forked from OSchip/llvm-project
1096 lines
40 KiB
C++
1096 lines
40 KiB
C++
//===- BuildTree.cpp ------------------------------------------*- C++ -*-=====//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
#include "clang/Tooling/Syntax/BuildTree.h"
|
|
#include "clang/AST/ASTFwd.h"
|
|
#include "clang/AST/Decl.h"
|
|
#include "clang/AST/DeclBase.h"
|
|
#include "clang/AST/DeclCXX.h"
|
|
#include "clang/AST/DeclarationName.h"
|
|
#include "clang/AST/Expr.h"
|
|
#include "clang/AST/RecursiveASTVisitor.h"
|
|
#include "clang/AST/Stmt.h"
|
|
#include "clang/AST/TypeLoc.h"
|
|
#include "clang/AST/TypeLocVisitor.h"
|
|
#include "clang/Basic/LLVM.h"
|
|
#include "clang/Basic/SourceLocation.h"
|
|
#include "clang/Basic/SourceManager.h"
|
|
#include "clang/Basic/Specifiers.h"
|
|
#include "clang/Basic/TokenKinds.h"
|
|
#include "clang/Lex/Lexer.h"
|
|
#include "clang/Tooling/Syntax/Nodes.h"
|
|
#include "clang/Tooling/Syntax/Tokens.h"
|
|
#include "clang/Tooling/Syntax/Tree.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/PointerUnion.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/MemoryBuffer.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cstddef>
|
|
#include <map>
|
|
|
|
using namespace clang;
|
|
|
|
LLVM_ATTRIBUTE_UNUSED
|
|
static bool isImplicitExpr(clang::Expr *E) { return E->IgnoreImplicit() != E; }
|
|
|
|
namespace {
|
|
/// Get start location of the Declarator from the TypeLoc.
|
|
/// E.g.:
|
|
/// loc of `(` in `int (a)`
|
|
/// loc of `*` in `int *(a)`
|
|
/// loc of the first `(` in `int (*a)(int)`
|
|
/// loc of the `*` in `int *(a)(int)`
|
|
/// loc of the first `*` in `const int *const *volatile a;`
|
|
///
|
|
/// It is non-trivial to get the start location because TypeLocs are stored
|
|
/// inside out. In the example above `*volatile` is the TypeLoc returned
|
|
/// by `Decl.getTypeSourceInfo()`, and `*const` is what `.getPointeeLoc()`
|
|
/// returns.
|
|
struct GetStartLoc : TypeLocVisitor<GetStartLoc, SourceLocation> {
|
|
SourceLocation VisitParenTypeLoc(ParenTypeLoc T) {
|
|
auto L = Visit(T.getInnerLoc());
|
|
if (L.isValid())
|
|
return L;
|
|
return T.getLParenLoc();
|
|
}
|
|
|
|
// Types spelled in the prefix part of the declarator.
|
|
SourceLocation VisitPointerTypeLoc(PointerTypeLoc T) {
|
|
return HandlePointer(T);
|
|
}
|
|
|
|
SourceLocation VisitMemberPointerTypeLoc(MemberPointerTypeLoc T) {
|
|
return HandlePointer(T);
|
|
}
|
|
|
|
SourceLocation VisitBlockPointerTypeLoc(BlockPointerTypeLoc T) {
|
|
return HandlePointer(T);
|
|
}
|
|
|
|
SourceLocation VisitReferenceTypeLoc(ReferenceTypeLoc T) {
|
|
return HandlePointer(T);
|
|
}
|
|
|
|
SourceLocation VisitObjCObjectPointerTypeLoc(ObjCObjectPointerTypeLoc T) {
|
|
return HandlePointer(T);
|
|
}
|
|
|
|
// All other cases are not important, as they are either part of declaration
|
|
// specifiers (e.g. inheritors of TypeSpecTypeLoc) or introduce modifiers on
|
|
// existing declarators (e.g. QualifiedTypeLoc). They cannot start the
|
|
// declarator themselves, but their underlying type can.
