ++i)
|
|
space = isl_space_align_params(space,
|
|
isl_union_map_get_space(access->access[i]));
|
|
if (access->schedule_map)
|
|
space = isl_space_align_params(space,
|
|
isl_union_map_get_space(access->schedule_map));
|
|
for (i = isl_access_sink; i < isl_access_end; ++i)
|
|
access->access[i] =
|
|
isl_union_map_align_params(access->access[i],
|
|
isl_space_copy(space));
|
|
if (!access->schedule_map) {
|
|
isl_space_free(space);
|
|
} else {
|
|
access->schedule_map =
|
|
isl_union_map_align_params(access->schedule_map, space);
|
|
if (!access->schedule_map)
|
|
return isl_union_access_info_free(access);
|
|
}
|
|
|
|
for (i = isl_access_sink; i < isl_access_end; ++i)
|
|
if (!access->access[i])
|
|
return isl_union_access_info_free(access);
|
|
|
|
return access;
|
|
}
|
|
|
|
/* Prepend the schedule dimensions to the iteration domains.
|
|
*
|
|
* That is, if the schedule is of the form
|
|
*
|
|
* D -> S
|
|
*
|
|
* while the access relations are of the form
|
|
*
|
|
* D -> A
|
|
*
|
|
* then the updated access relations are of the form
|
|
*
|
|
* [S -> D] -> A
|
|
*
|
|
* The schedule map is also replaced by the map
|
|
*
|
|
* [S -> D] -> D
|
|
*
|
|
* that is used during the internal computation.
|
|
* Neither the original schedule map nor this updated schedule map
|
|
* are used after the call to this function.
|
|
*/
|
|
static __isl_give isl_union_access_info *
|
|
isl_union_access_info_introduce_schedule(
|
|
__isl_take isl_union_access_info *access)
|
|
{
|
|
isl_union_map *sm;
|
|
enum isl_access_type i;
|
|
|
|
if (!access)
|
|
return NULL;
|
|
|
|
sm = isl_union_map_reverse(access->schedule_map);
|
|
sm = isl_union_map_range_map(sm);
|
|
for (i = isl_access_sink; i < isl_access_end; ++i)
|
|
access->access[i] =
|
|
isl_union_map_apply_range(isl_union_map_copy(sm),
|
|
access->access[i]);
|
|
access->schedule_map = sm;
|
|
|
|
for (i = isl_access_sink; i < isl_access_end; ++i)
|
|
if (!access->access[i])
|
|
return isl_union_access_info_free(access);
|
|
if (!access->schedule_map)
|
|
return isl_union_access_info_free(access);
|
|
|
|
return access;
|
|
}
|
|
|
|
/* This structure represents the result of a dependence analysis computation.
|
|
*
|
|
* "must_dep" represents the full definite dependences
|
|
* "may_dep" represents the full non-definite dependences.
|
|
* Both are of the form
|
|
*
|
|
* [Source] -> [[Sink -> Data]]
|
|
*
|
|
* (after the schedule dimensions have been projected out).
|
|
* "must_no_source" represents the subset of the sink accesses for which
|
|
* definitely no source was found.
|
|
* "may_no_source" represents the subset of the sink accesses for which
|
|
* possibly, but not definitely, no source was found.
|
|
*/
|
|
struct isl_union_flow {
|
|
isl_union_map *must_dep;
|
|
isl_union_map *may_dep;
|
|
isl_union_map *must_no_source;
|
|
isl_union_map *may_no_source;
|
|
};
|
|
|
|
/* Return the isl_ctx to which "flow" belongs.
|
|
*/
|
|
isl_ctx *isl_union_flow_get_ctx(__isl_keep isl_union_flow *flow)
|
|
{
|
|
return flow ? isl_union_map_get_ctx(flow->must_dep) : NULL;
|
|
}
|
|
|
|
/* Free "flow" and return NULL.
|
|
*/
|
|
__isl_null isl_union_flow *isl_union_flow_free(__isl_take isl_union_flow *flow)
|
|
{
|
|
if (!flow)
|
|
return NULL;
|
|
isl_union_map_free(flow->must_dep);
|
|
isl_union_map_free(flow->may_dep);
|
|
isl_union_map_free(flow->must_no_source);
|
|
isl_union_map_free(flow->may_no_source);
|
|
free(flow);
|
|
return NULL;
|
|
}
|
|
|
|
void isl_union_flow_dump(__isl_keep isl_union_flow *flow)
|
|
{
|
|
if (!flow)
|
|
return;
|
|
|
|
fprintf(stderr, "must dependences: ");
|
|
isl_union_map_dump(flow->must_dep);
|
|
fprintf(stderr, "may dependences: ");
|
|
isl_union_map_dump(flow->may_dep);
|
|
fprintf(stderr, "must no source: ");
|
|
isl_union_map_dump(flow->must_no_source);
|
|
fprintf(stderr, "may no source: ");
|
|
isl_union_map_dump(flow->may_no_source);
|
|
}
|
|
|
|
/* Return the full definite dependences in "flow", with accessed elements.
|
|
*/
|
|
__isl_give isl_union_map *isl_union_flow_get_full_must_dependence(
|
|
__isl_keep isl_union_flow *flow)
|
|
{
|
|
if (!flow)
|
|
return NULL;
|
|
return isl_union_map_copy(flow->must_dep);
|
|
}
|
|
|
|
/* Return the full possible dependences in "flow", including the definite
|
|
* dependences, with accessed elements.
|
|
*/
|
|
__isl_give isl_union_map *isl_union_flow_get_full_may_dependence(
|
|
__isl_keep isl_union_flow *flow)
|
|
{
|
|
if (!flow)
|
|
return NULL;
|
|
return isl_union_map_union(isl_union_map_copy(flow->must_dep),
|
|
isl_union_map_copy(flow->may_dep));
|
|
}
|
|
|
|
/* Return the definite dependences in "flow", without the accessed elements.
|
|
*/
|
|
__isl_give isl_union_map *isl_union_flow_get_must_dependence(
|
|
__isl_keep isl_union_flow *flow)
|
|
{
|
|
isl_union_map *dep;
|
|
|
|
if (!flow)
|
|
return NULL;
|
|
dep = isl_union_map_copy(flow->must_dep);
|
|
return isl_union_map_range_factor_domain(dep);
|
|
}
|
|
|
|
/* Return the possible dependences in "flow", including the definite
|
|
* dependences, without the accessed elements.
