forked from OSchip/llvm-project
1275 lines
49 KiB
C++
1275 lines
49 KiB
C++
//===- CGSCCPassManagerTest.cpp -------------------------------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/CGSCCPassManager.h"
|
|
#include "llvm/Analysis/LazyCallGraph.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/AsmParser/Parser.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/InstIterator.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Support/SourceMgr.h"
|
|
#include "gtest/gtest.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
|
|
class TestModuleAnalysis : public AnalysisInfoMixin<TestModuleAnalysis> {
|
|
public:
|
|
struct Result {
|
|
Result(int Count) : FunctionCount(Count) {}
|
|
int FunctionCount;
|
|
};
|
|
|
|
TestModuleAnalysis(int &Runs) : Runs(Runs) {}
|
|
|
|
Result run(Module &M, ModuleAnalysisManager &AM) {
|
|
++Runs;
|
|
return Result(M.size());
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestModuleAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
};
|
|
|
|
AnalysisKey TestModuleAnalysis::Key;
|
|
|
|
class TestSCCAnalysis : public AnalysisInfoMixin<TestSCCAnalysis> {
|
|
public:
|
|
struct Result {
|
|
Result(int Count) : FunctionCount(Count) {}
|
|
int FunctionCount;
|
|
};
|
|
|
|
TestSCCAnalysis(int &Runs) : Runs(Runs) {}
|
|
|
|
Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM, LazyCallGraph &) {
|
|
++Runs;
|
|
return Result(C.size());
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestSCCAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
};
|
|
|
|
AnalysisKey TestSCCAnalysis::Key;
|
|
|
|
class TestFunctionAnalysis : public AnalysisInfoMixin<TestFunctionAnalysis> {
|
|
public:
|
|
struct Result {
|
|
Result(int Count) : InstructionCount(Count) {}
|
|
int InstructionCount;
|
|
};
|
|
|
|
TestFunctionAnalysis(int &Runs) : Runs(Runs) {}
|
|
|
|
Result run(Function &F, FunctionAnalysisManager &AM) {
|
|
++Runs;
|
|
int Count = 0;
|
|
for (Instruction &I : instructions(F)) {
|
|
(void)I;
|
|
++Count;
|
|
}
|
|
return Result(Count);
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestFunctionAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
};
|
|
|
|
AnalysisKey TestFunctionAnalysis::Key;
|
|
|
|
class TestImmutableFunctionAnalysis
|
|
: public AnalysisInfoMixin<TestImmutableFunctionAnalysis> {
|
|
public:
|
|
struct Result {
|
|
bool invalidate(Function &, const PreservedAnalyses &,
|
|
FunctionAnalysisManager::Invalidator &) {
|
|
return false;
|
|
}
|
|
};
|
|
|
|
TestImmutableFunctionAnalysis(int &Runs) : Runs(Runs) {}
|
|
|
|
Result run(Function &F, FunctionAnalysisManager &AM) {
|
|
++Runs;
|
|
return Result();
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestImmutableFunctionAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
};
|
|
|
|
AnalysisKey TestImmutableFunctionAnalysis::Key;
|
|
|
|
struct LambdaModulePass : public PassInfoMixin<LambdaModulePass> {
|
|
template <typename T>
|
|
LambdaModulePass(T &&Arg) : Func(std::forward<T>(Arg)) {}
|
|
|
|
PreservedAnalyses run(Module &F, ModuleAnalysisManager &AM) {
|
|
return Func(F, AM);
|
|
}
|
|
|
|
std::function<PreservedAnalyses(Module &, ModuleAnalysisManager &)> Func;
|
|
};
|
|
|
|
struct LambdaSCCPass : public PassInfoMixin<LambdaSCCPass> {
|
|
template <typename T> LambdaSCCPass(T &&Arg) : Func(std::forward<T>(Arg)) {}
|
|
|
|
PreservedAnalyses run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
return Func(C, AM, CG, UR);
|
|
}
|
|
|
|
std::function<PreservedAnalyses(LazyCallGraph::SCC &, CGSCCAnalysisManager &,
|
|
LazyCallGraph &, CGSCCUpdateResult &)>
|
|
Func;
|
|
};
|
|
|
|
struct LambdaFunctionPass : public PassInfoMixin<LambdaFunctionPass> {
|
|
template <typename T>
|
|
LambdaFunctionPass(T &&Arg) : Func(std::forward<T>(Arg)) {}
|
|
|
|
PreservedAnalyses run(Function &F, FunctionAnalysisManager &AM) {
|
|
return Func(F, AM);
|
|
}
|
|
|
|
std::function<PreservedAnalyses(Function &, FunctionAnalysisManager &)> Func;
|
|
};
|
|
|
|
std::unique_ptr<Module> parseIR(const char *IR) {
|
|
// We just use a static context here. This is never called from multiple
|
|
// threads so it is harmless no matter how it is implemented. We just need
|
|
// the context to outlive the module which it does.