|
|
SourceLocation VisitTypeLoc(TypeLoc T) {
|
|
auto N = T.getNextTypeLoc();
|
|
if (!N)
|
|
return SourceLocation();
|
|
return Visit(N);
|
|
}
|
|
|
|
SourceLocation VisitFunctionProtoTypeLoc(FunctionProtoTypeLoc T) {
|
|
if (T.getTypePtr()->hasTrailingReturn())
|
|
return SourceLocation(); // avoid recursing into the suffix of declarator.
|
|
return VisitTypeLoc(T);
|
|
}
|
|
|
|
private:
|
|
template <class PtrLoc> SourceLocation HandlePointer(PtrLoc T) {
|
|
auto L = Visit(T.getPointeeLoc());
|
|
if (L.isValid())
|
|
return L;
|
|
return T.getLocalSourceRange().getBegin();
|
|
}
|
|
};
|
|
} // namespace
|
|
|
|
/// Gets the range of declarator as defined by the C++ grammar. E.g.
|
|
/// `int a;` -> range of `a`,
|
|
/// `int *a;` -> range of `*a`,
|
|
/// `int a[10];` -> range of `a[10]`,
|
|
/// `int a[1][2][3];` -> range of `a[1][2][3]`,
|
|
/// `int *a = nullptr` -> range of `*a = nullptr`.
|
|
/// FIMXE: \p Name must be a source range, e.g. for `operator+`.
|
|
static SourceRange getDeclaratorRange(const SourceManager &SM, TypeLoc T,
|
|
SourceLocation Name,
|
|
SourceRange Initializer) {
|
|
SourceLocation Start = GetStartLoc().Visit(T);
|
|
SourceLocation End = T.getSourceRange().getEnd();
|
|
assert(End.isValid());
|
|
if (Name.isValid()) {
|
|
if (Start.isInvalid())
|
|
Start = Name;
|
|
if (SM.isBeforeInTranslationUnit(End, Name))
|
|
End = Name;
|
|
}
|
|
if (Initializer.isValid()) {
|
|
auto InitializerEnd = Initializer.getEnd();
|
|
assert(SM.isBeforeInTranslationUnit(End, InitializerEnd) || End == InitializerEnd);
|
|
End = InitializerEnd;
|
|
}
|
|
return SourceRange(Start, End);
|
|
}
|
|
|
|
namespace {
|
|
/// All AST hierarchy roots that can be represented as pointers.
|
|
using ASTPtr = llvm::PointerUnion<Stmt *, Decl *>;
|
|
/// Maintains a mapping from AST to syntax tree nodes. This class will get more
|
|
/// complicated as we support more kinds of AST nodes, e.g. TypeLocs.
|
|
/// FIXME: expose this as public API.
|
|
class ASTToSyntaxMapping {
|
|
public:
|
|
void add(ASTPtr From, syntax::Tree *To) {
|
|
assert(To != nullptr);
|
|
assert(!From.isNull());
|
|
|
|
bool Added = Nodes.insert({From, To}).second;
|
|
(void)Added;
|
|
assert(Added && "mapping added twice");
|
|
}
|
|
|
|
syntax::Tree *find(ASTPtr P) const { return Nodes.lookup(P); }
|
|
|
|
private:
|
|
llvm::DenseMap<ASTPtr, syntax::Tree *> Nodes;
|
|
};
|
|
} // namespace
|
|
|
|
/// A helper class for constructing the syntax tree while traversing a clang
|
|
/// AST.
|
|
///
|
|
/// At each point of the traversal we maintain a list of pending nodes.
|
|
/// Initially all tokens are added as pending nodes. When processing a clang AST
|
|
/// node, the clients need to:
|
|
/// - create a corresponding syntax node,
|
|
/// - assign roles to all pending child nodes with 'markChild' and
|
|
/// 'markChildToken',
|
|
/// - replace the child nodes with the new syntax node in the pending list
|
|
/// with 'foldNode'.
|
|
///
|
|
/// Note that all children are expected to be processed when building a node.
|
|
///
|
|
/// Call finalize() to finish building the tree and consume the root node.
|
|
class syntax::TreeBuilder {
|
|
public:
|
|
TreeBuilder(syntax::Arena &Arena) : Arena(Arena), Pending(Arena) {
|
|
for (const auto &T : Arena.tokenBuffer().expandedTokens())
|
|
LocationToToken.insert({T.location().getRawEncoding(), &T});
|
|
}
|
|
|
|
llvm::BumpPtrAllocator &allocator() { return Arena.allocator(); }
|
|
const SourceManager &sourceManager() const { return Arena.sourceManager(); }
|
|
|
|
/// Populate children for \p New node, assuming it covers tokens from \p
|
|
/// Range.