|
|
*/
|
|
__isl_give isl_union_map *isl_union_flow_get_may_dependence(
|
|
__isl_keep isl_union_flow *flow)
|
|
{
|
|
isl_union_map *dep;
|
|
|
|
if (!flow)
|
|
return NULL;
|
|
dep = isl_union_map_union(isl_union_map_copy(flow->must_dep),
|
|
isl_union_map_copy(flow->may_dep));
|
|
return isl_union_map_range_factor_domain(dep);
|
|
}
|
|
|
|
/* Return the non-definite dependences in "flow".
|
|
*/
|
|
static __isl_give isl_union_map *isl_union_flow_get_non_must_dependence(
|
|
__isl_keep isl_union_flow *flow)
|
|
{
|
|
if (!flow)
|
|
return NULL;
|
|
return isl_union_map_copy(flow->may_dep);
|
|
}
|
|
|
|
/* Return the subset of the sink accesses for which definitely
|
|
* no source was found.
|
|
*/
|
|
__isl_give isl_union_map *isl_union_flow_get_must_no_source(
|
|
__isl_keep isl_union_flow *flow)
|
|
{
|
|
if (!flow)
|
|
return NULL;
|
|
return isl_union_map_copy(flow->must_no_source);
|
|
}
|
|
|
|
/* Return the subset of the sink accesses for which possibly
|
|
* no source was found, including those for which definitely
|
|
* no source was found.
|
|
*/
|
|
__isl_give isl_union_map *isl_union_flow_get_may_no_source(
|
|
__isl_keep isl_union_flow *flow)
|
|
{
|
|
if (!flow)
|
|
return NULL;
|
|
return isl_union_map_union(isl_union_map_copy(flow->must_no_source),
|
|
isl_union_map_copy(flow->may_no_source));
|
|
}
|
|
|
|
/* Return the subset of the sink accesses for which possibly, but not
|
|
* definitely, no source was found.
|
|
*/
|
|
static __isl_give isl_union_map *isl_union_flow_get_non_must_no_source(
|
|
__isl_keep isl_union_flow *flow)
|
|
{
|
|
if (!flow)
|
|
return NULL;
|
|
return isl_union_map_copy(flow->may_no_source);
|
|
}
|
|
|
|
/* Create a new isl_union_flow object, initialized with empty
|
|
* dependence relations and sink subsets.
|
|
*/
|
|
static __isl_give isl_union_flow *isl_union_flow_alloc(
|
|
__isl_take isl_space *space)
|
|
{
|
|
isl_ctx *ctx;
|
|
isl_union_map *empty;
|
|
isl_union_flow *flow;
|
|
|
|
if (!space)
|
|
return NULL;
|
|
ctx = isl_space_get_ctx(space);
|
|
flow = isl_alloc_type(ctx, isl_union_flow);
|
|
if (!flow)
|
|
goto error;
|
|
|
|
empty = isl_union_map_empty(space);
|
|
flow->must_dep = isl_union_map_copy(empty);
|
|
flow->may_dep = isl_union_map_copy(empty);
|
|
flow->must_no_source = isl_union_map_copy(empty);
|
|
flow->may_no_source = empty;
|
|
|
|
if (!flow->must_dep || !flow->may_dep ||
|
|
!flow->must_no_source || !flow->may_no_source)
|
|
return isl_union_flow_free(flow);
|
|
|
|
return flow;
|
|
error:
|
|
isl_space_free(space);
|
|
return NULL;
|
|
}
|
|
|
|
/* Copy this isl_union_flow object.
|
|
*/
|
|
__isl_give isl_union_flow *isl_union_flow_copy(__isl_keep isl_union_flow *flow)
|
|
{
|
|
isl_union_flow *copy;
|
|
|
|
if (!flow)
|
|
return NULL;
|
|
|
|
copy = isl_union_flow_alloc(isl_union_map_get_space(flow->must_dep));
|
|
|
|
if (!copy)
|
|
return NULL;
|
|
|
|
copy->must_dep = isl_union_map_union(copy->must_dep,
|
|
isl_union_map_copy(flow->must_dep));
|
|
copy->may_dep = isl_union_map_union(copy->may_dep,
|
|
isl_union_map_copy(flow->may_dep));
|
|
copy->must_no_source = isl_union_map_union(copy->must_no_source,
|
|
isl_union_map_copy(flow->must_no_source));
|
|
copy->may_no_source = isl_union_map_union(copy->may_no_source,
|
|
isl_union_map_copy(flow->may_no_source));
|
|
|
|
if (!copy->must_dep || !copy->may_dep ||
|
|
!copy->must_no_source || !copy->may_no_source)
|
|
return isl_union_flow_free(copy);
|
|
|
|
return copy;
|
|
}
|
|
|
|
/* Drop the schedule dimensions from the iteration domains in "flow".
|
|
* In particular, the schedule dimensions have been prepended
|
|
* to the iteration domains prior to the dependence analysis by
|
|
* replacing the iteration domain D, by the wrapped map [S -> D].
|
|
* Replace these wrapped maps by the original D.
