forked from OSchip/llvm-project
1001 lines
32 KiB
C++
1001 lines
32 KiB
C++
//===-- sanitizer_linux_libcdep.cpp ---------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file is shared between AddressSanitizer and ThreadSanitizer
|
|
// run-time libraries and implements linux-specific functions from
|
|
// sanitizer_libc.h.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "sanitizer_platform.h"
|
|
|
|
#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \
|
|
SANITIZER_SOLARIS
|
|
|
|
#include "sanitizer_allocator_internal.h"
|
|
#include "sanitizer_atomic.h"
|
|
#include "sanitizer_common.h"
|
|
#include "sanitizer_file.h"
|
|
#include "sanitizer_flags.h"
|
|
#include "sanitizer_freebsd.h"
|
|
#include "sanitizer_getauxval.h"
|
|
#include "sanitizer_glibc_version.h"
|
|
#include "sanitizer_linux.h"
|
|
#include "sanitizer_placement_new.h"
|
|
#include "sanitizer_procmaps.h"
|
|
|
|
#if SANITIZER_NETBSD
|
|
#define _RTLD_SOURCE // for __lwp_gettcb_fast() / __lwp_getprivate_fast()
|
|
#endif
|
|
|
|
#include <dlfcn.h> // for dlsym()
|
|
#include <link.h>
|
|
#include <pthread.h>
|
|
#include <signal.h>
|
|
#include <sys/mman.h>
|
|
#include <sys/resource.h>
|
|
#include <syslog.h>
|
|
|
|
#if !defined(ElfW)
|
|
#define ElfW(type) Elf_##type
|
|
#endif
|
|
|
|
#if SANITIZER_FREEBSD
|
|
#include <pthread_np.h>
|
|
#include <osreldate.h>
|
|
#include <sys/sysctl.h>
|
|
#define pthread_getattr_np pthread_attr_get_np
|
|
// The MAP_NORESERVE define has been removed in FreeBSD 11.x, and even before
|
|
// that, it was never implemented. So just define it to zero.
|
|
#undef MAP_NORESERVE
|
|
#define MAP_NORESERVE 0
|
|
#endif
|
|
|
|
#if SANITIZER_NETBSD
|
|
#include <sys/sysctl.h>
|
|
#include <sys/tls.h>
|
|
#include <lwp.h>
|
|
#endif
|
|
|
|
#if SANITIZER_SOLARIS
|
|
#include <stdlib.h>
|
|
#include <thread.h>
|
|
#endif
|
|
|
|
#if SANITIZER_ANDROID
|
|
#include <android/api-level.h>
|
|
#if !defined(CPU_COUNT) && !defined(__aarch64__)
|
|
#include <dirent.h>
|
|
#include <fcntl.h>
|
|
struct __sanitizer::linux_dirent {
|
|
long d_ino;
|
|
off_t d_off;
|
|
unsigned short d_reclen;
|
|
char d_name[];
|
|
};
|
|
#endif
|
|
#endif
|
|
|
|
#if !SANITIZER_ANDROID
|
|
#include <elf.h>
|
|
#include <unistd.h>
|
|
#endif
|
|
|
|
namespace __sanitizer {
|
|
|
|
SANITIZER_WEAK_ATTRIBUTE int
|
|
real_sigaction(int signum, const void *act, void *oldact);
|
|
|
|
int internal_sigaction(int signum, const void *act, void *oldact) {
|
|
#if !SANITIZER_GO
|
|
if (&real_sigaction)
|
|
return real_sigaction(signum, act, oldact);
|
|
#endif
|
|
return sigaction(signum, (const struct sigaction *)act,
|
|
(struct sigaction *)oldact);
|
|
}
|
|
|
|
void GetThreadStackTopAndBottom(bool at_initialization, uptr *stack_top,
|
|
uptr *stack_bottom) {
|
|
CHECK(stack_top);
|
|
CHECK(stack_bottom);
|
|
if (at_initialization) {
|
|
// This is the main thread. Libpthread may not be initialized yet.
|
|
struct rlimit rl;
|
|
CHECK_EQ(getrlimit(RLIMIT_STACK, &rl), 0);
|
|
|
|
// Find the mapping that contains a stack variable.
|
|
MemoryMappingLayout proc_maps(/*cache_enabled*/true);
|
|
if (proc_maps.Error()) {
|
|
*stack_top = *stack_bottom = 0;
|
|
return;
|
|
}
|
|
MemoryMappedSegment segment;
|
|
uptr prev_end = 0;
|
|
while (proc_maps.Next(&segment)) {
|
|
if ((uptr)&rl < segment.end) break;
|
|
prev_end = segment.end;
|
|
}
|
|
CHECK((uptr)&rl >= segment.start && (uptr)&rl < segment.end);
|
|
|
|
// Get stacksize from rlimit, but clip it so that it does not overlap
|
|
// with other mappings.
|
|
uptr stacksize = rl.rlim_cur;
|
|
if (stacksize > segment.end - prev_end) stacksize = segment.end - prev_end;
|
|
// When running with unlimited stack size, we still want to set some limit.
|
|
// The unlimited stack size is caused by 'ulimit -s unlimited'.
|
|
// Also, for some reason, GNU make spawns subprocesses with unlimited stack.