|
|
static LLVMContext C;
|
|
SMDiagnostic Err;
|
|
return parseAssemblyString(IR, Err, C);
|
|
}
|
|
|
|
class CGSCCPassManagerTest : public ::testing::Test {
|
|
protected:
|
|
LLVMContext Context;
|
|
FunctionAnalysisManager FAM;
|
|
CGSCCAnalysisManager CGAM;
|
|
ModuleAnalysisManager MAM;
|
|
|
|
std::unique_ptr<Module> M;
|
|
|
|
public:
|
|
CGSCCPassManagerTest()
|
|
: FAM(/*DebugLogging*/ true), CGAM(/*DebugLogging*/ true),
|
|
MAM(/*DebugLogging*/ true),
|
|
M(parseIR(
|
|
// Define a module with the following call graph, where calls go
|
|
// out the bottom of nodes and enter the top:
|
|
//
|
|
// f
|
|
// |\ _
|
|
// | \ / |
|
|
// g h1 |
|
|
// | | |
|
|
// | h2 |
|
|
// | | |
|
|
// | h3 |
|
|
// | / \_/
|
|
// |/
|
|
// x
|
|
//
|
|
"define void @f() {\n"
|
|
"entry:\n"
|
|
" call void @g()\n"
|
|
" call void @h1()\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @g() {\n"
|
|
"entry:\n"
|
|
" call void @g()\n"
|
|
" call void @x()\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @h1() {\n"
|
|
"entry:\n"
|
|
" call void @h2()\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @h2() {\n"
|
|
"entry:\n"
|
|
" call void @h3()\n"
|
|
" call void @x()\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @h3() {\n"
|
|
"entry:\n"
|
|
" call void @h1()\n"
|
|
" ret void\n"
|
|
"}\n"
|
|
"define void @x() {\n"
|
|
"entry:\n"
|
|
" ret void\n"
|
|
"}\n")) {
|
|
MAM.registerPass([&] { return TargetLibraryAnalysis(); });
|
|
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
|
|
MAM.registerPass([&] { return FunctionAnalysisManagerModuleProxy(FAM); });
|
|
MAM.registerPass([&] { return CGSCCAnalysisManagerModuleProxy(CGAM); });
|
|
CGAM.registerPass([&] { return FunctionAnalysisManagerCGSCCProxy(); });
|
|
CGAM.registerPass([&] { return ModuleAnalysisManagerCGSCCProxy(MAM); });
|
|
FAM.registerPass([&] { return CGSCCAnalysisManagerFunctionProxy(CGAM); });
|
|
FAM.registerPass([&] { return ModuleAnalysisManagerFunctionProxy(MAM); });
|
|
}
|
|
};
|
|
|
|
TEST_F(CGSCCPassManagerTest, Basic) {
|
|
int FunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
int ImmutableFunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] {
|
|
return TestImmutableFunctionAnalysis(ImmutableFunctionAnalysisRuns);
|
|
});
|
|
|
|
int SCCAnalysisRuns = 0;
|
|
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
|
|
|
|
int ModuleAnalysisRuns = 0;
|
|
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
int FunctionPassRunCount1 = 0;
|
|
FPM1.addPass(LambdaFunctionPass([&](Function &, FunctionAnalysisManager &) {
|
|
++FunctionPassRunCount1;
|
|
return PreservedAnalyses::none();
|
|
}));
|
|
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
|
|
int SCCPassRunCount1 = 0;
|
|
int AnalyzedInstrCount1 = 0;
|
|
int AnalyzedSCCFunctionCount1 = 0;
|
|
int AnalyzedModuleFunctionCount1 = 0;
|
|
CGPM1.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
++SCCPassRunCount1;
|
|
|
|
const ModuleAnalysisManager &MAM =
|
|
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
FunctionAnalysisManager &FAM =
|
|
AM.getResult<FunctionAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
if (TestModuleAnalysis::Result *TMA =
|
|
MAM.getCachedResult<TestModuleAnalysis>(
|
|
*C.begin()->getFunction().getParent()))
|
|
AnalyzedModuleFunctionCount1 += TMA->FunctionCount;
|
|
|
|
TestSCCAnalysis::Result &AR = AM.getResult<TestSCCAnalysis>(C, CG);
|
|
AnalyzedSCCFunctionCount1 += AR.FunctionCount;
|
|
for (LazyCallGraph::Node &N : C) {
|
|
TestFunctionAnalysis::Result &FAR =
|
|
FAM.getResult<TestFunctionAnalysis>(N.getFunction());
|
|
AnalyzedInstrCount1 += FAR.InstructionCount;
|
|
|
|
// Just ensure we get the immutable results.
|
|
(void)FAM.getResult<TestImmutableFunctionAnalysis>(N.getFunction());
|
|
}
|
|
|
|
return PreservedAnalyses::all();
|
|
}));
|
|
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
int FunctionPassRunCount2 = 0;
|
|
FPM2.addPass(LambdaFunctionPass([&](Function &, FunctionAnalysisManager &) {
|
|
++FunctionPassRunCount2;
|
|
return PreservedAnalyses::none();
|
|
}));
|
|
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
FunctionPassManager FPM3(/*DebugLogging*/ true);
|
|
int FunctionPassRunCount3 = 0;
|
|
FPM3.addPass(LambdaFunctionPass([&](Function &, FunctionAnalysisManager &) {
|
|
++FunctionPassRunCount3;
|
|
return PreservedAnalyses::none();
|
|
}));
|
|
MPM.addPass(createModuleToFunctionPassAdaptor(std::move(FPM3)));
|
|
|
|
MPM.run(*M, MAM);
|
|
|
|
EXPECT_EQ(4, SCCPassRunCount1);
|
|
EXPECT_EQ(6, FunctionPassRunCount1);
|
|
EXPECT_EQ(6, FunctionPassRunCount2);
|
|
EXPECT_EQ(6, FunctionPassRunCount3);
|
|
|
|
EXPECT_EQ(1, ModuleAnalysisRuns);
|
|
EXPECT_EQ(4, SCCAnalysisRuns);
|
|
EXPECT_EQ(6, FunctionAnalysisRuns);
|
|
EXPECT_EQ(6, ImmutableFunctionAnalysisRuns);
|
|
|
|
EXPECT_EQ(14, AnalyzedInstrCount1);
|
|
EXPECT_EQ(6, AnalyzedSCCFunctionCount1);
|
|
EXPECT_EQ(4 * 6, AnalyzedModuleFunctionCount1);
|
|
}
|
|
|
|
// Test that an SCC pass which fails to preserve a module analysis does in fact
|
|
// invalidate that module analysis.
|
|
TEST_F(CGSCCPassManagerTest, TestSCCPassInvalidatesModuleAnalysis) {
|
|
int ModuleAnalysisRuns = 0;
|
|
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
|
|
// The first CGSCC run we preserve everything and make sure that works and
|
|
// the module analysis is available in the second CGSCC run from the one
|
|
// required module pass above.
