llvm-project/llvm/unittests/Analysis/ProfileSummaryInfoTest.cpp

199 lines
6.9 KiB
C++

//===- ProfileSummaryInfoTest.cpp - ProfileSummaryInfo unit tests ---------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/BlockFrequencyInfo.h"
#include "llvm/Analysis/BlockFrequencyInfoImpl.h"
#include "llvm/Analysis/BranchProbabilityInfo.h"
#include "llvm/Analysis/LoopInfo.h"
#include "llvm/Analysis/ProfileSummaryInfo.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/CallSite.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/MDBuilder.h"
#include "llvm/IR/Module.h"
#include "llvm/Support/DataTypes.h"
#include "llvm/Support/FormatVariadic.h"
#include "llvm/Support/SourceMgr.h"
#include "llvm/Support/raw_ostream.h"
#include "gtest/gtest.h"
namespace llvm {
namespace {
class ProfileSummaryInfoTest : public testing::Test {
protected:
LLVMContext C;
std::unique_ptr<BranchProbabilityInfo> BPI;
std::unique_ptr<DominatorTree> DT;
std::unique_ptr<LoopInfo> LI;
ProfileSummaryInfo buildPSI(Module *M) {
return ProfileSummaryInfo(*M);
}
BlockFrequencyInfo buildBFI(Function &F) {
DT.reset(new DominatorTree(F));
LI.reset(new LoopInfo(*DT));
BPI.reset(new BranchProbabilityInfo(F, *LI));
return BlockFrequencyInfo(F, *BPI, *LI);
}
std::unique_ptr<Module> makeLLVMModule(const char *ProfKind = nullptr) {
const char *ModuleString =
"define i32 @g(i32 %x) !prof !21 {{\n"
" ret i32 0\n"
"}\n"
"define i32 @h(i32 %x) !prof !22 {{\n"
" ret i32 0\n"
"}\n"
"define i32 @f(i32 %x) !prof !20 {{\n"
"bb0:\n"
" %y1 = icmp eq i32 %x, 0 \n"
" br i1 %y1, label %bb1, label %bb2, !prof !23 \n"
"bb1:\n"
" %z1 = call i32 @g(i32 %x)\n"
" br label %bb3\n"
"bb2:\n"
" %z2 = call i32 @h(i32 %x)\n"
" br label %bb3\n"
"bb3:\n"
" %y2 = phi i32 [0, %bb1], [1, %bb2] \n"
" ret i32 %y2\n"
"}\n"
"!20 = !{{!\"function_entry_count\", i64 400}\n"
"!21 = !{{!\"function_entry_count\", i64 1}\n"
"!22 = !{{!\"function_entry_count\", i64 100}\n"
"!23 = !{{!\"branch_weights\", i32 64, i32 4}\n"
"{0}";
const char *SummaryString = "!llvm.module.flags = !{{!1}"
"!1 = !{{i32 1, !\"ProfileSummary\", !2}"
"!2 = !{{!3, !4, !5, !6, !7, !8, !9, !10}"
"!3 = !{{!\"ProfileFormat\", !\"{0}\"}"
"!4 = !{{!\"TotalCount\", i64 10000}"
"!5 = !{{!\"MaxCount\", i64 10}"
"!6 = !{{!\"MaxInternalCount\", i64 1}"
"!7 = !{{!\"MaxFunctionCount\", i64 1000}"
"!8 = !{{!\"NumCounts\", i64 3}"
"!9 = !{{!\"NumFunctions\", i64 3}"
"!10 = !{{!\"DetailedSummary\", !11}"
"!11 = !{{!12, !13, !14}"
"!12 = !{{i32 10000, i64 1000, i32 1}"
"!13 = !{{i32 999000, i64 300, i32 3}"
"!14 = !{{i32 999999, i64 5, i32 10}";
SMDiagnostic Err;
if (ProfKind)
return parseAssemblyString(
formatv(ModuleString, formatv(SummaryString, ProfKind).str()).str(),
Err, C);
else
return parseAssemblyString(formatv(ModuleString, "").str(), Err, C);
}
};
TEST_F(ProfileSummaryInfoTest, TestNoProfile) {
auto M = makeLLVMModule(/*ProfKind=*/nullptr);
Function *F = M->getFunction("f");
ProfileSummaryInfo PSI = buildPSI(M.get());
// In the absence of profiles, is{Hot|Cold}X methods should always return
// false.