|
|
if (stacksize > kMaxThreadStackSize)
|
|
stacksize = kMaxThreadStackSize;
|
|
*stack_top = segment.end;
|
|
*stack_bottom = segment.end - stacksize;
|
|
return;
|
|
}
|
|
uptr stacksize = 0;
|
|
void *stackaddr = nullptr;
|
|
#if SANITIZER_SOLARIS
|
|
stack_t ss;
|
|
CHECK_EQ(thr_stksegment(&ss), 0);
|
|
stacksize = ss.ss_size;
|
|
stackaddr = (char *)ss.ss_sp - stacksize;
|
|
#else // !SANITIZER_SOLARIS
|
|
pthread_attr_t attr;
|
|
pthread_attr_init(&attr);
|
|
CHECK_EQ(pthread_getattr_np(pthread_self(), &attr), 0);
|
|
my_pthread_attr_getstack(&attr, &stackaddr, &stacksize);
|
|
pthread_attr_destroy(&attr);
|
|
#endif // SANITIZER_SOLARIS
|
|
|
|
*stack_top = (uptr)stackaddr + stacksize;
|
|
*stack_bottom = (uptr)stackaddr;
|
|
}
|
|
|
|
#if !SANITIZER_GO
|
|
bool SetEnv(const char *name, const char *value) {
|
|
void *f = dlsym(RTLD_NEXT, "setenv");
|
|
if (!f)
|
|
return false;
|
|
typedef int(*setenv_ft)(const char *name, const char *value, int overwrite);
|
|
setenv_ft setenv_f;
|
|
CHECK_EQ(sizeof(setenv_f), sizeof(f));
|
|
internal_memcpy(&setenv_f, &f, sizeof(f));
|
|
return setenv_f(name, value, 1) == 0;
|
|
}
|
|
#endif
|
|
|
|
__attribute__((unused)) static bool GetLibcVersion(int *major, int *minor,
|
|
int *patch) {
|
|
#ifdef _CS_GNU_LIBC_VERSION
|
|
char buf[64];
|
|
uptr len = confstr(_CS_GNU_LIBC_VERSION, buf, sizeof(buf));
|
|
if (len >= sizeof(buf))
|
|
return false;
|
|
buf[len] = 0;
|
|
static const char kGLibC[] = "glibc ";
|
|
if (internal_strncmp(buf, kGLibC, sizeof(kGLibC) - 1) != 0)
|
|
return false;
|
|
const char *p = buf + sizeof(kGLibC) - 1;
|
|
*major = internal_simple_strtoll(p, &p, 10);
|
|
*minor = (*p == '.') ? internal_simple_strtoll(p + 1, &p, 10) : 0;
|
|
*patch = (*p == '.') ? internal_simple_strtoll(p + 1, &p, 10) : 0;
|
|
return true;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
// True if we can use dlpi_tls_data. glibc before 2.25 may leave NULL (BZ
|
|
// #19826) so dlpi_tls_data cannot be used.
|
|
//
|
|
// musl before 1.2.3 and FreeBSD as of 12.2 incorrectly set dlpi_tls_data to
|
|
// the TLS initialization image
|
|
// https://bugs.freebsd.org/bugzilla/show_bug.cgi?id=254774
|
|
__attribute__((unused)) static int g_use_dlpi_tls_data;
|
|
|
|
#if SANITIZER_GLIBC && !SANITIZER_GO
|
|
__attribute__((unused)) static size_t g_tls_size;
|
|
void InitTlsSize() {
|
|
int major, minor, patch;
|
|
g_use_dlpi_tls_data =
|
|
GetLibcVersion(&major, &minor, &patch) && major == 2 && minor >= 25;
|
|
|
|
#if defined(__aarch64__) || defined(__x86_64__) || defined(__powerpc64__)
|
|
void *get_tls_static_info = dlsym(RTLD_NEXT, "_dl_get_tls_static_info");
|
|
size_t tls_align;
|
|
((void (*)(size_t *, size_t *))get_tls_static_info)(&g_tls_size, &tls_align);
|
|
#endif
|
|
}
|
|
#else
|
|
void InitTlsSize() { }
|
|
#endif // SANITIZER_GLIBC && !SANITIZER_GO
|
|
|
|
// On glibc x86_64, ThreadDescriptorSize() needs to be precise due to the usage
|
|
// of g_tls_size. On other targets, ThreadDescriptorSize() is only used by lsan
|
|
// to get the pointer to thread-specific data keys in the thread control block.
|
|
#if (SANITIZER_FREEBSD || SANITIZER_LINUX) && !SANITIZER_ANDROID
|
|
// sizeof(struct pthread) from glibc.
|
|
static atomic_uintptr_t thread_descriptor_size;
|
|
|
|
uptr ThreadDescriptorSize() {
|
|
uptr val = atomic_load_relaxed(&thread_descriptor_size);
|
|
if (val)
|
|
return val;
|
|
#if defined(__x86_64__) || defined(__i386__) || defined(__arm__)
|
|
int major;
|
|
int minor;
|
|
int patch;
|
|
if (GetLibcVersion(&major, &minor, &patch) && major == 2) {
|
|
/* sizeof(struct pthread) values from various glibc versions. */
|
|
if (SANITIZER_X32)
|
|
val = 1728; // Assume only one particular version for x32.
|
|
// For ARM sizeof(struct pthread) changed in Glibc 2.23.
|
|
else if (SANITIZER_ARM)
|
|
val = minor <= 22 ? 1120 : 1216;
|
|
else if (minor <= 3)
|
|
val = FIRST_32_SECOND_64(1104, 1696);
|
|
else if (minor == 4)
|
|
val = FIRST_32_SECOND_64(1120, 1728);
|
|
else if (minor == 5)
|
|
val = FIRST_32_SECOND_64(1136, 1728);
|
|
else if (minor <= 9)
|
|
val = FIRST_32_SECOND_64(1136, 1712);
|
|
else if (minor == 10)
|
|
val = FIRST_32_SECOND_64(1168, 1776);
|
|
else if (minor == 11 || (minor == 12 && patch == 1))
|
|
val = FIRST_32_SECOND_64(1168, 2288);
|
|
else if (minor <= 14)
|
|
val = FIRST_32_SECOND_64(1168, 2304);
|
|
else if (minor < 32) // Unknown version
|
|
val = FIRST_32_SECOND_64(1216, 2304);
|
|
else // minor == 32
|
|
val = FIRST_32_SECOND_64(1344, 2496);
|
|
}
|
|
#elif defined(__s390__) || defined(__sparc__)
|
|
// The size of a prefix of TCB including pthread::{specific_1stblock,specific}
|
|
// suffices. Just return offsetof(struct pthread, specific_used), which hasn't
|
|
// changed since 2007-05. Technically this applies to i386/x86_64 as well but
|
|
// we call _dl_get_tls_static_info and need the precise size of struct
|
|
// pthread.