|
|
*
|
|
* In particular, the dependences computed by access_info_compute_flow_core
|
|
* are of the form
|
|
*
|
|
* [S -> D] -> [[S' -> D'] -> A]
|
|
*
|
|
* The schedule dimensions are projected out by first currying the range,
|
|
* resulting in
|
|
*
|
|
* [S -> D] -> [S' -> [D' -> A]]
|
|
*
|
|
* and then computing the factor range
|
|
*
|
|
* D -> [D' -> A]
|
|
*/
|
|
static __isl_give isl_union_flow *isl_union_flow_drop_schedule(
|
|
__isl_take isl_union_flow *flow)
|
|
{
|
|
if (!flow)
|
|
return NULL;
|
|
|
|
flow->must_dep = isl_union_map_range_curry(flow->must_dep);
|
|
flow->must_dep = isl_union_map_factor_range(flow->must_dep);
|
|
flow->may_dep = isl_union_map_range_curry(flow->may_dep);
|
|
flow->may_dep = isl_union_map_factor_range(flow->may_dep);
|
|
flow->must_no_source =
|
|
isl_union_map_domain_factor_range(flow->must_no_source);
|
|
flow->may_no_source =
|
|
isl_union_map_domain_factor_range(flow->may_no_source);
|
|
|
|
if (!flow->must_dep || !flow->may_dep ||
|
|
!flow->must_no_source || !flow->may_no_source)
|
|
return isl_union_flow_free(flow);
|
|
|
|
return flow;
|
|
}
|
|
|
|
struct isl_compute_flow_data {
|
|
isl_union_map *must_source;
|
|
isl_union_map *may_source;
|
|
isl_union_flow *flow;
|
|
|
|
int count;
|
|
int must;
|
|
isl_space *dim;
|
|
struct isl_sched_info *sink_info;
|
|
struct isl_sched_info **source_info;
|
|
isl_access_info *accesses;
|
|
};
|
|
|
|
static isl_stat count_matching_array(__isl_take isl_map *map, void *user)
|
|
{
|
|
int eq;
|
|
isl_space *dim;
|
|
struct isl_compute_flow_data *data;
|
|
|
|
data = (struct isl_compute_flow_data *)user;
|
|
|
|
dim = isl_space_range(isl_map_get_space(map));
|
|
|
|
eq = isl_space_is_equal(dim, data->dim);
|
|
|
|
isl_space_free(dim);
|
|
isl_map_free(map);
|
|
|
|
if (eq < 0)
|
|
return isl_stat_error;
|
|
if (eq)
|
|
data->count++;
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
static isl_stat collect_matching_array(__isl_take isl_map *map, void *user)
|
|
{
|
|
int eq;
|
|
isl_space *dim;
|
|
struct isl_sched_info *info;
|
|
struct isl_compute_flow_data *data;
|
|
|
|
data = (struct isl_compute_flow_data *)user;
|
|
|
|
dim = isl_space_range(isl_map_get_space(map));
|
|
|
|
eq = isl_space_is_equal(dim, data->dim);
|
|
|
|
isl_space_free(dim);
|
|
|
|
if (eq < 0)
|
|
goto error;
|
|
if (!eq) {
|
|
isl_map_free(map);
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
info = sched_info_alloc(map);
|
|
data->source_info[data->count] = info;
|
|
|
|
data->accesses = isl_access_info_add_source(data->accesses,
|
|
map, data->must, info);
|
|
|
|
data->count++;
|
|
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_map_free(map);
|
|
return isl_stat_error;
|
|
}
|
|
|
|
/* Determine the shared nesting level and the "textual order" of
|
|
* the given accesses.
|
|
*
|
|
* We first determine the minimal schedule dimension for both accesses.
|
|
*
|
|
* If among those dimensions, we can find one where both have a fixed
|
|
* value and if moreover those values are different, then the previous
|
|
* dimension is the last shared nesting level and the textual order
|
|
* is determined based on the order of the fixed values.
|
|
* If no such fixed values can be found, then we set the shared
|
|
* nesting level to the minimal schedule dimension, with no textual ordering.
|
|
*/
|
|
static int before(void *first, void *second)
|
|
{
|
|
struct isl_sched_info *info1 = first;
|
|
struct isl_sched_info *info2 = second;
|
|
int n1, n2;
|
|
int i;
|
|
|
|
n1 = isl_vec_size(info1->cst);
|
|
n2 = isl_vec_size(info2->cst);
|
|
|
|
if (n2 < n1)
|
|
n1 = n2;
|
|
|
|
for (i = 0; i < n1; ++i) {
|
|
int r;
|
|
int cmp;
|
|
|
|
if (!info1->is_cst[i])
|
|
continue;
|
|
if (!info2->is_cst[i])
|
|
continue;
|
|
cmp = isl_vec_cmp_element(info1->cst, info2->cst, i);
|
|
if (cmp == 0)
|
|
continue;
|
|
|
|
r = 2 * i + (cmp < 0);
|
|
|
|
return r;
|
|
}
|
|
|
|
return 2 * n1;
|
|
}
|
|
|
|
/* Check if the given two accesses may be coscheduled.
|
|
* If so, return 1. Otherwise return 0.
|
|
*
|
|
* Two accesses may only be coscheduled if the fixed schedule
|
|
* coordinates have the same values.
|
|
*/
|
|
static int coscheduled(void *first, void *second)
|
|
{
|
|
struct isl_sched_info *info1 = first;
|
|
struct isl_sched_info *info2 = second;
|
|
int n1, n2;
|
|
int i;
|
|
|
|
n1 = isl_vec_size(info1->cst);
|
|
n2 = isl_vec_size(info2->cst);
|
|
|
|
if (n2 < n1)
|
|
n1 = n2;
|
|
|
|
for (i = 0; i < n1; ++i) {
|
|
int cmp;
|
|
|
|
if (!info1->is_cst[i])
|
|
continue;
|
|
if (!info2->is_cst[i])
|
|
continue;
|
|
cmp = isl_vec_cmp_element(info1->cst, info2->cst, i);
|
|
if (cmp != 0)
|
|
return 0;
|
|
}
|
|
|
|
return 1;
|
|
}
|
|
|
|
/* Given a sink access, look for all the source accesses that access
|
|
* the same array and perform dataflow analysis on them using
|
|
* isl_access_info_compute_flow_core.