|
|
void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
|
|
ASTPtr From) {
|
|
assert(New);
|
|
Pending.foldChildren(Arena, Range, New);
|
|
if (From)
|
|
Mapping.add(From, New);
|
|
}
|
|
void foldNode(llvm::ArrayRef<syntax::Token> Range, syntax::Tree *New,
|
|
TypeLoc L) {
|
|
// FIXME: add mapping for TypeLocs
|
|
foldNode(Range, New, nullptr);
|
|
}
|
|
|
|
/// Notifies that we should not consume trailing semicolon when computing
|
|
/// token range of \p D.
|
|
void noticeDeclWithoutSemicolon(Decl *D);
|
|
|
|
/// Mark the \p Child node with a corresponding \p Role. All marked children
|
|
/// should be consumed by foldNode.
|
|
/// When called on expressions (clang::Expr is derived from clang::Stmt),
|
|
/// wraps expressions into expression statement.
|
|
void markStmtChild(Stmt *Child, NodeRole Role);
|
|
/// Should be called for expressions in non-statement position to avoid
|
|
/// wrapping into expression statement.
|
|
void markExprChild(Expr *Child, NodeRole Role);
|
|
/// Set role for a token starting at \p Loc.
|
|
void markChildToken(SourceLocation Loc, NodeRole R);
|
|
/// Set role for \p T.
|
|
void markChildToken(const syntax::Token *T, NodeRole R);
|
|
|
|
/// Set role for \p N.
|
|
void markChild(syntax::Node *N, NodeRole R);
|
|
/// Set role for the syntax node matching \p N.
|
|
void markChild(ASTPtr N, NodeRole R);
|
|
|
|
/// Finish building the tree and consume the root node.
|
|
syntax::TranslationUnit *finalize() && {
|
|
auto Tokens = Arena.tokenBuffer().expandedTokens();
|
|
assert(!Tokens.empty());
|
|
assert(Tokens.back().kind() == tok::eof);
|
|
|
|
// Build the root of the tree, consuming all the children.
|
|
Pending.foldChildren(Arena, Tokens.drop_back(),
|
|
new (Arena.allocator()) syntax::TranslationUnit);
|
|
|
|
auto *TU = cast<syntax::TranslationUnit>(std::move(Pending).finalize());
|
|
TU->assertInvariantsRecursive();
|
|
return TU;
|
|
}
|
|
|
|
/// Finds a token starting at \p L. The token must exist if \p L is valid.
|
|
const syntax::Token *findToken(SourceLocation L) const;
|
|
|
|
/// Finds the syntax tokens corresponding to the \p SourceRange.
|
|
llvm::ArrayRef<syntax::Token> getRange(SourceRange Range) const {
|
|
assert(Range.isValid());
|
|
return getRange(Range.getBegin(), Range.getEnd());
|
|
}
|
|
|
|
/// Finds the syntax tokens corresponding to the passed source locations.
|
|
/// \p First is the start position of the first token and \p Last is the start
|
|
/// position of the last token.
|
|
llvm::ArrayRef<syntax::Token> getRange(SourceLocation First,
|
|
SourceLocation Last) const {
|
|
assert(First.isValid());
|
|
assert(Last.isValid());
|
|
assert(First == Last ||
|
|
Arena.sourceManager().isBeforeInTranslationUnit(First, Last));
|
|
return llvm::makeArrayRef(findToken(First), std::next(findToken(Last)));
|
|
}
|
|
|
|
llvm::ArrayRef<syntax::Token>
|
|
getTemplateRange(const ClassTemplateSpecializationDecl *D) const {
|
|
auto Tokens = getRange(D->getSourceRange());
|
|
return maybeAppendSemicolon(Tokens, D);
|
|
}
|
|
|
|
/// Returns true if \p D is the last declarator in a chain and is thus
|
|
/// reponsible for creating SimpleDeclaration for the whole chain.