|
|
return FIRST_32_SECOND_64(524, 1552);
|
|
#elif defined(__mips__)
|
|
// TODO(sagarthakur): add more values as per different glibc versions.
|
|
val = FIRST_32_SECOND_64(1152, 1776);
|
|
#elif SANITIZER_RISCV64
|
|
int major;
|
|
int minor;
|
|
int patch;
|
|
if (GetLibcVersion(&major, &minor, &patch) && major == 2) {
|
|
// TODO: consider adding an optional runtime check for an unknown (untested)
|
|
// glibc version
|
|
if (minor <= 28) // WARNING: the highest tested version is 2.29
|
|
val = 1772; // no guarantees for this one
|
|
else if (minor <= 31)
|
|
val = 1772; // tested against glibc 2.29, 2.31
|
|
else
|
|
val = 1936; // tested against glibc 2.32
|
|
}
|
|
|
|
#elif defined(__aarch64__)
|
|
// The sizeof (struct pthread) is the same from GLIBC 2.17 to 2.22.
|
|
val = 1776;
|
|
#elif defined(__powerpc64__)
|
|
val = 1776; // from glibc.ppc64le 2.20-8.fc21
|
|
#endif
|
|
if (val)
|
|
atomic_store_relaxed(&thread_descriptor_size, val);
|
|
return val;
|
|
}
|
|
|
|
#if defined(__mips__) || defined(__powerpc64__) || SANITIZER_RISCV64
|
|
// TlsPreTcbSize includes size of struct pthread_descr and size of tcb
|
|
// head structure. It lies before the static tls blocks.
|
|
static uptr TlsPreTcbSize() {
|
|
#if defined(__mips__)
|
|
const uptr kTcbHead = 16; // sizeof (tcbhead_t)
|
|
#elif defined(__powerpc64__)
|
|
const uptr kTcbHead = 88; // sizeof (tcbhead_t)
|
|
#elif SANITIZER_RISCV64
|
|
const uptr kTcbHead = 16; // sizeof (tcbhead_t)
|
|
#endif
|
|
const uptr kTlsAlign = 16;
|
|
const uptr kTlsPreTcbSize =
|
|
RoundUpTo(ThreadDescriptorSize() + kTcbHead, kTlsAlign);
|
|
return kTlsPreTcbSize;
|
|
}
|
|
#endif
|
|
|
|
#if !SANITIZER_GO
|
|
namespace {
|
|
struct TlsBlock {
|
|
uptr begin, end, align;
|
|
size_t tls_modid;
|
|
bool operator<(const TlsBlock &rhs) const { return begin < rhs.begin; }
|
|
};
|
|
} // namespace
|
|
|
|
#ifdef __s390__
|
|
extern "C" uptr __tls_get_offset(void *arg);
|
|
|
|
static uptr TlsGetOffset(uptr ti_module, uptr ti_offset) {
|
|
// The __tls_get_offset ABI requires %r12 to point to GOT and %r2 to be an
|
|
// offset of a struct tls_index inside GOT. We don't possess either of the
|
|
// two, so violate the letter of the "ELF Handling For Thread-Local
|
|
// Storage" document and assume that the implementation just dereferences
|
|
// %r2 + %r12.
|
|
uptr tls_index[2] = {ti_module, ti_offset};
|
|
register uptr r2 asm("2") = 0;
|
|
register void *r12 asm("12") = tls_index;
|
|
asm("basr %%r14, %[__tls_get_offset]"
|
|
: "+r"(r2)
|
|
: [__tls_get_offset] "r"(__tls_get_offset), "r"(r12)
|
|
: "memory", "cc", "0", "1", "3", "4", "5", "14");
|
|
return r2;
|
|
}
|
|
#else
|
|
extern "C" void *__tls_get_addr(size_t *);
|
|
#endif
|
|
|
|
static int CollectStaticTlsBlocks(struct dl_phdr_info *info, size_t size,
|
|
void *data) {
|
|
if (!info->dlpi_tls_modid)
|
|
return 0;
|
|
uptr begin = (uptr)info->dlpi_tls_data;
|
|
if (!g_use_dlpi_tls_data) {
|
|
// Call __tls_get_addr as a fallback. This forces TLS allocation on glibc
|
|
// and FreeBSD.
|
|
#ifdef __s390__
|
|
begin = (uptr)__builtin_thread_pointer() +
|
|
TlsGetOffset(info->dlpi_tls_modid, 0);
|
|
#else
|
|
size_t mod_and_off[2] = {info->dlpi_tls_modid, 0};
|
|
begin = (uptr)__tls_get_addr(mod_and_off);
|
|
#endif
|
|
}
|
|
for (unsigned i = 0; i != info->dlpi_phnum; ++i)
|
|
if (info->dlpi_phdr[i].p_type == PT_TLS) {
|
|
static_cast<InternalMmapVector<TlsBlock> *>(data)->push_back(
|
|
TlsBlock{begin, begin + info->dlpi_phdr[i].p_memsz,
|
|
info->dlpi_phdr[i].p_align, info->dlpi_tls_modid});
|
|
break;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
__attribute__((unused)) static void GetStaticTlsBoundary(uptr *addr, uptr *size,
|
|
uptr *align) {
|
|
InternalMmapVector<TlsBlock> ranges;
|
|
dl_iterate_phdr(CollectStaticTlsBlocks, &ranges);
|
|
uptr len = ranges.size();
|
|
Sort(ranges.begin(), len);
|
|
// Find the range with tls_modid=1. For glibc, because libc.so uses PT_TLS,
|
|
// this module is guaranteed to exist and is one of the initially loaded
|
|
// modules.
|
|
uptr one = 0;
|
|
while (one != len && ranges[one].tls_modid != 1) ++one;
|
|
if (one == len) {
|
|
// This may happen with musl if no module uses PT_TLS.