|
|
*/
|
|
static isl_stat compute_flow(__isl_take isl_map *map, void *user)
|
|
{
|
|
int i;
|
|
isl_ctx *ctx;
|
|
struct isl_compute_flow_data *data;
|
|
isl_flow *flow;
|
|
isl_union_flow *df;
|
|
|
|
data = (struct isl_compute_flow_data *)user;
|
|
df = data->flow;
|
|
|
|
ctx = isl_map_get_ctx(map);
|
|
|
|
data->accesses = NULL;
|
|
data->sink_info = NULL;
|
|
data->source_info = NULL;
|
|
data->count = 0;
|
|
data->dim = isl_space_range(isl_map_get_space(map));
|
|
|
|
if (isl_union_map_foreach_map(data->must_source,
|
|
&count_matching_array, data) < 0)
|
|
goto error;
|
|
if (isl_union_map_foreach_map(data->may_source,
|
|
&count_matching_array, data) < 0)
|
|
goto error;
|
|
|
|
data->sink_info = sched_info_alloc(map);
|
|
data->source_info = isl_calloc_array(ctx, struct isl_sched_info *,
|
|
data->count);
|
|
|
|
data->accesses = isl_access_info_alloc(isl_map_copy(map),
|
|
data->sink_info, &before, data->count);
|
|
if (!data->sink_info || (data->count && !data->source_info) ||
|
|
!data->accesses)
|
|
goto error;
|
|
data->accesses->coscheduled = &coscheduled;
|
|
data->count = 0;
|
|
data->must = 1;
|
|
if (isl_union_map_foreach_map(data->must_source,
|
|
&collect_matching_array, data) < 0)
|
|
goto error;
|
|
data->must = 0;
|
|
if (isl_union_map_foreach_map(data->may_source,
|
|
&collect_matching_array, data) < 0)
|
|
goto error;
|
|
|
|
flow = access_info_compute_flow_core(data->accesses);
|
|
data->accesses = NULL;
|
|
|
|
if (!flow)
|
|
goto error;
|
|
|
|
df->must_no_source = isl_union_map_union(df->must_no_source,
|
|
isl_union_map_from_map(isl_flow_get_no_source(flow, 1)));
|
|
df->may_no_source = isl_union_map_union(df->may_no_source,
|
|
isl_union_map_from_map(isl_flow_get_no_source(flow, 0)));
|
|
|
|
for (i = 0; i < flow->n_source; ++i) {
|
|
isl_union_map *dep;
|
|
dep = isl_union_map_from_map(isl_map_copy(flow->dep[i].map));
|
|
if (flow->dep[i].must)
|
|
df->must_dep = isl_union_map_union(df->must_dep, dep);
|
|
else
|
|
df->may_dep = isl_union_map_union(df->may_dep, dep);
|
|
}
|
|
|
|
isl_flow_free(flow);
|
|
|
|
sched_info_free(data->sink_info);
|
|
if (data->source_info) {
|
|
for (i = 0; i < data->count; ++i)
|
|
sched_info_free(data->source_info[i]);
|
|
free(data->source_info);
|
|
}
|
|
isl_space_free(data->dim);
|
|
isl_map_free(map);
|
|
|
|
return isl_stat_ok;
|
|
error:
|
|
isl_access_info_free(data->accesses);
|
|
sched_info_free(data->sink_info);
|
|
if (data->source_info) {
|
|
for (i = 0; i < data->count; ++i)
|
|
sched_info_free(data->source_info[i]);
|
|
free(data->source_info);
|
|
}
|
|
isl_space_free(data->dim);
|
|
isl_map_free(map);
|
|
|
|
return isl_stat_error;
|
|
}
|
|
|
|
/* Add the kills of "info" to the must-sources.
|
|
*/
|
|
static __isl_give isl_union_access_info *
|
|
isl_union_access_info_add_kill_to_must_source(
|
|
__isl_take isl_union_access_info *info)
|
|
{
|
|
isl_union_map *must, *kill;
|
|
|
|
must = isl_union_access_info_get_must_source(info);
|
|
kill = isl_union_access_info_get_kill(info);
|
|
must = isl_union_map_union(must, kill);
|
|
return isl_union_access_info_set_must_source(info, must);
|
|
}
|
|
|
|
/* Drop dependences from "flow" that purely originate from kills.
|
|
* That is, only keep those dependences that originate from
|
|
* the original must-sources "must" and/or the original may-sources "may".
|
|
* In particular, "must" contains the must-sources from before
|
|
* the kills were added and "may" contains the may-source from before
|
|
* the kills were removed.
|
|
*
|
|
* The dependences are of the form
|
|
*
|
|
* Source -> [Sink -> Data]
|
|
*
|
|
* Only those dependences are kept where the Source -> Data part
|
|
* is a subset of the original may-sources or must-sources.
|
|
* Of those, only the must-dependences that intersect with the must-sources
|
|
* remain must-dependences.
|
|
* If there is some overlap between the may-sources and the must-sources,
|
|
* then the may-dependences and must-dependences may also overlap.
|
|
* This should be fine since the may-dependences are only kept
|
|
* disjoint from the must-dependences for the isl_union_map_compute_flow
|
|
* interface. This interface does not support kills, so it will
|
|
* not end up calling this function.
|
|
*/
|
|
static __isl_give isl_union_flow *isl_union_flow_drop_kill_source(
|
|
__isl_take isl_union_flow *flow, __isl_take isl_union_map *must,
|
|
__isl_take isl_union_map *may)
|
|
{
|
|
isl_union_map *move;
|
|
|
|
if (!flow)
|
|
goto error;
|
|
move = isl_union_map_copy(flow->must_dep);
|
|
move = isl_union_map_intersect_range_factor_range(move,
|
|
isl_union_map_copy(may));
|
|
may = isl_union_map_union(may, isl_union_map_copy(must));
|
|
flow->may_dep = isl_union_map_intersect_range_factor_range(
|
|
flow->may_dep, may);
|
|
flow->must_dep = isl_union_map_intersect_range_factor_range(
|
|
flow->must_dep, must);
|
|
flow->may_dep = isl_union_map_union(flow->may_dep, move);
|
|
if (!flow->must_dep || !flow->may_dep)
|
|
return isl_union_flow_free(flow);
|
|
|
|
return flow;
|
|
error:
|
|
isl_union_map_free(must);
|
|
isl_union_map_free(may);
|
|
return NULL;
|
|
}
|
|
|
|
/* Remove the must accesses from the may accesses.
|
|
*
|
|
* A must access always trumps a may access, so there is no need
|
|
* for a must access to also be considered as a may access. Doing so
|
|
* would only cost extra computations only to find out that
|
|
* the duplicated may access does not make any difference.
|
|
*/
|
|
static __isl_give isl_union_access_info *isl_union_access_info_normalize(
|
|
__isl_take isl_union_access_info *access)
|
|
{
|
|
if (!access)
|
|
return NULL;
|
|
access->access[isl_access_may_source] =
|
|
isl_union_map_subtract(access->access[isl_access_may_source],
|
|
isl_union_map_copy(access->access[isl_access_must_source]));
|
|
if (!access->access[isl_access_may_source])
|
|
return isl_union_access_info_free(access);
|
|
|
|
return access;
|
|
}
|
|
|
|
/* Given a description of the "sink" accesses, the "source" accesses and
|
|
* a schedule, compute for each instance of a sink access
|
|
* and for each element accessed by that instance,
|
|
* the possible or definite source accesses that last accessed the
|
|
* element accessed by the sink access before this sink access
|
|
* in the sense that there is no intermediate definite source access.
|
|
*
|
|
* The must_no_source and may_no_source elements of the result
|
|
* are subsets of access->sink. The elements must_dep and may_dep
|
|
* map domain elements of access->{may,must)_source to
|
|
* domain elements of access->sink.
|
|
*
|
|
* This function is used when only the schedule map representation
|
|
* is available.
|
|
*
|
|
* We first prepend the schedule dimensions to the domain
|
|
* of the accesses so that we can easily compare their relative order.