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
int CountFoundModuleAnalysis1 = 0;
|
|
CGPM1.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
const auto &MAM =
|
|
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
auto *TMA = MAM.getCachedResult<TestModuleAnalysis>(
|
|
*C.begin()->getFunction().getParent());
|
|
|
|
if (TMA)
|
|
++CountFoundModuleAnalysis1;
|
|
|
|
return PreservedAnalyses::all();
|
|
}));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// The second CGSCC run checks that the module analysis got preserved the
|
|
// previous time and in one SCC fails to preserve it.
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
int CountFoundModuleAnalysis2 = 0;
|
|
CGPM2.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
const auto &MAM =
|
|
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
auto *TMA = MAM.getCachedResult<TestModuleAnalysis>(
|
|
*C.begin()->getFunction().getParent());
|
|
|
|
if (TMA)
|
|
++CountFoundModuleAnalysis2;
|
|
|
|
// Only fail to preserve analyses on one SCC and make sure that gets
|
|
// propagated.
|
|
return C.getName() == "(g)" ? PreservedAnalyses::none()
|
|
: PreservedAnalyses::all();
|
|
}));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
// The third CGSCC run should fail to find a cached module analysis as it
|
|
// should have been invalidated by the above CGSCC run.
|
|
CGSCCPassManager CGPM3(/*DebugLogging*/ true);
|
|
int CountFoundModuleAnalysis3 = 0;
|
|
CGPM3.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
const auto &MAM =
|
|
AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG).getManager();
|
|
auto *TMA = MAM.getCachedResult<TestModuleAnalysis>(
|
|
*C.begin()->getFunction().getParent());
|
|
|
|
if (TMA)
|
|
++CountFoundModuleAnalysis3;
|
|
|
|
return PreservedAnalyses::none();
|
|
}));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM3)));
|
|
|
|
MPM.run(*M, MAM);
|
|
|
|
EXPECT_EQ(1, ModuleAnalysisRuns);
|
|
EXPECT_EQ(4, CountFoundModuleAnalysis1);
|
|
EXPECT_EQ(4, CountFoundModuleAnalysis2);
|
|
EXPECT_EQ(0, CountFoundModuleAnalysis3);
|
|
}
|
|
|
|
// Similar to the above, but test that this works for function passes embedded
|
|
// *within* a CGSCC layer.
|
|
TEST_F(CGSCCPassManagerTest, TestFunctionPassInsideCGSCCInvalidatesModuleAnalysis) {
|
|
int ModuleAnalysisRuns = 0;
|
|
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
|
|
// The first run we preserve everything and make sure that works and the
|
|
// module analysis is available in the second run from the one required
|
|
// module pass above.
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
// Start true and mark false if we ever failed to find a module analysis
|
|
// because we expect this to succeed for each SCC.
|
|
bool FoundModuleAnalysis1 = true;
|
|
FPM1.addPass(
|
|
LambdaFunctionPass([&](Function &F, FunctionAnalysisManager &AM) {
|
|
const auto &MAM =
|
|
AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
|
|
auto *TMA = MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
|
|
|
|
if (!TMA)
|
|
FoundModuleAnalysis1 = false;
|
|
|
|
return PreservedAnalyses::all();
|
|
}));
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// The second run checks that the module analysis got preserved the previous
|
|
// time and in one function fails to preserve it.
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
// Again, start true and mark false if we ever failed to find a module analysis
|
|
// because we expect this to succeed for each SCC.
|
|
bool FoundModuleAnalysis2 = true;
|
|
FPM2.addPass(
|
|
LambdaFunctionPass([&](Function &F, FunctionAnalysisManager &AM) {
|
|
const auto &MAM =
|
|
AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
|
|
auto *TMA = MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
|
|
|
|
if (!TMA)
|
|
FoundModuleAnalysis2 = false;
|
|
|
|
// Only fail to preserve analyses on one SCC and make sure that gets
|
|
// propagated.
|
|
return F.getName() == "h2" ? PreservedAnalyses::none()
|
|
: PreservedAnalyses::all();
|
|
}));
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
// The third run should fail to find a cached module analysis as it should
|
|
// have been invalidated by the above run.
|
|
FunctionPassManager FPM3(/*DebugLogging*/ true);
|
|
// Start false and mark true if we ever *succeeded* to find a module
|
|
// analysis, as we expect this to fail for every function.
|
|
bool FoundModuleAnalysis3 = false;
|
|
FPM3.addPass(
|
|
LambdaFunctionPass([&](Function &F, FunctionAnalysisManager &AM) {
|
|
const auto &MAM =
|
|
AM.getResult<ModuleAnalysisManagerFunctionProxy>(F).getManager();
|
|
auto *TMA = MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
|
|
|
|
if (TMA)
|
|
FoundModuleAnalysis3 = true;
|
|
|
|
return PreservedAnalyses::none();
|
|
}));
|
|
CGSCCPassManager CGPM3(/*DebugLogging*/ true);
|
|
CGPM3.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM3)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM3)));
|
|
|
|
MPM.run(*M, MAM);
|
|
|
|
EXPECT_EQ(1, ModuleAnalysisRuns);
|
|
EXPECT_TRUE(FoundModuleAnalysis1);
|
|
EXPECT_TRUE(FoundModuleAnalysis2);
|
|
EXPECT_FALSE(FoundModuleAnalysis3);
|
|
}
|
|
|
|
// Test that a Module pass which fails to preserve an SCC analysis in fact
|
|
// invalidates that analysis.
|
|
TEST_F(CGSCCPassManagerTest, TestModulePassInvalidatesSCCAnalysis) {
|
|
int SCCAnalysisRuns = 0;
|
|
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// Now run a module pass that preserves the LazyCallGraph and the proxy but
|
|
// not the SCC analysis.
|
|
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LazyCallGraphAnalysis>();
|
|
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
|
|
PA.preserve<FunctionAnalysisManagerModuleProxy>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again. This
|
|
// will trigger re-running it.