|
|
*addr = 0;
|
|
*size = 0;
|
|
*align = 1;
|
|
return;
|
|
}
|
|
// Find the maximum consecutive ranges. We consider two modules consecutive if
|
|
// the gap is smaller than the alignment. The dynamic loader places static TLS
|
|
// blocks this way not to waste space.
|
|
uptr l = one;
|
|
*align = ranges[l].align;
|
|
while (l != 0 && ranges[l].begin < ranges[l - 1].end + ranges[l - 1].align)
|
|
*align = Max(*align, ranges[--l].align);
|
|
uptr r = one + 1;
|
|
while (r != len && ranges[r].begin < ranges[r - 1].end + ranges[r - 1].align)
|
|
*align = Max(*align, ranges[r++].align);
|
|
*addr = ranges[l].begin;
|
|
*size = ranges[r - 1].end - ranges[l].begin;
|
|
}
|
|
#endif // !SANITIZER_GO
|
|
#endif // (x86_64 || i386 || mips || ...) && (SANITIZER_FREEBSD ||
|
|
// SANITIZER_LINUX) && !SANITIZER_ANDROID
|
|
|
|
#if SANITIZER_NETBSD
|
|
static struct tls_tcb * ThreadSelfTlsTcb() {
|
|
struct tls_tcb *tcb = nullptr;
|
|
#ifdef __HAVE___LWP_GETTCB_FAST
|
|
tcb = (struct tls_tcb *)__lwp_gettcb_fast();
|
|
#elif defined(__HAVE___LWP_GETPRIVATE_FAST)
|
|
tcb = (struct tls_tcb *)__lwp_getprivate_fast();
|
|
#endif
|
|
return tcb;
|
|
}
|
|
|
|
uptr ThreadSelf() {
|
|
return (uptr)ThreadSelfTlsTcb()->tcb_pthread;
|
|
}
|
|
|
|
int GetSizeFromHdr(struct dl_phdr_info *info, size_t size, void *data) {
|
|
const Elf_Phdr *hdr = info->dlpi_phdr;
|
|
const Elf_Phdr *last_hdr = hdr + info->dlpi_phnum;
|
|
|
|
for (; hdr != last_hdr; ++hdr) {
|
|
if (hdr->p_type == PT_TLS && info->dlpi_tls_modid == 1) {
|
|
*(uptr*)data = hdr->p_memsz;
|
|
break;
|
|
}
|
|
}
|
|
return 0;
|
|
}
|
|
#endif // SANITIZER_NETBSD
|
|
|
|
#if SANITIZER_ANDROID
|
|
// Bionic provides this API since S.
|
|
extern "C" SANITIZER_WEAK_ATTRIBUTE void __libc_get_static_tls_bounds(void **,
|
|
void **);
|
|
#endif
|
|
|
|
#if !SANITIZER_GO
|
|
static void GetTls(uptr *addr, uptr *size) {
|
|
#if SANITIZER_ANDROID
|
|
if (&__libc_get_static_tls_bounds) {
|
|
void *start_addr;
|
|
void *end_addr;
|
|
__libc_get_static_tls_bounds(&start_addr, &end_addr);
|
|
*addr = reinterpret_cast<uptr>(start_addr);
|
|
*size =
|
|
reinterpret_cast<uptr>(end_addr) - reinterpret_cast<uptr>(start_addr);
|
|
} else {
|
|
*addr = 0;
|
|
*size = 0;
|
|
}
|
|
#elif SANITIZER_GLIBC && defined(__x86_64__)
|
|
// For aarch64 and x86-64, use an O(1) approach which requires relatively
|
|
// precise ThreadDescriptorSize. g_tls_size was initialized in InitTlsSize.
|
|
asm("mov %%fs:16,%0" : "=r"(*addr));
|
|
*size = g_tls_size;
|
|
*addr -= *size;
|
|
*addr += ThreadDescriptorSize();
|
|
#elif SANITIZER_GLIBC && defined(__aarch64__)
|
|
*addr = reinterpret_cast<uptr>(__builtin_thread_pointer()) -
|
|
ThreadDescriptorSize();
|
|
*size = g_tls_size + ThreadDescriptorSize();
|
|
#elif SANITIZER_GLIBC && defined(__powerpc64__)
|
|
// Workaround for glibc<2.25(?). 2.27 is known to not need this.
|
|
uptr tp;
|
|
asm("addi %0,13,-0x7000" : "=r"(tp));
|
|
const uptr pre_tcb_size = TlsPreTcbSize();
|
|
*addr = tp - pre_tcb_size;
|
|
*size = g_tls_size + pre_tcb_size;
|
|
#elif SANITIZER_FREEBSD || SANITIZER_LINUX
|
|
uptr align;
|
|
GetStaticTlsBoundary(addr, size, &align);
|
|
#if defined(__x86_64__) || defined(__i386__) || defined(__s390__) || \
|
|
defined(__sparc__)
|
|
if (SANITIZER_GLIBC) {
|
|
#if defined(__x86_64__) || defined(__i386__)
|
|
align = Max<uptr>(align, 64);
|
|
#else
|
|
align = Max<uptr>(align, 16);
|
|
#endif
|
|
}
|
|
const uptr tp = RoundUpTo(*addr + *size, align);
|
|
|
|
// lsan requires the range to additionally cover the static TLS surplus
|
|
// (elf/dl-tls.c defines 1664). Otherwise there may be false positives for
|
|
// allocations only referenced by tls in dynamically loaded modules.
|
|
if (SANITIZER_GLIBC)
|
|
*size += 1644;
|
|
else if (SANITIZER_FREEBSD)
|
|
*size += 128; // RTLD_STATIC_TLS_EXTRA
|
|
|
|
// Extend the range to include the thread control block. On glibc, lsan needs
|
|
// the range to include pthread::{specific_1stblock,specific} so that
|
|
// allocations only referenced by pthread_setspecific can be scanned. This may
|
|
// underestimate by at most TLS_TCB_ALIGN-1 bytes but it should be fine
|
|
// because the number of bytes after pthread::specific is larger.