EXPECT_FALSE(PSI.isHotCount(1000));
EXPECT_FALSE(PSI.isHotCount(0));
EXPECT_FALSE(PSI.isColdCount(1000));
EXPECT_FALSE(PSI.isColdCount(0));
EXPECT_FALSE(PSI.isFunctionEntryHot(F));
EXPECT_FALSE(PSI.isFunctionEntryCold(F));
BasicBlock &BB0 = F->getEntryBlock();
BasicBlock *BB1 = BB0.getTerminator()->getSuccessor(0);
BlockFrequencyInfo BFI = buildBFI(*F);
EXPECT_FALSE(PSI.isHotBB(&BB0, &BFI));
EXPECT_FALSE(PSI.isColdBB(&BB0, &BFI));
CallSite CS1(BB1->getFirstNonPHI());
EXPECT_FALSE(PSI.isHotCallSite(CS1, &BFI));
EXPECT_FALSE(PSI.isColdCallSite(CS1, &BFI));
}
TEST_F(ProfileSummaryInfoTest, TestCommon) {
auto M = makeLLVMModule("InstrProf");
Function *F = M->getFunction("f");
Function *G = M->getFunction("g");
Function *H = M->getFunction("h");
ProfileSummaryInfo PSI = buildPSI(M.get());
EXPECT_TRUE(PSI.isHotCount(400));
EXPECT_TRUE(PSI.isColdCount(2));
EXPECT_FALSE(PSI.isColdCount(100));
EXPECT_FALSE(PSI.isHotCount(100));
EXPECT_TRUE(PSI.isFunctionEntryHot(F));
EXPECT_FALSE(PSI.isFunctionEntryHot(G));
EXPECT_FALSE(PSI.isFunctionEntryHot(H));
}
TEST_F(ProfileSummaryInfoTest, InstrProf) {
auto M = makeLLVMModule("InstrProf");
Function *F = M->getFunction("f");
ProfileSummaryInfo PSI = buildPSI(M.get());
BasicBlock &BB0 = F->getEntryBlock();
BasicBlock *BB1 = BB0.getTerminator()->getSuccessor(0);
BasicBlock *BB2 = BB0.getTerminator()->getSuccessor(1);
BasicBlock *BB3 = BB1->getSingleSuccessor();
BlockFrequencyInfo BFI = buildBFI(*F);
EXPECT_TRUE(PSI.isHotBB(&BB0, &BFI));
EXPECT_TRUE(PSI.isHotBB(BB1, &BFI));
EXPECT_FALSE(PSI.isHotBB(BB2, &BFI));
EXPECT_TRUE(PSI.isHotBB(BB3, &BFI));
CallSite CS1(BB1->getFirstNonPHI());
auto *CI2 = BB2->getFirstNonPHI();
CallSite CS2(CI2);
EXPECT_TRUE(PSI.isHotCallSite(CS1, &BFI));
EXPECT_FALSE(PSI.isHotCallSite(CS2, &BFI));
}
TEST_F(ProfileSummaryInfoTest, SampleProf) {
auto M = makeLLVMModule("SampleProfile");
Function *F = M->getFunction("f");
ProfileSummaryInfo PSI = buildPSI(M.get());
BasicBlock &BB0 = F->getEntryBlock();
BasicBlock *BB1 = BB0.getTerminator()->getSuccessor(0);
BasicBlock *BB2 = BB0.getTerminator()->getSuccessor(1);
BasicBlock *BB3 = BB1->getSingleSuccessor();
BlockFrequencyInfo BFI = buildBFI(*F);
EXPECT_TRUE(PSI.isHotBB(&BB0, &BFI));
EXPECT_TRUE(PSI.isHotBB(BB1, &BFI));
EXPECT_FALSE(PSI.isHotBB(BB2, &BFI));
EXPECT_TRUE(PSI.isHotBB(BB3, &BFI));
CallSite CS1(BB1->getFirstNonPHI());
auto *CI2 = BB2->getFirstNonPHI();
CallSite CS2(CI2);
EXPECT_TRUE(PSI.isHotCallSite(CS1, &BFI));
EXPECT_FALSE(PSI.isHotCallSite(CS2, &BFI));
// Test that CS2 is considered hot when it gets an MD_prof metadata with
// weights that exceed the hot count threshold.
MDBuilder MDB(M->getContext());
CI2->setMetadata(llvm::LLVMContext::MD_prof, MDB.createBranchWeights({400}));
EXPECT_TRUE(PSI.isHotCallSite(CS2, &BFI));
}
} // end anonymous namespace
} // end namespace llvm