|
|
template <class T>
|
|
bool isResponsibleForCreatingDeclaration(const T *D) const {
|
|
static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
|
|
std::is_base_of<TypedefNameDecl, T>::value),
|
|
"only DeclaratorDecl and TypedefNameDecl are supported.");
|
|
|
|
const Decl *Next = D->getNextDeclInContext();
|
|
|
|
// There's no next sibling, this one is responsible.
|
|
if (Next == nullptr) {
|
|
return true;
|
|
}
|
|
const auto *NextT = llvm::dyn_cast<T>(Next);
|
|
|
|
// Next sibling is not the same type, this one is responsible.
|
|
if (NextT == nullptr) {
|
|
return true;
|
|
}
|
|
// Next sibling doesn't begin at the same loc, it must be a different
|
|
// declaration, so this declarator is responsible.
|
|
if (NextT->getBeginLoc() != D->getBeginLoc()) {
|
|
return true;
|
|
}
|
|
|
|
// NextT is a member of the same declaration, and we need the last member to
|
|
// create declaration. This one is not responsible.
|
|
return false;
|
|
}
|
|
|
|
llvm::ArrayRef<syntax::Token> getDeclarationRange(Decl *D) {
|
|
llvm::ArrayRef<clang::syntax::Token> Tokens;
|
|
// We want to drop the template parameters for specializations.
|
|
if (const auto *S = llvm::dyn_cast<TagDecl>(D))
|
|
Tokens = getRange(S->TypeDecl::getBeginLoc(), S->getEndLoc());
|
|
else
|
|
Tokens = getRange(D->getSourceRange());
|
|
return maybeAppendSemicolon(Tokens, D);
|
|
}
|
|
|
|
llvm::ArrayRef<syntax::Token> getExprRange(const Expr *E) const {
|
|
return getRange(E->getSourceRange());
|
|
}
|
|
|
|
/// Find the adjusted range for the statement, consuming the trailing
|
|
/// semicolon when needed.
|
|
llvm::ArrayRef<syntax::Token> getStmtRange(const Stmt *S) const {
|
|
auto Tokens = getRange(S->getSourceRange());
|
|
if (isa<CompoundStmt>(S))
|
|
return Tokens;
|
|
|
|
// Some statements miss a trailing semicolon, e.g. 'return', 'continue' and
|
|
// all statements that end with those. Consume this semicolon here.
|
|
if (Tokens.back().kind() == tok::semi)
|
|
return Tokens;
|
|
return withTrailingSemicolon(Tokens);
|
|
}
|
|
|
|
private:
|
|
llvm::ArrayRef<syntax::Token>
|
|
maybeAppendSemicolon(llvm::ArrayRef<syntax::Token> Tokens,
|
|
const Decl *D) const {
|
|
if (llvm::isa<NamespaceDecl>(D))
|
|
return Tokens;
|
|
if (DeclsWithoutSemicolons.count(D))
|
|
return Tokens;
|
|
// FIXME: do not consume trailing semicolon on function definitions.
|
|
// Most declarations own a semicolon in syntax trees, but not in clang AST.
|
|
return withTrailingSemicolon(Tokens);
|
|
}
|
|
|
|
llvm::ArrayRef<syntax::Token>
|
|
withTrailingSemicolon(llvm::ArrayRef<syntax::Token> Tokens) const {
|
|
assert(!Tokens.empty());
|
|
assert(Tokens.back().kind() != tok::eof);
|
|
// We never consume 'eof', so looking at the next token is ok.
|
|
if (Tokens.back().kind() != tok::semi && Tokens.end()->kind() == tok::semi)
|
|
return llvm::makeArrayRef(Tokens.begin(), Tokens.end() + 1);
|
|
return Tokens;
|
|
}
|
|
|
|
void setRole(syntax::Node *N, NodeRole R) {
|
|
assert(N->role() == NodeRole::Detached);
|
|
N->setRole(R);
|
|
}
|
|
|
|
/// A collection of trees covering the input tokens.
|
|
/// When created, each tree corresponds to a single token in the file.
|
|
/// Clients call 'foldChildren' to attach one or more subtrees to a parent
|
|
/// node and update the list of trees accordingly.
|
|
///
|
|
/// Ensures that added nodes properly nest and cover the whole token stream.