|
|
*addr = tp - RoundUpTo(*size, align);
|
|
*size = tp - *addr + ThreadDescriptorSize();
|
|
#else
|
|
if (SANITIZER_GLIBC)
|
|
*size += 1664;
|
|
else if (SANITIZER_FREEBSD)
|
|
*size += 128; // RTLD_STATIC_TLS_EXTRA
|
|
#if defined(__mips__) || defined(__powerpc64__) || SANITIZER_RISCV64
|
|
const uptr pre_tcb_size = TlsPreTcbSize();
|
|
*addr -= pre_tcb_size;
|
|
*size += pre_tcb_size;
|
|
#else
|
|
// arm and aarch64 reserve two words at TP, so this underestimates the range.
|
|
// However, this is sufficient for the purpose of finding the pointers to
|
|
// thread-specific data keys.
|
|
const uptr tcb_size = ThreadDescriptorSize();
|
|
*addr -= tcb_size;
|
|
*size += tcb_size;
|
|
#endif
|
|
#endif
|
|
#elif SANITIZER_NETBSD
|
|
struct tls_tcb * const tcb = ThreadSelfTlsTcb();
|
|
*addr = 0;
|
|
*size = 0;
|
|
if (tcb != 0) {
|
|
// Find size (p_memsz) of dlpi_tls_modid 1 (TLS block of the main program).
|
|
// ld.elf_so hardcodes the index 1.
|
|
dl_iterate_phdr(GetSizeFromHdr, size);
|
|
|
|
if (*size != 0) {
|
|
// The block has been found and tcb_dtv[1] contains the base address
|
|
*addr = (uptr)tcb->tcb_dtv[1];
|
|
}
|
|
}
|
|
#elif SANITIZER_SOLARIS
|
|
// FIXME
|
|
*addr = 0;
|
|
*size = 0;
|
|
#else
|
|
#error "Unknown OS"
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
#if !SANITIZER_GO
|
|
uptr GetTlsSize() {
|
|
#if SANITIZER_FREEBSD || SANITIZER_LINUX || SANITIZER_NETBSD || \
|
|
SANITIZER_SOLARIS
|
|
uptr addr, size;
|
|
GetTls(&addr, &size);
|
|
return size;
|
|
#else
|
|
return 0;
|
|
#endif
|
|
}
|
|
#endif
|
|
|
|
void GetThreadStackAndTls(bool main, uptr *stk_addr, uptr *stk_size,
|
|
uptr *tls_addr, uptr *tls_size) {
|
|
#if SANITIZER_GO
|
|
// Stub implementation for Go.
|
|
*stk_addr = *stk_size = *tls_addr = *tls_size = 0;
|
|
#else
|
|
GetTls(tls_addr, tls_size);
|
|
|
|
uptr stack_top, stack_bottom;
|
|
GetThreadStackTopAndBottom(main, &stack_top, &stack_bottom);
|
|
*stk_addr = stack_bottom;
|
|
*stk_size = stack_top - stack_bottom;
|
|
|
|
if (!main) {
|
|
// If stack and tls intersect, make them non-intersecting.
|
|
if (*tls_addr > *stk_addr && *tls_addr < *stk_addr + *stk_size) {
|
|
if (*stk_addr + *stk_size < *tls_addr + *tls_size)
|
|
*tls_size = *stk_addr + *stk_size - *tls_addr;
|
|
*stk_size = *tls_addr - *stk_addr;
|
|
}
|
|
}
|
|
#endif
|
|
}
|
|
|
|
#if !SANITIZER_FREEBSD
|
|
typedef ElfW(Phdr) Elf_Phdr;
|
|
#elif SANITIZER_WORDSIZE == 32 && __FreeBSD_version <= 902001 // v9.2
|
|
#define Elf_Phdr XElf32_Phdr
|
|
#define dl_phdr_info xdl_phdr_info
|
|
#define dl_iterate_phdr(c, b) xdl_iterate_phdr((c), (b))
|
|
#endif // !SANITIZER_FREEBSD
|
|
|
|
struct DlIteratePhdrData {
|
|
InternalMmapVectorNoCtor<LoadedModule> *modules;
|
|
bool first;
|
|
};
|
|
|
|
static int AddModuleSegments(const char *module_name, dl_phdr_info *info,
|
|
InternalMmapVectorNoCtor<LoadedModule> *modules) {
|
|
if (module_name[0] == '\0')
|
|
return 0;
|
|
LoadedModule cur_module;
|
|
cur_module.set(module_name, info->dlpi_addr);
|
|
for (int i = 0; i < (int)info->dlpi_phnum; i++) {
|
|
const Elf_Phdr *phdr = &info->dlpi_phdr[i];
|
|
if (phdr->p_type == PT_LOAD) {
|
|
uptr cur_beg = info->dlpi_addr + phdr->p_vaddr;
|
|
uptr cur_end = cur_beg + phdr->p_memsz;
|
|
bool executable = phdr->p_flags & PF_X;
|
|
bool writable = phdr->p_flags & PF_W;
|
|
cur_module.addAddressRange(cur_beg, cur_end, executable,
|
|
writable);
|
|
}
|
|
}
|
|
modules->push_back(cur_module);
|
|
return 0;
|
|
}
|
|
|
|
static int dl_iterate_phdr_cb(dl_phdr_info *info, size_t size, void *arg) {
|
|
DlIteratePhdrData *data = (DlIteratePhdrData *)arg;
|
|
if (data->first) {
|
|
InternalMmapVector<char> module_name(kMaxPathLength);
|
|
data->first = false;
|
|
// First module is the binary itself.