|
|
* Then we consider each sink access individually in compute_flow.
|
|
*/
|
|
static __isl_give isl_union_flow *compute_flow_union_map(
|
|
__isl_take isl_union_access_info *access)
|
|
{
|
|
struct isl_compute_flow_data data;
|
|
isl_union_map *sink;
|
|
|
|
access = isl_union_access_info_align_params(access);
|
|
access = isl_union_access_info_introduce_schedule(access);
|
|
if (!access)
|
|
return NULL;
|
|
|
|
data.must_source = access->access[isl_access_must_source];
|
|
data.may_source = access->access[isl_access_may_source];
|
|
|
|
sink = access->access[isl_access_sink];
|
|
data.flow = isl_union_flow_alloc(isl_union_map_get_space(sink));
|
|
|
|
if (isl_union_map_foreach_map(sink, &compute_flow, &data) < 0)
|
|
goto error;
|
|
|
|
data.flow = isl_union_flow_drop_schedule(data.flow);
|
|
|
|
isl_union_access_info_free(access);
|
|
return data.flow;
|
|
error:
|
|
isl_union_access_info_free(access);
|
|
isl_union_flow_free(data.flow);
|
|
return NULL;
|
|
}
|
|
|
|
/* A schedule access relation.
|
|
*
|
|
* The access relation "access" is of the form [S -> D] -> A,
|
|
* where S corresponds to the prefix schedule at "node".
|
|
* "must" is only relevant for source accesses and indicates
|
|
* whether the access is a must source or a may source.
|
|
*/
|
|
struct isl_scheduled_access {
|
|
isl_map *access;
|
|
int must;
|
|
isl_schedule_node *node;
|
|
};
|
|
|
|
/* Data structure for keeping track of individual scheduled sink and source
|
|
* accesses when computing dependence analysis based on a schedule tree.
|
|
*
|
|
* "n_sink" is the number of used entries in "sink"
|
|
* "n_source" is the number of used entries in "source"
|
|
*
|
|
* "set_sink", "must" and "node" are only used inside collect_sink_source,
|
|
* to keep track of the current node and
|
|
* of what extract_sink_source needs to do.
|
|
*/
|
|
struct isl_compute_flow_schedule_data {
|
|
isl_union_access_info *access;
|
|
|
|
int n_sink;
|
|
int n_source;
|
|
|
|
struct isl_scheduled_access *sink;
|
|
struct isl_scheduled_access *source;
|
|
|
|
int set_sink;
|
|
int must;
|
|
isl_schedule_node *node;
|
|
};
|
|
|
|
/* Align the parameters of all sinks with all sources.
|
|
*
|
|
* If there are no sinks or no sources, then no alignment is needed.
|
|
*/
|
|
static void isl_compute_flow_schedule_data_align_params(
|
|
struct isl_compute_flow_schedule_data *data)
|
|
{
|
|
int i;
|
|
isl_space *space;
|
|
|
|
if (data->n_sink == 0 || data->n_source == 0)
|
|
return;
|
|
|
|
space = isl_map_get_space(data->sink[0].access);
|
|
|
|
for (i = 1; i < data->n_sink; ++i)
|
|
space = isl_space_align_params(space,
|
|
isl_map_get_space(data->sink[i].access));
|
|
for (i = 0; i < data->n_source; ++i)
|
|
space = isl_space_align_params(space,
|
|
isl_map_get_space(data->source[i].access));
|
|
|
|
for (i = 0; i < data->n_sink; ++i)
|
|
data->sink[i].access =
|
|
isl_map_align_params(data->sink[i].access,
|
|
isl_space_copy(space));
|
|
for (i = 0; i < data->n_source; ++i)
|
|
data->source[i].access =
|
|
isl_map_align_params(data->source[i].access,
|
|
isl_space_copy(space));
|
|
|
|
isl_space_free(space);
|
|
}
|
|
|
|
/* Free all the memory referenced from "data".
|
|
* Do not free "data" itself as it may be allocated on the stack.
|
|
*/
|
|
static void isl_compute_flow_schedule_data_clear(
|
|
struct isl_compute_flow_schedule_data *data)
|
|
{
|
|
int i;
|
|
|
|
if (!data->sink)
|
|
return;
|
|
|
|
for (i = 0; i < data->n_sink; ++i) {
|
|
isl_map_free(data->sink[i].access);
|
|
isl_schedule_node_free(data->sink[i].node);
|
|
}
|
|
|
|
for (i = 0; i < data->n_source; ++i) {
|
|
isl_map_free(data->source[i].access);
|
|
isl_schedule_node_free(data->source[i].node);
|
|
}
|
|
|
|
free(data->sink);
|
|
}
|
|
|
|
/* isl_schedule_foreach_schedule_node_top_down callback for counting
|
|
* (an upper bound on) the number of sinks and sources.
|
|
*
|
|
* Sinks and sources are only extracted at leaves of the tree,
|
|
* so we skip the node if it is not a leaf.
|
|
* Otherwise we increment data->n_sink and data->n_source with
|
|
* the number of spaces in the sink and source access domains
|
|
* that reach this node.
|
|
*/
|
|
static isl_bool count_sink_source(__isl_keep isl_schedule_node *node,
|
|
void *user)
|
|
{
|
|
struct isl_compute_flow_schedule_data *data = user;
|
|
isl_union_set *domain;
|
|
isl_union_map *umap;
|
|
isl_bool r = isl_bool_false;
|
|
|
|
if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
|
|
return isl_bool_true;
|
|
|
|
domain = isl_schedule_node_get_universe_domain(node);
|
|
|
|
umap = isl_union_map_copy(data->access->access[isl_access_sink]);
|
|
umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain));
|
|
data->n_sink += isl_union_map_n_map(umap);
|
|
isl_union_map_free(umap);
|
|
if (!umap)
|
|
r = isl_bool_error;
|
|
|
|
umap = isl_union_map_copy(data->access->access[isl_access_must_source]);
|
|
umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain));
|
|
data->n_source += isl_union_map_n_map(umap);
|
|
isl_union_map_free(umap);
|
|
if (!umap)
|
|
r = isl_bool_error;
|
|
|
|
umap = isl_union_map_copy(data->access->access[isl_access_may_source]);
|
|
umap = isl_union_map_intersect_domain(umap, isl_union_set_copy(domain));
|
|
data->n_source += isl_union_map_n_map(umap);
|
|
isl_union_map_free(umap);
|
|
if (!umap)
|
|
r = isl_bool_error;
|
|
|
|
isl_union_set_free(domain);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* Add a single scheduled sink or source (depending on data->set_sink)
|
|
* with scheduled access relation "map", must property data->must and
|
|
* schedule node data->node to the list of sinks or sources.