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
MPM.run(*M, MAM);
|
|
// Two runs and four SCCs.
|
|
EXPECT_EQ(2 * 4, SCCAnalysisRuns);
|
|
}
|
|
|
|
// Check that marking the SCC analysis preserved is sufficient to avoid
|
|
// invaliadtion. This should only run the analysis once for each SCC.
|
|
TEST_F(CGSCCPassManagerTest, TestModulePassCanPreserveSCCAnalysis) {
|
|
int SCCAnalysisRuns = 0;
|
|
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// Now run a module pass that preserves each of the necessary components
|
|
// (but not everything).
|
|
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LazyCallGraphAnalysis>();
|
|
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
|
|
PA.preserve<FunctionAnalysisManagerModuleProxy>();
|
|
PA.preserve<TestSCCAnalysis>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again but find
|
|
// it in the cache.
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
MPM.run(*M, MAM);
|
|
// Four SCCs
|
|
EXPECT_EQ(4, SCCAnalysisRuns);
|
|
}
|
|
|
|
// Check that even when the analysis is preserved, if the SCC information isn't
|
|
// we still nuke things because the SCC keys could change.
|
|
TEST_F(CGSCCPassManagerTest, TestModulePassInvalidatesSCCAnalysisOnCGChange) {
|
|
int SCCAnalysisRuns = 0;
|
|
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// Now run a module pass that preserves the analysis but not the call
|
|
// graph or proxy.
|
|
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<TestSCCAnalysis>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again.
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(RequireAnalysisPass<TestSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
MPM.run(*M, MAM);
|
|
// Two runs and four SCCs.
|
|
EXPECT_EQ(2 * 4, SCCAnalysisRuns);
|
|
}
|
|
|
|
// Test that an SCC pass which fails to preserve a Function analysis in fact
|
|
// invalidates that analysis.
|
|
TEST_F(CGSCCPassManagerTest, TestSCCPassInvalidatesFunctionAnalysis) {
|
|
int FunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
|
|
// Create a very simple module with a single function and SCC to make testing
|
|
// these issues much easier.
|
|
std::unique_ptr<Module> M = parseIR("declare void @g()\n"
|
|
"declare void @h()\n"
|
|
"define void @f() {\n"
|
|
"entry:\n"
|
|
" call void @g()\n"
|
|
" call void @h()\n"
|
|
" ret void\n"
|
|
"}\n");
|
|
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
|
|
// Now run a module pass that preserves the LazyCallGraph and proxy but not
|
|
// the SCC analysis.
|
|
CGPM.addPass(LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &,
|
|
LazyCallGraph &, CGSCCUpdateResult &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LazyCallGraphAnalysis>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again. This
|
|
// will trigger re-running it.
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
EXPECT_EQ(2, FunctionAnalysisRuns);
|
|
}
|
|
|
|
// Check that marking the SCC analysis preserved is sufficient. This should
|
|
// only run the analysis once the SCC.
|
|
TEST_F(CGSCCPassManagerTest, TestSCCPassCanPreserveFunctionAnalysis) {
|
|
int FunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
|
|
// Create a very simple module with a single function and SCC to make testing
|
|
// these issues much easier.
|
|
std::unique_ptr<Module> M = parseIR("declare void @g()\n"
|
|
"declare void @h()\n"
|
|
"define void @f() {\n"
|
|
"entry:\n"
|
|
" call void @g()\n"
|
|
" call void @h()\n"
|
|
" ret void\n"
|
|
"}\n");
|
|
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
|
|
// Now run a module pass that preserves each of the necessary components
|
|
// (but
|
|
// not everything).
|
|
CGPM.addPass(LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &,
|
|
LazyCallGraph &, CGSCCUpdateResult &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LazyCallGraphAnalysis>();
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
PA.preserve<TestFunctionAnalysis>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again but find
|
|
// it in the cache.
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.run(*M, MAM);
|
|
EXPECT_EQ(1, FunctionAnalysisRuns);
|
|
}
|
|
|
|
// Note that there is no test for invalidating the call graph or other
|
|
// structure with an SCC pass because there is no mechanism to do that from
|
|
// withinsuch a pass. Instead, such a pass has to directly update the call
|
|
// graph structure.
|
|
|
|
// Test that a madule pass invalidates function analyses when the CGSCC proxies
|
|
// and pass manager.
|
|
TEST_F(CGSCCPassManagerTest,
|
|
TestModulePassInvalidatesFunctionAnalysisNestedInCGSCC) {
|
|
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
|
|
|
|
int FunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// Now run a module pass that preserves the LazyCallGraph and proxies but not
|
|
// the Function analysis.
|
|
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LazyCallGraphAnalysis>();
|
|
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
PA.preserve<FunctionAnalysisManagerModuleProxy>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again. This
|
|
// will trigger re-running it.
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
MPM.run(*M, MAM);
|
|
// Two runs and 6 functions.
|
|
EXPECT_EQ(2 * 6, FunctionAnalysisRuns);
|
|
}
|
|
|
|
// Check that by marking the function pass and proxies as preserved, this
|
|
// propagates all the way through.
|
|
TEST_F(CGSCCPassManagerTest,
|
|
TestModulePassCanPreserveFunctionAnalysisNestedInCGSCC) {
|
|
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
|
|
|
|
int FunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// Now run a module pass that preserves the LazyCallGraph, the proxy, and
|
|
// the Function analysis.
|
|
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
|
|
PreservedAnalyses PA;
|
|
PA.preserve<LazyCallGraphAnalysis>();
|
|
PA.preserve<CGSCCAnalysisManagerModuleProxy>();
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
PA.preserve<FunctionAnalysisManagerModuleProxy>();
|
|
PA.preserve<TestFunctionAnalysis>();
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again. This
|
|
// will trigger re-running it.