|
|
struct Forest {
|
|
Forest(syntax::Arena &A) {
|
|
assert(!A.tokenBuffer().expandedTokens().empty());
|
|
assert(A.tokenBuffer().expandedTokens().back().kind() == tok::eof);
|
|
// Create all leaf nodes.
|
|
// Note that we do not have 'eof' in the tree.
|
|
for (auto &T : A.tokenBuffer().expandedTokens().drop_back()) {
|
|
auto *L = new (A.allocator()) syntax::Leaf(&T);
|
|
L->Original = true;
|
|
L->CanModify = A.tokenBuffer().spelledForExpanded(T).hasValue();
|
|
Trees.insert(Trees.end(), {&T, L});
|
|
}
|
|
}
|
|
|
|
void assignRole(llvm::ArrayRef<syntax::Token> Range,
|
|
syntax::NodeRole Role) {
|
|
assert(!Range.empty());
|
|
auto It = Trees.lower_bound(Range.begin());
|
|
assert(It != Trees.end() && "no node found");
|
|
assert(It->first == Range.begin() && "no child with the specified range");
|
|
assert((std::next(It) == Trees.end() ||
|
|
std::next(It)->first == Range.end()) &&
|
|
"no child with the specified range");
|
|
assert(It->second->role() == NodeRole::Detached &&
|
|
"re-assigning role for a child");
|
|
It->second->setRole(Role);
|
|
}
|
|
|
|
/// Add \p Node to the forest and attach child nodes based on \p Tokens.
|
|
void foldChildren(const syntax::Arena &A,
|
|
llvm::ArrayRef<syntax::Token> Tokens,
|
|
syntax::Tree *Node) {
|
|
// Attach children to `Node`.
|
|
assert(Node->firstChild() == nullptr && "node already has children");
|
|
|
|
auto *FirstToken = Tokens.begin();
|
|
auto BeginChildren = Trees.lower_bound(FirstToken);
|
|
|
|
assert((BeginChildren == Trees.end() ||
|
|
BeginChildren->first == FirstToken) &&
|
|
"fold crosses boundaries of existing subtrees");
|
|
auto EndChildren = Trees.lower_bound(Tokens.end());
|
|
assert(
|
|
(EndChildren == Trees.end() || EndChildren->first == Tokens.end()) &&
|
|
"fold crosses boundaries of existing subtrees");
|
|
|
|
// We need to go in reverse order, because we can only prepend.
|
|
for (auto It = EndChildren; It != BeginChildren; --It) {
|
|
auto *C = std::prev(It)->second;
|
|
if (C->role() == NodeRole::Detached)
|
|
C->setRole(NodeRole::Unknown);
|
|
Node->prependChildLowLevel(C);
|
|
}
|
|
|
|
// Mark that this node came from the AST and is backed by the source code.
|
|
Node->Original = true;
|
|
Node->CanModify = A.tokenBuffer().spelledForExpanded(Tokens).hasValue();
|
|
|
|
Trees.erase(BeginChildren, EndChildren);
|
|
Trees.insert({FirstToken, Node});
|
|
}
|
|
|
|
// EXPECTS: all tokens were consumed and are owned by a single root node.
|
|
syntax::Node *finalize() && {
|
|
assert(Trees.size() == 1);
|
|
auto *Root = Trees.begin()->second;
|
|
Trees = {};
|
|
return Root;
|
|
}
|
|
|
|
std::string str(const syntax::Arena &A) const {
|
|
std::string R;
|
|
for (auto It = Trees.begin(); It != Trees.end(); ++It) {
|
|
unsigned CoveredTokens =
|
|
It != Trees.end()
|
|
? (std::next(It)->first - It->first)
|
|
: A.tokenBuffer().expandedTokens().end() - It->first;
|
|
|
|
R += std::string(llvm::formatv(
|
|
"- '{0}' covers '{1}'+{2} tokens\n", It->second->kind(),
|
|
It->first->text(A.sourceManager()), CoveredTokens));
|
|
R += It->second->dump(A);
|
|
}
|
|
return R;
|
|
}
|
|
|
|
private:
|
|
/// Maps from the start token to a subtree starting at that token.
|
|
/// Keys in the map are pointers into the array of expanded tokens, so
|
|
/// pointer order corresponds to the order of preprocessor tokens.