|
|
*/
|
|
static isl_stat extract_sink_source(__isl_take isl_map *map, void *user)
|
|
{
|
|
struct isl_compute_flow_schedule_data *data = user;
|
|
struct isl_scheduled_access *access;
|
|
|
|
if (data->set_sink)
|
|
access = data->sink + data->n_sink++;
|
|
else
|
|
access = data->source + data->n_source++;
|
|
|
|
access->access = map;
|
|
access->must = data->must;
|
|
access->node = isl_schedule_node_copy(data->node);
|
|
|
|
return isl_stat_ok;
|
|
}
|
|
|
|
/* isl_schedule_foreach_schedule_node_top_down callback for collecting
|
|
* individual scheduled source and sink accesses (taking into account
|
|
* the domain of the schedule).
|
|
*
|
|
* We only collect accesses at the leaves of the schedule tree.
|
|
* We prepend the schedule dimensions at the leaf to the iteration
|
|
* domains of the source and sink accesses and then extract
|
|
* the individual accesses (per space).
|
|
*
|
|
* In particular, if the prefix schedule at the node is of the form
|
|
*
|
|
* D -> S
|
|
*
|
|
* while the access relations are of the form
|
|
*
|
|
* D -> A
|
|
*
|
|
* then the updated access relations are of the form
|
|
*
|
|
* [S -> D] -> A
|
|
*
|
|
* Note that S consists of a single space such that introducing S
|
|
* in the access relations does not increase the number of spaces.
|
|
*/
|
|
static isl_bool collect_sink_source(__isl_keep isl_schedule_node *node,
|
|
void *user)
|
|
{
|
|
struct isl_compute_flow_schedule_data *data = user;
|
|
isl_union_map *prefix;
|
|
isl_union_map *umap;
|
|
isl_bool r = isl_bool_false;
|
|
|
|
if (isl_schedule_node_get_type(node) != isl_schedule_node_leaf)
|
|
return isl_bool_true;
|
|
|
|
data->node = node;
|
|
|
|
prefix = isl_schedule_node_get_prefix_schedule_relation(node);
|
|
prefix = isl_union_map_reverse(prefix);
|
|
prefix = isl_union_map_range_map(prefix);
|
|
|
|
data->set_sink = 1;
|
|
umap = isl_union_map_copy(data->access->access[isl_access_sink]);
|
|
umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap);
|
|
if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0)
|
|
r = isl_bool_error;
|
|
isl_union_map_free(umap);
|
|
|
|
data->set_sink = 0;
|
|
data->must = 1;
|
|
umap = isl_union_map_copy(data->access->access[isl_access_must_source]);
|
|
umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap);
|
|
if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0)
|
|
r = isl_bool_error;
|
|
isl_union_map_free(umap);
|
|
|
|
data->set_sink = 0;
|
|
data->must = 0;
|
|
umap = isl_union_map_copy(data->access->access[isl_access_may_source]);
|
|
umap = isl_union_map_apply_range(isl_union_map_copy(prefix), umap);
|
|
if (isl_union_map_foreach_map(umap, &extract_sink_source, data) < 0)
|
|
r = isl_bool_error;
|
|
isl_union_map_free(umap);
|
|
|
|
isl_union_map_free(prefix);
|
|
|
|
return r;
|
|
}
|
|
|
|
/* isl_access_info_compute_flow callback for determining whether
|
|
* the shared nesting level and the ordering within that level
|
|
* for two scheduled accesses for use in compute_single_flow.
|
|
*
|
|
* The tokens passed to this function refer to the leaves
|
|
* in the schedule tree where the accesses take place.
|
|
*
|
|
* If n is the shared number of loops, then we need to return
|
|
* "2 * n + 1" if "first" precedes "second" inside the innermost
|
|
* shared loop and "2 * n" otherwise.
|
|
*
|
|
* The innermost shared ancestor may be the leaves themselves
|
|
* if the accesses take place in the same leaf. Otherwise,
|
|
* it is either a set node or a sequence node. Only in the case
|
|
* of a sequence node do we consider one access to precede the other.
|
|
*/
|
|
static int before_node(void *first, void *second)
|
|
{
|
|
isl_schedule_node *node1 = first;
|
|
isl_schedule_node *node2 = second;
|
|
isl_schedule_node *shared;
|
|
int depth;
|
|
int before = 0;
|
|
|
|
shared = isl_schedule_node_get_shared_ancestor(node1, node2);
|
|
if (!shared)
|
|
return -1;
|
|
|
|
depth = isl_schedule_node_get_schedule_depth(shared);
|
|
if (isl_schedule_node_get_type(shared) == isl_schedule_node_sequence) {
|
|
int pos1, pos2;
|
|
|
|
pos1 = isl_schedule_node_get_ancestor_child_position(node1,
|
|
shared);
|
|
pos2 = isl_schedule_node_get_ancestor_child_position(node2,
|
|
shared);
|
|
before = pos1 < pos2;
|
|
}
|
|
|
|
isl_schedule_node_free(shared);
|
|
|
|
return 2 * depth + before;
|
|
}
|
|
|
|
/* Check if the given two accesses may be coscheduled.
|
|
* If so, return 1. Otherwise return 0.
|
|
*
|
|
* Two accesses may only be coscheduled if they appear in the same leaf.
|
|
*/
|
|
static int coscheduled_node(void *first, void *second)
|
|
{
|
|
isl_schedule_node *node1 = first;
|
|
isl_schedule_node *node2 = second;
|
|
|
|
return node1 == node2;
|
|
}
|
|
|
|
/* Add the scheduled sources from "data" that access
|
|
* the same data space as "sink" to "access".