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
MPM.run(*M, MAM);
|
|
// One run and 6 functions.
|
|
EXPECT_EQ(6, FunctionAnalysisRuns);
|
|
}
|
|
|
|
// Check that if the lazy call graph itself isn't preserved we still manage to
|
|
// invalidate everything.
|
|
TEST_F(CGSCCPassManagerTest,
|
|
TestModulePassInvalidatesFunctionAnalysisNestedInCGSCCOnCGChange) {
|
|
MAM.registerPass([&] { return LazyCallGraphAnalysis(); });
|
|
|
|
int FunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
// First force the analysis to be run.
|
|
FunctionPassManager FPM1(/*DebugLogging*/ true);
|
|
FPM1.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGSCCPassManager CGPM1(/*DebugLogging*/ true);
|
|
CGPM1.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM1)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM1)));
|
|
|
|
// Now run a module pass that preserves the LazyCallGraph but not the
|
|
// Function analysis.
|
|
MPM.addPass(LambdaModulePass([&](Module &M, ModuleAnalysisManager &) {
|
|
PreservedAnalyses PA;
|
|
return PA;
|
|
}));
|
|
|
|
// And now a second CGSCC run which requires the SCC analysis again. This
|
|
// will trigger re-running it.
|
|
FunctionPassManager FPM2(/*DebugLogging*/ true);
|
|
FPM2.addPass(RequireAnalysisPass<TestFunctionAnalysis, Function>());
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(std::move(FPM2)));
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
|
|
MPM.run(*M, MAM);
|
|
// Two runs and 6 functions.
|
|
EXPECT_EQ(2 * 6, FunctionAnalysisRuns);
|
|
}
|
|
|
|
/// A test CGSCC-level analysis pass which caches in its result another
|
|
/// analysis pass and uses it to serve queries. This requires the result to
|
|
/// invalidate itself when its dependency is invalidated.
|
|
///
|
|
/// FIXME: Currently this doesn't also depend on a function analysis, and if it
|
|
/// did we would fail to invalidate it correctly.
|
|
struct TestIndirectSCCAnalysis
|
|
: public AnalysisInfoMixin<TestIndirectSCCAnalysis> {
|
|
struct Result {
|
|
Result(TestSCCAnalysis::Result &SCCDep, TestModuleAnalysis::Result &MDep)
|
|
: SCCDep(SCCDep), MDep(MDep) {}
|
|
TestSCCAnalysis::Result &SCCDep;
|
|
TestModuleAnalysis::Result &MDep;
|
|
|
|
bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
|
|
CGSCCAnalysisManager::Invalidator &Inv) {
|
|
auto PAC = PA.getChecker<TestIndirectSCCAnalysis>();
|
|
return !(PAC.preserved() ||
|
|
PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) ||
|
|
Inv.invalidate<TestSCCAnalysis>(C, PA);
|
|
}
|
|
};
|
|
|
|
TestIndirectSCCAnalysis(int &Runs) : Runs(Runs) {}
|
|
|
|
/// Run the analysis pass over the function and return a result.
|
|
Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG) {
|
|
++Runs;
|
|
auto &SCCDep = AM.getResult<TestSCCAnalysis>(C, CG);
|
|
|
|
auto &ModuleProxy = AM.getResult<ModuleAnalysisManagerCGSCCProxy>(C, CG);
|
|
const ModuleAnalysisManager &MAM = ModuleProxy.getManager();
|
|
// For the test, we insist that the module analysis starts off in the
|
|
// cache.
|
|
auto &MDep = *MAM.getCachedResult<TestModuleAnalysis>(
|
|
*C.begin()->getFunction().getParent());
|
|
// Register the dependency as module analysis dependencies have to be
|
|
// pre-registered on the proxy.
|
|
ModuleProxy.registerOuterAnalysisInvalidation<TestModuleAnalysis,
|
|
TestIndirectSCCAnalysis>();
|
|
|
|
return Result(SCCDep, MDep);
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestIndirectSCCAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
};
|
|
|
|
AnalysisKey TestIndirectSCCAnalysis::Key;
|
|
|
|
/// A test analysis pass which caches in its result the result from the above
|
|
/// indirect analysis pass.
|
|
///
|
|
/// This allows us to ensure that whenever an analysis pass is invalidated due
|
|
/// to dependencies (especially dependencies across IR units that trigger
|
|
/// asynchronous invalidation) we correctly detect that this may in turn cause
|
|
/// other analysis to be invalidated.
|
|
struct TestDoublyIndirectSCCAnalysis
|
|
: public AnalysisInfoMixin<TestDoublyIndirectSCCAnalysis> {
|
|
struct Result {
|
|
Result(TestIndirectSCCAnalysis::Result &IDep) : IDep(IDep) {}
|
|
TestIndirectSCCAnalysis::Result &IDep;
|
|
|
|
bool invalidate(LazyCallGraph::SCC &C, const PreservedAnalyses &PA,
|
|
CGSCCAnalysisManager::Invalidator &Inv) {
|
|
auto PAC = PA.getChecker<TestDoublyIndirectSCCAnalysis>();
|
|
return !(PAC.preserved() ||
|
|
PAC.preservedSet<AllAnalysesOn<LazyCallGraph::SCC>>()) ||
|
|
Inv.invalidate<TestIndirectSCCAnalysis>(C, PA);
|
|
}
|
|
};
|
|
|
|
TestDoublyIndirectSCCAnalysis(int &Runs) : Runs(Runs) {}
|
|
|
|
/// Run the analysis pass over the function and return a result.
|
|
Result run(LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG) {
|
|
++Runs;
|
|
auto &IDep = AM.getResult<TestIndirectSCCAnalysis>(C, CG);
|
|
return Result(IDep);
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestDoublyIndirectSCCAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
};
|
|
|
|
AnalysisKey TestDoublyIndirectSCCAnalysis::Key;
|
|
|
|
/// A test analysis pass which caches results from three different IR unit
|
|
/// layers and requires intermediate layers to correctly propagate the entire
|
|
/// distance.