|
|
std::map<const syntax::Token *, syntax::Node *> Trees;
|
|
};
|
|
|
|
/// For debugging purposes.
|
|
std::string str() { return Pending.str(Arena); }
|
|
|
|
syntax::Arena &Arena;
|
|
/// To quickly find tokens by their start location.
|
|
llvm::DenseMap</*SourceLocation*/ unsigned, const syntax::Token *>
|
|
LocationToToken;
|
|
Forest Pending;
|
|
llvm::DenseSet<Decl *> DeclsWithoutSemicolons;
|
|
ASTToSyntaxMapping Mapping;
|
|
};
|
|
|
|
namespace {
|
|
class BuildTreeVisitor : public RecursiveASTVisitor<BuildTreeVisitor> {
|
|
public:
|
|
explicit BuildTreeVisitor(ASTContext &Ctx, syntax::TreeBuilder &Builder)
|
|
: Builder(Builder), LangOpts(Ctx.getLangOpts()) {}
|
|
|
|
bool shouldTraversePostOrder() const { return true; }
|
|
|
|
bool WalkUpFromDeclaratorDecl(DeclaratorDecl *DD) {
|
|
return processDeclaratorAndDeclaration(DD);
|
|
}
|
|
|
|
bool WalkUpFromTypedefNameDecl(TypedefNameDecl *TD) {
|
|
return processDeclaratorAndDeclaration(TD);
|
|
}
|
|
|
|
bool VisitDecl(Decl *D) {
|
|
assert(!D->isImplicit());
|
|
Builder.foldNode(Builder.getDeclarationRange(D),
|
|
new (allocator()) syntax::UnknownDeclaration(), D);
|
|
return true;
|
|
}
|
|
|
|
// RAV does not call WalkUpFrom* on explicit instantiations, so we have to
|
|
// override Traverse.
|
|
// FIXME: make RAV call WalkUpFrom* instead.
|
|
bool
|
|
TraverseClassTemplateSpecializationDecl(ClassTemplateSpecializationDecl *C) {
|
|
if (!RecursiveASTVisitor::TraverseClassTemplateSpecializationDecl(C))
|
|
return false;
|
|
if (C->isExplicitSpecialization())
|
|
return true; // we are only interested in explicit instantiations.
|
|
auto *Declaration =
|
|
cast<syntax::SimpleDeclaration>(handleFreeStandingTagDecl(C));
|
|
foldExplicitTemplateInstantiation(
|
|
Builder.getTemplateRange(C), Builder.findToken(C->getExternLoc()),
|
|
Builder.findToken(C->getTemplateKeywordLoc()), Declaration, C);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromTemplateDecl(TemplateDecl *S) {
|
|
foldTemplateDeclaration(
|
|
Builder.getDeclarationRange(S),
|
|
Builder.findToken(S->getTemplateParameters()->getTemplateLoc()),
|
|
Builder.getDeclarationRange(S->getTemplatedDecl()), S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromTagDecl(TagDecl *C) {
|
|
// FIXME: build the ClassSpecifier node.
|
|
if (!C->isFreeStanding()) {
|
|
assert(C->getNumTemplateParameterLists() == 0);
|
|
return true;
|
|
}
|
|
handleFreeStandingTagDecl(C);
|
|
return true;
|
|
}
|
|
|
|
syntax::Declaration *handleFreeStandingTagDecl(TagDecl *C) {
|
|
assert(C->isFreeStanding());
|
|
// Class is a declaration specifier and needs a spanning declaration node.
|
|
auto DeclarationRange = Builder.getDeclarationRange(C);
|
|
syntax::Declaration *Result = new (allocator()) syntax::SimpleDeclaration;
|
|
Builder.foldNode(DeclarationRange, Result, nullptr);
|
|
|
|
// Build TemplateDeclaration nodes if we had template parameters.