|
|
ReadBinaryNameCached(module_name.data(), module_name.size());
|
|
return AddModuleSegments(module_name.data(), info, data->modules);
|
|
}
|
|
|
|
if (info->dlpi_name) {
|
|
InternalScopedString module_name;
|
|
module_name.append("%s", info->dlpi_name);
|
|
return AddModuleSegments(module_name.data(), info, data->modules);
|
|
}
|
|
|
|
return 0;
|
|
}
|
|
|
|
#if SANITIZER_ANDROID && __ANDROID_API__ < 21
|
|
extern "C" __attribute__((weak)) int dl_iterate_phdr(
|
|
int (*)(struct dl_phdr_info *, size_t, void *), void *);
|
|
#endif
|
|
|
|
static bool requiresProcmaps() {
|
|
#if SANITIZER_ANDROID && __ANDROID_API__ <= 22
|
|
// Fall back to /proc/maps if dl_iterate_phdr is unavailable or broken.
|
|
// The runtime check allows the same library to work with
|
|
// both K and L (and future) Android releases.
|
|
return AndroidGetApiLevel() <= ANDROID_LOLLIPOP_MR1;
|
|
#else
|
|
return false;
|
|
#endif
|
|
}
|
|
|
|
static void procmapsInit(InternalMmapVectorNoCtor<LoadedModule> *modules) {
|
|
MemoryMappingLayout memory_mapping(/*cache_enabled*/true);
|
|
memory_mapping.DumpListOfModules(modules);
|
|
}
|
|
|
|
void ListOfModules::init() {
|
|
clearOrInit();
|
|
if (requiresProcmaps()) {
|
|
procmapsInit(&modules_);
|
|
} else {
|
|
DlIteratePhdrData data = {&modules_, true};
|
|
dl_iterate_phdr(dl_iterate_phdr_cb, &data);
|
|
}
|
|
}
|
|
|
|
// When a custom loader is used, dl_iterate_phdr may not contain the full
|
|
// list of modules. Allow callers to fall back to using procmaps.
|
|
void ListOfModules::fallbackInit() {
|
|
if (!requiresProcmaps()) {
|
|
clearOrInit();
|
|
procmapsInit(&modules_);
|
|
} else {
|
|
clear();
|
|
}
|
|
}
|
|
|
|
// getrusage does not give us the current RSS, only the max RSS.
|
|
// Still, this is better than nothing if /proc/self/statm is not available
|
|
// for some reason, e.g. due to a sandbox.
|
|
static uptr GetRSSFromGetrusage() {
|
|
struct rusage usage;
|
|
if (getrusage(RUSAGE_SELF, &usage)) // Failed, probably due to a sandbox.
|
|
return 0;
|
|
return usage.ru_maxrss << 10; // ru_maxrss is in Kb.
|
|
}
|
|
|
|
uptr GetRSS() {
|
|
if (!common_flags()->can_use_proc_maps_statm)
|
|
return GetRSSFromGetrusage();
|
|
fd_t fd = OpenFile("/proc/self/statm", RdOnly);
|
|
if (fd == kInvalidFd)
|
|
return GetRSSFromGetrusage();
|
|
char buf[64];
|
|
uptr len = internal_read(fd, buf, sizeof(buf) - 1);
|
|
internal_close(fd);
|
|
if ((sptr)len <= 0)
|
|
return 0;
|
|
buf[len] = 0;
|
|
// The format of the file is:
|
|
// 1084 89 69 11 0 79 0
|
|
// We need the second number which is RSS in pages.
|
|
char *pos = buf;
|
|
// Skip the first number.
|
|
while (*pos >= '0' && *pos <= '9')
|
|
pos++;
|
|
// Skip whitespaces.
|
|
while (!(*pos >= '0' && *pos <= '9') && *pos != 0)
|
|
pos++;
|
|
// Read the number.
|
|
uptr rss = 0;
|
|
while (*pos >= '0' && *pos <= '9')
|
|
rss = rss * 10 + *pos++ - '0';
|
|
return rss * GetPageSizeCached();
|
|
}
|
|
|
|
// sysconf(_SC_NPROCESSORS_{CONF,ONLN}) cannot be used on most platforms as
|
|
// they allocate memory.
|
|
u32 GetNumberOfCPUs() {
|
|
#if SANITIZER_FREEBSD || SANITIZER_NETBSD
|
|
u32 ncpu;
|
|
int req[2];
|
|
uptr len = sizeof(ncpu);
|
|
req[0] = CTL_HW;
|
|
req[1] = HW_NCPU;
|
|
CHECK_EQ(internal_sysctl(req, 2, &ncpu, &len, NULL, 0), 0);
|
|
return ncpu;
|
|
#elif SANITIZER_ANDROID && !defined(CPU_COUNT) && !defined(__aarch64__)
|
|
// Fall back to /sys/devices/system/cpu on Android when cpu_set_t doesn't
|
|
// exist in sched.h. That is the case for toolchains generated with older
|
|
// NDKs.
|
|
// This code doesn't work on AArch64 because internal_getdents makes use of
|
|
// the 64bit getdents syscall, but cpu_set_t seems to always exist on AArch64.