|
|
struct TestIndirectFunctionAnalysis
|
|
: public AnalysisInfoMixin<TestIndirectFunctionAnalysis> {
|
|
struct Result {
|
|
Result(TestFunctionAnalysis::Result &FDep, TestModuleAnalysis::Result &MDep,
|
|
TestSCCAnalysis::Result &SCCDep)
|
|
: FDep(FDep), MDep(MDep), SCCDep(SCCDep) {}
|
|
TestFunctionAnalysis::Result &FDep;
|
|
TestModuleAnalysis::Result &MDep;
|
|
TestSCCAnalysis::Result &SCCDep;
|
|
|
|
bool invalidate(Function &F, const PreservedAnalyses &PA,
|
|
FunctionAnalysisManager::Invalidator &Inv) {
|
|
auto PAC = PA.getChecker<TestIndirectFunctionAnalysis>();
|
|
return !(PAC.preserved() ||
|
|
PAC.preservedSet<AllAnalysesOn<Function>>()) ||
|
|
Inv.invalidate<TestFunctionAnalysis>(F, PA);
|
|
}
|
|
};
|
|
|
|
TestIndirectFunctionAnalysis(int &Runs) : Runs(Runs) {}
|
|
|
|
/// Run the analysis pass over the function and return a result.
|
|
Result run(Function &F, FunctionAnalysisManager &AM) {
|
|
++Runs;
|
|
auto &FDep = AM.getResult<TestFunctionAnalysis>(F);
|
|
|
|
auto &ModuleProxy = AM.getResult<ModuleAnalysisManagerFunctionProxy>(F);
|
|
const ModuleAnalysisManager &MAM = ModuleProxy.getManager();
|
|
// For the test, we insist that the module analysis starts off in the
|
|
// cache.
|
|
auto &MDep = *MAM.getCachedResult<TestModuleAnalysis>(*F.getParent());
|
|
// Register the dependency as module analysis dependencies have to be
|
|
// pre-registered on the proxy.
|
|
ModuleProxy.registerOuterAnalysisInvalidation<
|
|
TestModuleAnalysis, TestIndirectFunctionAnalysis>();
|
|
|
|
// For thet test we assume this is run inside a CGSCC pass manager.
|
|
const LazyCallGraph &CG =
|
|
*MAM.getCachedResult<LazyCallGraphAnalysis>(*F.getParent());
|
|
auto &CGSCCProxy = AM.getResult<CGSCCAnalysisManagerFunctionProxy>(F);
|
|
const CGSCCAnalysisManager &CGAM = CGSCCProxy.getManager();
|
|
// For the test, we insist that the CGSCC analysis starts off in the cache.
|
|
auto &SCCDep =
|
|
*CGAM.getCachedResult<TestSCCAnalysis>(*CG.lookupSCC(*CG.lookup(F)));
|
|
// Register the dependency as CGSCC analysis dependencies have to be
|
|
// pre-registered on the proxy.
|
|
CGSCCProxy.registerOuterAnalysisInvalidation<
|
|
TestSCCAnalysis, TestIndirectFunctionAnalysis>();
|
|
|
|
return Result(FDep, MDep, SCCDep);
|
|
}
|
|
|
|
private:
|
|
friend AnalysisInfoMixin<TestIndirectFunctionAnalysis>;
|
|
static AnalysisKey Key;
|
|
|
|
int &Runs;
|
|
};
|
|
|
|
AnalysisKey TestIndirectFunctionAnalysis::Key;
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestIndirectAnalysisInvalidation) {
|
|
int ModuleAnalysisRuns = 0;
|
|
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
|
|
|
|
int SCCAnalysisRuns = 0, IndirectSCCAnalysisRuns = 0,
|
|
DoublyIndirectSCCAnalysisRuns = 0;
|
|
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
|
|
CGAM.registerPass(
|
|
[&] { return TestIndirectSCCAnalysis(IndirectSCCAnalysisRuns); });
|
|
CGAM.registerPass([&] {
|
|
return TestDoublyIndirectSCCAnalysis(DoublyIndirectSCCAnalysisRuns);
|
|
});
|
|
|
|
int FunctionAnalysisRuns = 0, IndirectFunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
FAM.registerPass([&] {
|
|
return TestIndirectFunctionAnalysis(IndirectFunctionAnalysisRuns);
|
|
});
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
int FunctionCount = 0;
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
// First just use the analysis to get the function count and preserve
|
|
// everything.
|
|
CGPM.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &) {
|
|
auto &DoublyIndirectResult =
|
|
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
|
|
auto &IndirectResult = DoublyIndirectResult.IDep;
|
|
FunctionCount += IndirectResult.SCCDep.FunctionCount;
|
|
return PreservedAnalyses::all();
|
|
}));
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireAnalysisPass<TestIndirectFunctionAnalysis, Function>()));
|
|
|
|
// Next, invalidate
|
|
// - both analyses for the (f) and (x) SCCs,
|
|
// - just the underlying (indirect) analysis for (g) SCC, and
|
|
// - just the direct analysis for (h1,h2,h3) SCC.
|
|
CGPM.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &) {
|
|
auto &DoublyIndirectResult =
|
|
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
|
|
auto &IndirectResult = DoublyIndirectResult.IDep;
|
|
FunctionCount += IndirectResult.SCCDep.FunctionCount;
|
|
auto PA = PreservedAnalyses::none();
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
PA.preserveSet<AllAnalysesOn<Function>>();
|
|
if (C.getName() == "(g)")
|
|
PA.preserve<TestSCCAnalysis>();
|
|
else if (C.getName() == "(h3, h1, h2)")
|
|
PA.preserve<TestIndirectSCCAnalysis>();
|
|
return PA;
|
|
}));
|
|
// Finally, use the analysis again on each SCC (and function), forcing
|
|
// re-computation for all of them.
|
|
CGPM.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &) {
|
|
auto &DoublyIndirectResult =
|
|
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
|
|
auto &IndirectResult = DoublyIndirectResult.IDep;
|
|
FunctionCount += IndirectResult.SCCDep.FunctionCount;
|
|
return PreservedAnalyses::all();
|
|
}));
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireAnalysisPass<TestIndirectFunctionAnalysis, Function>()));
|
|
|
|
// Create a second CGSCC pass manager. This will cause the module-level
|
|
// invalidation to occur, which will force yet another invalidation of the
|
|
// indirect SCC-level analysis as the module analysis it depends on gets
|
|
// invalidated.