|
|
*/
|
|
static __isl_give isl_access_info *add_matching_sources(
|
|
__isl_take isl_access_info *access, struct isl_scheduled_access *sink,
|
|
struct isl_compute_flow_schedule_data *data)
|
|
{
|
|
int i;
|
|
isl_space *space;
|
|
|
|
space = isl_space_range(isl_map_get_space(sink->access));
|
|
for (i = 0; i < data->n_source; ++i) {
|
|
struct isl_scheduled_access *source;
|
|
isl_space *source_space;
|
|
int eq;
|
|
|
|
source = &data->source[i];
|
|
source_space = isl_map_get_space(source->access);
|
|
source_space = isl_space_range(source_space);
|
|
eq = isl_space_is_equal(space, source_space);
|
|
isl_space_free(source_space);
|
|
|
|
if (!eq)
|
|
continue;
|
|
if (eq < 0)
|
|
goto error;
|
|
|
|
access = isl_access_info_add_source(access,
|
|
isl_map_copy(source->access), source->must, source->node);
|
|
}
|
|
|
|
isl_space_free(space);
|
|
return access;
|
|
error:
|
|
isl_space_free(space);
|
|
isl_access_info_free(access);
|
|
return NULL;
|
|
}
|
|
|
|
/* Given a scheduled sink access relation "sink", compute the corresponding
|
|
* dependences on the sources in "data" and add the computed dependences
|
|
* to "uf".
|
|
*
|
|
* The dependences computed by access_info_compute_flow_core are of the form
|
|
*
|
|
* [S -> I] -> [[S' -> I'] -> A]
|
|
*
|
|
* The schedule dimensions are projected out by first currying the range,
|
|
* resulting in
|
|
*
|
|
* [S -> I] -> [S' -> [I' -> A]]
|
|
*
|
|
* and then computing the factor range
|
|
*
|
|
* I -> [I' -> A]
|
|
*/
|
|
static __isl_give isl_union_flow *compute_single_flow(
|
|
__isl_take isl_union_flow *uf, struct isl_scheduled_access *sink,
|
|
struct isl_compute_flow_schedule_data *data)
|
|
{
|
|
int i;
|
|
isl_access_info *access;
|
|
isl_flow *flow;
|
|
isl_map *map;
|
|
|
|
if (!uf)
|
|
return NULL;
|
|
|
|
access = isl_access_info_alloc(isl_map_copy(sink->access), sink->node,
|
|
&before_node, data->n_source);
|
|
if (access)
|
|
access->coscheduled = &coscheduled_node;
|
|
access = add_matching_sources(access, sink, data);
|
|
|
|
flow = access_info_compute_flow_core(access);
|
|
if (!flow)
|
|
return isl_union_flow_free(uf);
|
|
|
|
map = isl_map_domain_factor_range(isl_flow_get_no_source(flow, 1));
|
|
uf->must_no_source = isl_union_map_union(uf->must_no_source,
|
|
isl_union_map_from_map(map));
|
|
map = isl_map_domain_factor_range(isl_flow_get_no_source(flow, 0));
|
|
uf->may_no_source = isl_union_map_union(uf->may_no_source,
|
|
isl_union_map_from_map(map));
|
|
|
|
for (i = 0; i < flow->n_source; ++i) {
|
|
isl_union_map *dep;
|
|
|
|
map = isl_map_range_curry(isl_map_copy(flow->dep[i].map));
|
|
map = isl_map_factor_range(map);
|
|
dep = isl_union_map_from_map(map);
|
|
if (flow->dep[i].must)
|
|
uf->must_dep = isl_union_map_union(uf->must_dep, dep);
|
|
else
|
|
uf->may_dep = isl_union_map_union(uf->may_dep, dep);
|
|
}
|
|
|
|
isl_flow_free(flow);
|
|
|
|
return uf;
|
|
}
|
|
|
|
/* Given a description of the "sink" accesses, the "source" accesses and
|
|
* a schedule, compute for each instance of a sink access
|
|
* and for each element accessed by that instance,
|
|
* the possible or definite source accesses that last accessed the
|
|
* element accessed by the sink access before this sink access
|
|
* in the sense that there is no intermediate definite source access.
|
|
* Only consider dependences between statement instances that belong
|
|
* to the domain of the schedule.
|
|
*
|
|
* The must_no_source and may_no_source elements of the result
|
|
* are subsets of access->sink. The elements must_dep and may_dep
|
|
* map domain elements of access->{may,must)_source to
|
|
* domain elements of access->sink.
|
|
*
|
|
* This function is used when a schedule tree representation
|
|
* is available.
|
|
*
|
|
* We extract the individual scheduled source and sink access relations
|
|
* (taking into account the domain of the schedule) and
|
|
* then compute dependences for each scheduled sink individually.
|
|
*/
|
|
static __isl_give isl_union_flow *compute_flow_schedule(
|
|
__isl_take isl_union_access_info *access)
|
|
{
|
|
struct isl_compute_flow_schedule_data data = { access };
|
|
int i, n;
|
|
isl_ctx *ctx;
|
|
isl_space *space;
|
|
isl_union_flow *flow;
|
|
|
|
ctx = isl_union_access_info_get_ctx(access);
|
|
|
|
data.n_sink = 0;
|
|
data.n_source = 0;
|
|
if (isl_schedule_foreach_schedule_node_top_down(access->schedule,
|
|
&count_sink_source, &data) < 0)
|
|
goto error;
|
|
|
|
n = data.n_sink + data.n_source;
|
|
data.sink = isl_calloc_array(ctx, struct isl_scheduled_access, n);
|
|
if (n && !data.sink)
|
|
goto error;
|
|
data.source = data.sink + data.n_sink;
|
|
|
|
data.n_sink = 0;
|
|
data.n_source = 0;
|
|
if (isl_schedule_foreach_schedule_node_top_down(access->schedule,
|
|
&collect_sink_source, &data) < 0)
|
|
goto error;
|
|
|
|
space = isl_union_map_get_space(access->access[isl_access_sink]);
|
|
flow = isl_union_flow_alloc(space);
|
|
|
|
isl_compute_flow_schedule_data_align_params(&data);
|
|
|
|
for (i = 0; i < data.n_sink; ++i)
|
|
flow = compute_single_flow(flow, &data.sink[i], &data);
|
|
|
|
isl_compute_flow_schedule_data_clear(&data);
|
|
|
|
isl_union_access_info_free(access);
|
|
return flow;
|
|
error:
|
|
isl_union_access_info_free(access);
|
|
isl_compute_flow_schedule_data_clear(&data);
|
|
return NULL;
|
|
}
|
|
|
|
/* Given a description of the "sink" accesses, the "source" accesses and
|
|
* a schedule, compute for each instance of a sink access
|
|
* and for each element accessed by that instance,
|
|
* the possible or definite source accesses that last accessed the
|
|
* element accessed by the sink access before this sink access
|
|
* in the sense that there is no intermediate definite source access.
|
|
*
|
|
* The must_no_source and may_no_source elements of the result
|
|
* are subsets of access->sink. The elements must_dep and may_dep
|
|
* map domain elements of access->{may,must)_source to
|
|
* domain elements of access->sink.