|
|
uptr fd = internal_open("/sys/devices/system/cpu", O_RDONLY | O_DIRECTORY);
|
|
if (internal_iserror(fd))
|
|
return 0;
|
|
InternalMmapVector<u8> buffer(4096);
|
|
uptr bytes_read = buffer.size();
|
|
uptr n_cpus = 0;
|
|
u8 *d_type;
|
|
struct linux_dirent *entry = (struct linux_dirent *)&buffer[bytes_read];
|
|
while (true) {
|
|
if ((u8 *)entry >= &buffer[bytes_read]) {
|
|
bytes_read = internal_getdents(fd, (struct linux_dirent *)buffer.data(),
|
|
buffer.size());
|
|
if (internal_iserror(bytes_read) || !bytes_read)
|
|
break;
|
|
entry = (struct linux_dirent *)buffer.data();
|
|
}
|
|
d_type = (u8 *)entry + entry->d_reclen - 1;
|
|
if (d_type >= &buffer[bytes_read] ||
|
|
(u8 *)&entry->d_name[3] >= &buffer[bytes_read])
|
|
break;
|
|
if (entry->d_ino != 0 && *d_type == DT_DIR) {
|
|
if (entry->d_name[0] == 'c' && entry->d_name[1] == 'p' &&
|
|
entry->d_name[2] == 'u' &&
|
|
entry->d_name[3] >= '0' && entry->d_name[3] <= '9')
|
|
n_cpus++;
|
|
}
|
|
entry = (struct linux_dirent *)(((u8 *)entry) + entry->d_reclen);
|
|
}
|
|
internal_close(fd);
|
|
return n_cpus;
|
|
#elif SANITIZER_SOLARIS
|
|
return sysconf(_SC_NPROCESSORS_ONLN);
|
|
#else
|
|
cpu_set_t CPUs;
|
|
CHECK_EQ(sched_getaffinity(0, sizeof(cpu_set_t), &CPUs), 0);
|
|
return CPU_COUNT(&CPUs);
|
|
#endif
|
|
}
|
|
|
|
#if SANITIZER_LINUX
|
|
|
|
#if SANITIZER_ANDROID
|
|
static atomic_uint8_t android_log_initialized;
|
|
|
|
void AndroidLogInit() {
|
|
openlog(GetProcessName(), 0, LOG_USER);
|
|
atomic_store(&android_log_initialized, 1, memory_order_release);
|
|
}
|
|
|
|
static bool ShouldLogAfterPrintf() {
|
|
return atomic_load(&android_log_initialized, memory_order_acquire);
|
|
}
|
|
|
|
extern "C" SANITIZER_WEAK_ATTRIBUTE
|
|
int async_safe_write_log(int pri, const char* tag, const char* msg);
|
|
extern "C" SANITIZER_WEAK_ATTRIBUTE
|
|
int __android_log_write(int prio, const char* tag, const char* msg);
|
|
|
|
// ANDROID_LOG_INFO is 4, but can't be resolved at runtime.
|
|
#define SANITIZER_ANDROID_LOG_INFO 4
|
|
|
|
// async_safe_write_log is a new public version of __libc_write_log that is
|
|
// used behind syslog. It is preferable to syslog as it will not do any dynamic
|
|
// memory allocation or formatting.
|
|
// If the function is not available, syslog is preferred for L+ (it was broken
|
|
// pre-L) as __android_log_write triggers a racey behavior with the strncpy
|
|
// interceptor. Fallback to __android_log_write pre-L.
|
|
void WriteOneLineToSyslog(const char *s) {
|
|
if (&async_safe_write_log) {
|
|
async_safe_write_log(SANITIZER_ANDROID_LOG_INFO, GetProcessName(), s);
|
|
} else if (AndroidGetApiLevel() > ANDROID_KITKAT) {
|
|
syslog(LOG_INFO, "%s", s);
|
|
} else {
|
|
CHECK(&__android_log_write);
|
|
__android_log_write(SANITIZER_ANDROID_LOG_INFO, nullptr, s);
|
|
}
|
|
}
|
|
|
|
extern "C" SANITIZER_WEAK_ATTRIBUTE
|
|
void android_set_abort_message(const char *);
|
|
|
|
void SetAbortMessage(const char *str) {
|
|
if (&android_set_abort_message)
|
|
android_set_abort_message(str);
|
|
}
|
|
#else
|
|
void AndroidLogInit() {}
|
|
|
|
static bool ShouldLogAfterPrintf() { return true; }
|
|
|
|
void WriteOneLineToSyslog(const char *s) { syslog(LOG_INFO, "%s", s); }
|
|
|
|
void SetAbortMessage(const char *str) {}
|
|
#endif // SANITIZER_ANDROID
|
|
|
|
void LogMessageOnPrintf(const char *str) {
|
|
if (common_flags()->log_to_syslog && ShouldLogAfterPrintf())
|
|
WriteToSyslog(str);
|
|
}
|
|
|
|
#endif // SANITIZER_LINUX
|
|
|
|
#if SANITIZER_GLIBC && !SANITIZER_GO
|
|
// glibc crashes when using clock_gettime from a preinit_array function as the
|
|
// vDSO function pointers haven't been initialized yet. __progname is
|
|
// initialized after the vDSO function pointers, so if it exists, is not null
|
|
// and is not empty, we can use clock_gettime.
|
|
extern "C" SANITIZER_WEAK_ATTRIBUTE char *__progname;
|
|
inline bool CanUseVDSO() { return &__progname && __progname && *__progname; }
|
|
|
|
// MonotonicNanoTime is a timing function that can leverage the vDSO by calling
|
|
// clock_gettime. real_clock_gettime only exists if clock_gettime is
|
|
// intercepted, so define it weakly and use it if available.
|
|
extern "C" SANITIZER_WEAK_ATTRIBUTE
|
|
int real_clock_gettime(u32 clk_id, void *tp);
|
|
u64 MonotonicNanoTime() {
|
|
timespec ts;
|
|
if (CanUseVDSO()) {
|
|
if (&real_clock_gettime)
|
|
real_clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
else
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
} else {
|
|
internal_clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
}
|
|
return (u64)ts.tv_sec * (1000ULL * 1000 * 1000) + ts.tv_nsec;
|
|
}
|
|
#else
|
|
// Non-glibc & Go always use the regular function.
|
|
u64 MonotonicNanoTime() {
|
|
timespec ts;
|
|
clock_gettime(CLOCK_MONOTONIC, &ts);
|
|
return (u64)ts.tv_sec * (1000ULL * 1000 * 1000) + ts.tv_nsec;
|
|
}
|
|
#endif // SANITIZER_GLIBC && !SANITIZER_GO
|
|
|
|
void ReExec() {
|
|
const char *pathname = "/proc/self/exe";
|
|
|
|
#if SANITIZER_NETBSD
|
|
static const int name[] = {
|
|
CTL_KERN,
|
|
KERN_PROC_ARGS,
|
|
-1,
|
|
KERN_PROC_PATHNAME,
|
|
};
|
|
char path[400];
|
|
uptr len;
|
|
|
|
len = sizeof(path);
|
|
if (internal_sysctl(name, ARRAY_SIZE(name), path, &len, NULL, 0) != -1)
|
|
pathname = path;
|
|
#elif SANITIZER_SOLARIS
|
|
pathname = getexecname();
|
|
CHECK_NE(pathname, NULL);
|
|
#elif SANITIZER_USE_GETAUXVAL
|
|
// Calling execve with /proc/self/exe sets that as $EXEC_ORIGIN. Binaries that
|
|
// rely on that will fail to load shared libraries. Query AT_EXECFN instead.