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &) {
|
|
auto &DoublyIndirectResult =
|
|
AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
|
|
auto &IndirectResult = DoublyIndirectResult.IDep;
|
|
FunctionCount += IndirectResult.SCCDep.FunctionCount;
|
|
return PreservedAnalyses::all();
|
|
}));
|
|
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireAnalysisPass<TestIndirectFunctionAnalysis, Function>()));
|
|
|
|
// Add a requires pass to populate the module analysis and then our CGSCC
|
|
// pass pipeline.
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
// Now require the module analysis again (it will have been invalidated once)
|
|
// and then use it again from our second CGSCC pipeline..
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
MPM.run(*M, MAM);
|
|
|
|
// There are generally two possible runs for each of the four SCCs. But
|
|
// for one SCC, we only invalidate the indirect analysis so the base one
|
|
// only gets run seven times.
|
|
EXPECT_EQ(7, SCCAnalysisRuns);
|
|
// The module analysis pass should be run twice here.
|
|
EXPECT_EQ(2, ModuleAnalysisRuns);
|
|
// The indirect analysis is invalidated (either directly or indirectly) three
|
|
// times for each of four SCCs.
|
|
EXPECT_EQ(3 * 4, IndirectSCCAnalysisRuns);
|
|
EXPECT_EQ(3 * 4, DoublyIndirectSCCAnalysisRuns);
|
|
|
|
// We run the indirect function analysis once per function the first time.
|
|
// Then we re-run it for every SCC but "(g)". Then we re-run it for every
|
|
// function again.
|
|
EXPECT_EQ(6 + 5 + 6, IndirectFunctionAnalysisRuns);
|
|
|
|
// Four passes count each of six functions once (via SCCs).
|
|
EXPECT_EQ(4 * 6, FunctionCount);
|
|
}
|
|
|
|
TEST_F(CGSCCPassManagerTest, TestAnalysisInvalidationCGSCCUpdate) {
|
|
int ModuleAnalysisRuns = 0;
|
|
MAM.registerPass([&] { return TestModuleAnalysis(ModuleAnalysisRuns); });
|
|
|
|
int SCCAnalysisRuns = 0, IndirectSCCAnalysisRuns = 0,
|
|
DoublyIndirectSCCAnalysisRuns = 0;
|
|
CGAM.registerPass([&] { return TestSCCAnalysis(SCCAnalysisRuns); });
|
|
CGAM.registerPass(
|
|
[&] { return TestIndirectSCCAnalysis(IndirectSCCAnalysisRuns); });
|
|
CGAM.registerPass([&] {
|
|
return TestDoublyIndirectSCCAnalysis(DoublyIndirectSCCAnalysisRuns);
|
|
});
|
|
|
|
int FunctionAnalysisRuns = 0, IndirectFunctionAnalysisRuns = 0;
|
|
FAM.registerPass([&] { return TestFunctionAnalysis(FunctionAnalysisRuns); });
|
|
FAM.registerPass([&] {
|
|
return TestIndirectFunctionAnalysis(IndirectFunctionAnalysisRuns);
|
|
});
|
|
|
|
ModulePassManager MPM(/*DebugLogging*/ true);
|
|
|
|
CGSCCPassManager CGPM(/*DebugLogging*/ true);
|
|
// First just use the analysis to get the function count and preserve
|
|
// everything.
|
|
using RequireTestIndirectFunctionAnalysisPass =
|
|
RequireAnalysisPass<TestIndirectFunctionAnalysis, Function>;
|
|
using RequireTestDoublyIndirectSCCAnalysisPass =
|
|
RequireAnalysisPass<TestDoublyIndirectSCCAnalysis, LazyCallGraph::SCC,
|
|
CGSCCAnalysisManager, LazyCallGraph &,
|
|
CGSCCUpdateResult &>;
|
|
CGPM.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireTestIndirectFunctionAnalysisPass()));
|
|
|
|
// Next, we inject an SCC pass that invalidates everything for the `(h3, h1,
|
|
// h2)` SCC but also deletes the call edge from `h2` to `h3` and updates the
|
|
// CG. This should successfully invalidate (and force to be re-run) all the
|
|
// analyses for that SCC and for the functions.
|
|
CGPM.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
(void)AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
|
|
if (C.getName() != "(h3, h1, h2)")
|
|
return PreservedAnalyses::all();
|
|
|
|
// Build the preserved set.
|
|
auto PA = PreservedAnalyses::none();
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
PA.preserve<TestIndirectSCCAnalysis>();
|
|
PA.preserve<TestDoublyIndirectSCCAnalysis>();
|
|
|
|
// Delete the call from `h2` to `h3`.
|
|
auto &H2N = *llvm::find_if(
|
|
C, [](LazyCallGraph::Node &N) { return N.getName() == "h2"; });
|
|
auto &H2F = H2N.getFunction();
|
|
auto &H3F = *cast<CallInst>(H2F.begin()->begin())->getCalledFunction();
|
|
assert(H3F.getName() == "h3" && "Wrong called function!");
|
|
H2F.begin()->begin()->eraseFromParent();
|
|
// Insert a bitcast of `h3` so that we retain a ref edge to it.