|
|
*
|
|
* If any kills have been specified, then they are treated as
|
|
* must-sources internally. Any dependence that purely derives
|
|
* from an original kill is removed from the output.
|
|
*
|
|
* We check whether the schedule is available as a schedule tree
|
|
* or a schedule map and call the corresponding function to perform
|
|
* the analysis.
|
|
*/
|
|
__isl_give isl_union_flow *isl_union_access_info_compute_flow(
|
|
__isl_take isl_union_access_info *access)
|
|
{
|
|
isl_bool has_kill;
|
|
isl_union_map *must = NULL, *may = NULL;
|
|
isl_union_flow *flow;
|
|
|
|
has_kill = isl_union_access_has_kill(access);
|
|
if (has_kill < 0)
|
|
goto error;
|
|
if (has_kill) {
|
|
must = isl_union_access_info_get_must_source(access);
|
|
may = isl_union_access_info_get_may_source(access);
|
|
}
|
|
access = isl_union_access_info_add_kill_to_must_source(access);
|
|
access = isl_union_access_info_normalize(access);
|
|
if (!access)
|
|
goto error;
|
|
if (access->schedule)
|
|
flow = compute_flow_schedule(access);
|
|
else
|
|
flow = compute_flow_union_map(access);
|
|
if (has_kill)
|
|
flow = isl_union_flow_drop_kill_source(flow, must, may);
|
|
return flow;
|
|
error:
|
|
isl_union_access_info_free(access);
|
|
isl_union_map_free(must);
|
|
isl_union_map_free(may);
|
|
return NULL;
|
|
}
|
|
|
|
/* Print the information contained in "flow" to "p".
|
|
* The information is printed as a YAML document.
|
|
*/
|
|
__isl_give isl_printer *isl_printer_print_union_flow(
|
|
__isl_take isl_printer *p, __isl_keep isl_union_flow *flow)
|
|
{
|
|
isl_union_map *umap;
|
|
|
|
if (!flow)
|
|
return isl_printer_free(p);
|
|
|
|
p = isl_printer_yaml_start_mapping(p);
|
|
umap = isl_union_flow_get_full_must_dependence(flow);
|
|
p = print_union_map_field(p, "must_dependence", umap);
|
|
isl_union_map_free(umap);
|
|
umap = isl_union_flow_get_full_may_dependence(flow);
|
|
p = print_union_map_field(p, "may_dependence", umap);
|
|
isl_union_map_free(umap);
|
|
p = print_union_map_field(p, "must_no_source", flow->must_no_source);
|
|
umap = isl_union_flow_get_may_no_source(flow);
|
|
p = print_union_map_field(p, "may_no_source", umap);
|
|
isl_union_map_free(umap);
|
|
p = isl_printer_yaml_end_mapping(p);
|
|
|
|
return p;
|
|
}
|
|
|
|
/* Return a string representation of the information in "flow".
|
|
* The information is printed in flow format.
|
|
*/
|
|
__isl_give char *isl_union_flow_to_str(__isl_keep isl_union_flow *flow)
|
|
{
|
|
isl_printer *p;
|
|
char *s;
|
|
|
|
if (!flow)
|
|
return NULL;
|
|
|
|
p = isl_printer_to_str(isl_union_flow_get_ctx(flow));
|
|
p = isl_printer_set_yaml_style(p, ISL_YAML_STYLE_FLOW);
|
|
p = isl_printer_print_union_flow(p, flow);
|
|
s = isl_printer_get_str(p);
|
|
isl_printer_free(p);
|
|
|
|
return s;
|
|
}
|
|
|
|
/* Given a collection of "sink" and "source" accesses,
|
|
* compute for each iteration of a sink access
|
|
* and for each element accessed by that iteration,
|
|
* the source access in the list that last accessed the
|
|
* element accessed by the sink access before this sink access.
|
|
* Each access is given as a map from the loop iterators
|
|
* to the array indices.
|
|
* The result is a relations between source and sink
|
|
* iterations and a subset of the domain of the sink accesses,
|
|
* corresponding to those iterations that access an element
|
|
* not previously accessed.
|
|
*
|
|
* We collect the inputs in an isl_union_access_info object,
|
|
* call isl_union_access_info_compute_flow and extract
|
|
* the outputs from the result.
|
|
*/
|
|
int isl_union_map_compute_flow(__isl_take isl_union_map *sink,
|
|
__isl_take isl_union_map *must_source,
|
|
__isl_take isl_union_map *may_source,
|
|
__isl_take isl_union_map *schedule,
|
|
__isl_give isl_union_map **must_dep, __isl_give isl_union_map **may_dep,
|
|
__isl_give isl_union_map **must_no_source,
|
|
__isl_give isl_union_map **may_no_source)
|
|
{
|
|
isl_union_access_info *access;
|
|
isl_union_flow *flow;
|
|
|
|
access = isl_union_access_info_from_sink(sink);
|
|
access = isl_union_access_info_set_must_source(access, must_source);
|
|
access = isl_union_access_info_set_may_source(access, may_source);
|
|
access = isl_union_access_info_set_schedule_map(access, schedule);
|
|
flow = isl_union_access_info_compute_flow(access);
|
|
|
|
if (must_dep)
|
|
*must_dep = isl_union_flow_get_must_dependence(flow);
|
|
if (may_dep)
|
|
*may_dep = isl_union_flow_get_non_must_dependence(flow);
|
|
if (must_no_source)
|
|
*must_no_source = isl_union_flow_get_must_no_source(flow);
|
|
if (may_no_source)
|
|
*may_no_source = isl_union_flow_get_non_must_no_source(flow);
|
|
|
|
isl_union_flow_free(flow);
|
|
|
|
if ((must_dep && !*must_dep) || (may_dep && !*may_dep) ||
|
|
(must_no_source && !*must_no_source) ||
|
|
(may_no_source && !*may_no_source))
|
|
goto error;
|
|
|
|
return 0;
|
|
error:
|
|
if (must_dep)
|
|
*must_dep = isl_union_map_free(*must_dep);
|
|
if (may_dep)
|
|
*may_dep = isl_union_map_free(*may_dep);
|
|
if (must_no_source)
|
|
*must_no_source = isl_union_map_free(*must_no_source);
|
|
if (may_no_source)
|
|
*may_no_source = isl_union_map_free(*may_no_source);
|
|
return -1;
|
|
}
|