|
|
auto ConsumeTemplateParameters = [&](const TemplateParameterList &L) {
|
|
const auto *TemplateKW = Builder.findToken(L.getTemplateLoc());
|
|
auto R = llvm::makeArrayRef(TemplateKW, DeclarationRange.end());
|
|
Result =
|
|
foldTemplateDeclaration(R, TemplateKW, DeclarationRange, nullptr);
|
|
DeclarationRange = R;
|
|
};
|
|
if (auto *S = llvm::dyn_cast<ClassTemplatePartialSpecializationDecl>(C))
|
|
ConsumeTemplateParameters(*S->getTemplateParameters());
|
|
for (unsigned I = C->getNumTemplateParameterLists(); 0 < I; --I)
|
|
ConsumeTemplateParameters(*C->getTemplateParameterList(I - 1));
|
|
return Result;
|
|
}
|
|
|
|
bool WalkUpFromTranslationUnitDecl(TranslationUnitDecl *TU) {
|
|
// We do not want to call VisitDecl(), the declaration for translation
|
|
// unit is built by finalize().
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCompoundStmt(CompoundStmt *S) {
|
|
using NodeRole = syntax::NodeRole;
|
|
|
|
Builder.markChildToken(S->getLBracLoc(), NodeRole::OpenParen);
|
|
for (auto *Child : S->body())
|
|
Builder.markStmtChild(Child, NodeRole::CompoundStatement_statement);
|
|
Builder.markChildToken(S->getRBracLoc(), NodeRole::CloseParen);
|
|
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::CompoundStatement, S);
|
|
return true;
|
|
}
|
|
|
|
// Some statements are not yet handled by syntax trees.
|
|
bool WalkUpFromStmt(Stmt *S) {
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::UnknownStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool TraverseCXXForRangeStmt(CXXForRangeStmt *S) {
|
|
// We override to traverse range initializer as VarDecl.
|
|
// RAV traverses it as a statement, we produce invalid node kinds in that
|
|
// case.
|
|
// FIXME: should do this in RAV instead?
|
|
if (S->getInit() && !TraverseStmt(S->getInit()))
|
|
return false;
|
|
if (S->getLoopVariable() && !TraverseDecl(S->getLoopVariable()))
|
|
return false;
|
|
if (S->getRangeInit() && !TraverseStmt(S->getRangeInit()))
|
|
return false;
|
|
if (S->getBody() && !TraverseStmt(S->getBody()))
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
bool TraverseStmt(Stmt *S) {
|
|
if (auto *DS = llvm::dyn_cast_or_null<DeclStmt>(S)) {
|
|
// We want to consume the semicolon, make sure SimpleDeclaration does not.
|
|
for (auto *D : DS->decls())
|
|
Builder.noticeDeclWithoutSemicolon(D);
|
|
} else if (auto *E = llvm::dyn_cast_or_null<Expr>(S)) {
|
|
return RecursiveASTVisitor::TraverseStmt(E->IgnoreImplicit());
|
|
}
|
|
return RecursiveASTVisitor::TraverseStmt(S);
|
|
}
|
|
|
|
// Some expressions are not yet handled by syntax trees.
|
|
bool WalkUpFromExpr(Expr *E) {
|
|
assert(!isImplicitExpr(E) && "should be handled by TraverseStmt");
|
|
Builder.foldNode(Builder.getExprRange(E),
|
|
new (allocator()) syntax::UnknownExpression, E);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromIntegerLiteral(IntegerLiteral *S) {
|
|
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::IntegerLiteralExpression, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCXXNullPtrLiteralExpr(CXXNullPtrLiteralExpr *S) {
|
|
Builder.markChildToken(S->getLocation(), syntax::NodeRole::LiteralToken);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::CxxNullPtrExpression, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUnaryOperator(UnaryOperator *S) {
|
|
Builder.markChildToken(S->getOperatorLoc(),
|
|
syntax::NodeRole::OperatorExpression_operatorToken);
|
|
Builder.markExprChild(S->getSubExpr(),
|
|
syntax::NodeRole::UnaryOperatorExpression_operand);
|
|
|
|
if (S->isPostfix())
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::PostfixUnaryOperatorExpression,
|
|
S);
|
|
else
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::PrefixUnaryOperatorExpression,