|
|
(void)CastInst::CreatePointerCast(&H3F,
|
|
Type::getInt8PtrTy(H2F.getContext()),
|
|
"dummy", &*H2F.begin()->begin());
|
|
|
|
// Now update the call graph.
|
|
auto &NewC =
|
|
updateCGAndAnalysisManagerForFunctionPass(CG, C, H2N, AM, UR);
|
|
assert(&NewC != &C && "Should get a new SCC due to update!");
|
|
(void)&NewC;
|
|
|
|
return PA;
|
|
}));
|
|
// Now use the analysis again on each SCC and function, forcing
|
|
// re-computation for all of them.
|
|
CGPM.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
|
|
CGPM.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireTestIndirectFunctionAnalysisPass()));
|
|
|
|
// Create another CGSCC pipeline that requires all the analyses again.
|
|
CGSCCPassManager CGPM2(/*DebugLogging*/ true);
|
|
CGPM2.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
|
|
CGPM2.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireTestIndirectFunctionAnalysisPass()));
|
|
|
|
// Next we inject an SCC pass that finds the `(h2)` SCC, adds a call to `h3`
|
|
// back to `h2`, and then invalidates everything for what will then be the
|
|
// `(h3, h1, h2)` SCC again.
|
|
CGSCCPassManager CGPM3(/*DebugLogging*/ true);
|
|
CGPM3.addPass(
|
|
LambdaSCCPass([&](LazyCallGraph::SCC &C, CGSCCAnalysisManager &AM,
|
|
LazyCallGraph &CG, CGSCCUpdateResult &UR) {
|
|
(void)AM.getResult<TestDoublyIndirectSCCAnalysis>(C, CG);
|
|
if (C.getName() != "(h2)")
|
|
return PreservedAnalyses::all();
|
|
|
|
// Build the preserved set.
|
|
auto PA = PreservedAnalyses::none();
|
|
PA.preserve<FunctionAnalysisManagerCGSCCProxy>();
|
|
PA.preserve<TestIndirectSCCAnalysis>();
|
|
PA.preserve<TestDoublyIndirectSCCAnalysis>();
|
|
|
|
// Delete the bitcast of `h3` that we added earlier.
|
|
auto &H2N = *C.begin();
|
|
auto &H2F = H2N.getFunction();
|
|
auto &H3F = *cast<Function>(cast<BitCastInst>(H2F.begin()->begin())->getOperand(0));
|
|
assert(H3F.getName() == "h3" && "Wrong called function!");
|
|
H2F.begin()->begin()->eraseFromParent();
|
|
// And insert a call to `h3`.
|
|
(void)CallInst::Create(&H3F, {}, "", &*H2F.begin()->begin());
|
|
|
|
// Now update the call graph.
|
|
auto &NewC =
|
|
updateCGAndAnalysisManagerForFunctionPass(CG, C, H2N, AM, UR);
|
|
assert(&NewC != &C && "Should get a new SCC due to update!");
|
|
(void)&NewC;
|
|
|
|
return PA;
|
|
}));
|
|
// Now use the analysis again on each SCC and function, forcing
|
|
// re-computation for all of them.
|
|
CGPM3.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
|
|
CGPM3.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireTestIndirectFunctionAnalysisPass()));
|
|
|
|
// Create a second CGSCC pass manager. This will cause the module-level
|
|
// invalidation to occur, which will force yet another invalidation of the
|
|
// indirect SCC-level analysis as the module analysis it depends on gets
|
|
// invalidated.
|
|
CGSCCPassManager CGPM4(/*DebugLogging*/ true);
|
|
CGPM4.addPass(RequireTestDoublyIndirectSCCAnalysisPass());
|
|
CGPM4.addPass(createCGSCCToFunctionPassAdaptor(
|
|
RequireTestIndirectFunctionAnalysisPass()));
|
|
|
|
// Add a requires pass to populate the module analysis and then one of our
|
|
// CGSCC pipelines. Repeat for all four CGSCC pipelines.
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM)));
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM2)));
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM3)));
|
|
MPM.addPass(RequireAnalysisPass<TestModuleAnalysis, Module>());
|
|
MPM.addPass(createModuleToPostOrderCGSCCPassAdaptor(std::move(CGPM4)));
|
|
MPM.run(*M, MAM);
|
|
|
|
// We run over four SCCs the first time. But then we split an SCC into three.
|
|
// And then we merge those three back into one.
|
|
EXPECT_EQ(4 + 3 + 1, SCCAnalysisRuns);
|
|
// The module analysis pass should be run three times.
|
|
EXPECT_EQ(3, ModuleAnalysisRuns);
|
|
// We run over four SCCs the first time. Then over the two new ones. Then the
|
|
// entire module is invalidated causing a full run over all seven. Then we
|
|
// fold three SCCs back to one, and then run over the whole module again.
|
|
EXPECT_EQ(4 + 2 + 7 + 1 + 4, IndirectSCCAnalysisRuns);
|
|
EXPECT_EQ(4 + 2 + 7 + 1 + 4, DoublyIndirectSCCAnalysisRuns);
|
|
|
|
// First we run over all six functions. Then we re-run it over three when we
|
|
// split their SCCs. Then we re-run over the whole module. Then we re-run
|
|
// over three functions merged back into a single SCC, and then over the
|
|
// whole module again.
|
|
EXPECT_EQ(6 + 3 + 6 + 3 + 6, FunctionAnalysisRuns);
|
|
|
|
// Re run the function analysis over the entire module, and then re-run it
|
|
// over the `(h3, h1, h2)` SCC due to invalidation. Then we re-run it over
|
|
// the entire module, then the three functions merged back into a single SCC,
|
|
// and then over the whole module.
|
|
EXPECT_EQ(6 + 3 + 6 + 3 + 6, IndirectFunctionAnalysisRuns);
|
|
}
|
|
}
|