|
|
pathname = reinterpret_cast<const char *>(getauxval(AT_EXECFN));
|
|
#endif
|
|
|
|
uptr rv = internal_execve(pathname, GetArgv(), GetEnviron());
|
|
int rverrno;
|
|
CHECK_EQ(internal_iserror(rv, &rverrno), true);
|
|
Printf("execve failed, errno %d\n", rverrno);
|
|
Die();
|
|
}
|
|
|
|
void UnmapFromTo(uptr from, uptr to) {
|
|
if (to == from)
|
|
return;
|
|
CHECK(to >= from);
|
|
uptr res = internal_munmap(reinterpret_cast<void *>(from), to - from);
|
|
if (UNLIKELY(internal_iserror(res))) {
|
|
Report("ERROR: %s failed to unmap 0x%zx (%zd) bytes at address %p\n",
|
|
SanitizerToolName, to - from, to - from, (void *)from);
|
|
CHECK("unable to unmap" && 0);
|
|
}
|
|
}
|
|
|
|
uptr MapDynamicShadow(uptr shadow_size_bytes, uptr shadow_scale,
|
|
uptr min_shadow_base_alignment,
|
|
UNUSED uptr &high_mem_end) {
|
|
const uptr granularity = GetMmapGranularity();
|
|
const uptr alignment =
|
|
Max<uptr>(granularity << shadow_scale, 1ULL << min_shadow_base_alignment);
|
|
const uptr left_padding =
|
|
Max<uptr>(granularity, 1ULL << min_shadow_base_alignment);
|
|
|
|
const uptr shadow_size = RoundUpTo(shadow_size_bytes, granularity);
|
|
const uptr map_size = shadow_size + left_padding + alignment;
|
|
|
|
const uptr map_start = (uptr)MmapNoAccess(map_size);
|
|
CHECK_NE(map_start, ~(uptr)0);
|
|
|
|
const uptr shadow_start = RoundUpTo(map_start + left_padding, alignment);
|
|
|
|
UnmapFromTo(map_start, shadow_start - left_padding);
|
|
UnmapFromTo(shadow_start + shadow_size, map_start + map_size);
|
|
|
|
return shadow_start;
|
|
}
|
|
|
|
static uptr MmapSharedNoReserve(uptr addr, uptr size) {
|
|
return internal_mmap(
|
|
reinterpret_cast<void *>(addr), size, PROT_READ | PROT_WRITE,
|
|
MAP_FIXED | MAP_SHARED | MAP_ANONYMOUS | MAP_NORESERVE, -1, 0);
|
|
}
|
|
|
|
static uptr MremapCreateAlias(uptr base_addr, uptr alias_addr,
|
|
uptr alias_size) {
|
|
#if SANITIZER_LINUX
|
|
return internal_mremap(reinterpret_cast<void *>(base_addr), 0, alias_size,
|
|
MREMAP_MAYMOVE | MREMAP_FIXED,
|
|
reinterpret_cast<void *>(alias_addr));
|
|
#else
|
|
CHECK(false && "mremap is not supported outside of Linux");
|
|
return 0;
|
|
#endif
|
|
}
|
|
|
|
static void CreateAliases(uptr start_addr, uptr alias_size, uptr num_aliases) {
|
|
uptr total_size = alias_size * num_aliases;
|
|
uptr mapped = MmapSharedNoReserve(start_addr, total_size);
|
|
CHECK_EQ(mapped, start_addr);
|
|
|
|
for (uptr i = 1; i < num_aliases; ++i) {
|
|
uptr alias_addr = start_addr + i * alias_size;
|
|
CHECK_EQ(MremapCreateAlias(start_addr, alias_addr, alias_size), alias_addr);
|
|
}
|
|
}
|
|
|
|
uptr MapDynamicShadowAndAliases(uptr shadow_size, uptr alias_size,
|
|
uptr num_aliases, uptr ring_buffer_size) {
|
|
CHECK_EQ(alias_size & (alias_size - 1), 0);
|
|
CHECK_EQ(num_aliases & (num_aliases - 1), 0);
|
|
CHECK_EQ(ring_buffer_size & (ring_buffer_size - 1), 0);
|
|
|
|
const uptr granularity = GetMmapGranularity();
|
|
shadow_size = RoundUpTo(shadow_size, granularity);
|
|
CHECK_EQ(shadow_size & (shadow_size - 1), 0);
|
|
|
|
const uptr alias_region_size = alias_size * num_aliases;
|
|
const uptr alignment =
|
|
2 * Max(Max(shadow_size, alias_region_size), ring_buffer_size);
|
|
const uptr left_padding = ring_buffer_size;
|
|
|
|
const uptr right_size = alignment;
|
|
const uptr map_size = left_padding + 2 * alignment;
|
|
|
|
const uptr map_start = reinterpret_cast<uptr>(MmapNoAccess(map_size));
|
|
CHECK_NE(map_start, static_cast<uptr>(-1));
|
|
const uptr right_start = RoundUpTo(map_start + left_padding, alignment);
|
|
|
|
UnmapFromTo(map_start, right_start - left_padding);
|
|
UnmapFromTo(right_start + right_size, map_start + map_size);
|
|
|
|
CreateAliases(right_start + right_size / 2, alias_size, num_aliases);
|
|
|
|
return right_start;
|
|
}
|
|
|
|
void InitializePlatformCommonFlags(CommonFlags *cf) {
|
|
#if SANITIZER_ANDROID
|
|
if (&__libc_get_static_tls_bounds == nullptr)
|
|
cf->detect_leaks = false;
|
|
#endif
|
|
}
|
|
|
|
} // namespace __sanitizer
|
|
|
|
#endif
|