|
|
S);
|
|
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromBinaryOperator(BinaryOperator *S) {
|
|
Builder.markExprChild(
|
|
S->getLHS(), syntax::NodeRole::BinaryOperatorExpression_leftHandSide);
|
|
Builder.markChildToken(S->getOperatorLoc(),
|
|
syntax::NodeRole::OperatorExpression_operatorToken);
|
|
Builder.markExprChild(
|
|
S->getRHS(), syntax::NodeRole::BinaryOperatorExpression_rightHandSide);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::BinaryOperatorExpression, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCXXOperatorCallExpr(CXXOperatorCallExpr *S) {
|
|
if (S->isInfixBinaryOp()) {
|
|
Builder.markExprChild(
|
|
S->getArg(0),
|
|
syntax::NodeRole::BinaryOperatorExpression_leftHandSide);
|
|
Builder.markChildToken(
|
|
S->getOperatorLoc(),
|
|
syntax::NodeRole::OperatorExpression_operatorToken);
|
|
Builder.markExprChild(
|
|
S->getArg(1),
|
|
syntax::NodeRole::BinaryOperatorExpression_rightHandSide);
|
|
Builder.foldNode(Builder.getExprRange(S),
|
|
new (allocator()) syntax::BinaryOperatorExpression, S);
|
|
return true;
|
|
}
|
|
return RecursiveASTVisitor::WalkUpFromCXXOperatorCallExpr(S);
|
|
}
|
|
|
|
bool WalkUpFromNamespaceDecl(NamespaceDecl *S) {
|
|
auto Tokens = Builder.getDeclarationRange(S);
|
|
if (Tokens.front().kind() == tok::coloncolon) {
|
|
// Handle nested namespace definitions. Those start at '::' token, e.g.
|
|
// namespace a^::b {}
|
|
// FIXME: build corresponding nodes for the name of this namespace.
|
|
return true;
|
|
}
|
|
Builder.foldNode(Tokens, new (allocator()) syntax::NamespaceDefinition, S);
|
|
return true;
|
|
}
|
|
|
|
bool TraverseParenTypeLoc(ParenTypeLoc L) {
|
|
// We reverse order of traversal to get the proper syntax structure.
|
|
if (!WalkUpFromParenTypeLoc(L))
|
|
return false;
|
|
return TraverseTypeLoc(L.getInnerLoc());
|
|
}
|
|
|
|
bool WalkUpFromParenTypeLoc(ParenTypeLoc L) {
|
|
Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
|
|
Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
|
|
Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getRParenLoc()),
|
|
new (allocator()) syntax::ParenDeclarator, L);
|
|
return true;
|
|
}
|
|
|
|
// Declarator chunks, they are produced by type locs and some clang::Decls.
|
|
bool WalkUpFromArrayTypeLoc(ArrayTypeLoc L) {
|
|
Builder.markChildToken(L.getLBracketLoc(), syntax::NodeRole::OpenParen);
|
|
Builder.markExprChild(L.getSizeExpr(),
|
|
syntax::NodeRole::ArraySubscript_sizeExpression);
|
|
Builder.markChildToken(L.getRBracketLoc(), syntax::NodeRole::CloseParen);
|
|
Builder.foldNode(Builder.getRange(L.getLBracketLoc(), L.getRBracketLoc()),
|
|
new (allocator()) syntax::ArraySubscript, L);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromFunctionTypeLoc(FunctionTypeLoc L) {
|
|
Builder.markChildToken(L.getLParenLoc(), syntax::NodeRole::OpenParen);
|
|
for (auto *P : L.getParams()) {
|
|
Builder.markChild(P, syntax::NodeRole::ParametersAndQualifiers_parameter);
|
|
}
|
|
Builder.markChildToken(L.getRParenLoc(), syntax::NodeRole::CloseParen);
|
|
Builder.foldNode(Builder.getRange(L.getLParenLoc(), L.getEndLoc()),
|
|
new (allocator()) syntax::ParametersAndQualifiers, L);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromFunctionProtoTypeLoc(FunctionProtoTypeLoc L) {
|
|
if (!L.getTypePtr()->hasTrailingReturn())
|
|
return WalkUpFromFunctionTypeLoc(L);
|
|
|
|
auto *TrailingReturnTokens = BuildTrailingReturn(L);
|
|
// Finish building the node for parameters.
|
|
Builder.markChild(TrailingReturnTokens,
|
|
syntax::NodeRole::ParametersAndQualifiers_trailingReturn);
|
|
return WalkUpFromFunctionTypeLoc(L);
|
|
}
|
|
|
|
bool WalkUpFromMemberPointerTypeLoc(MemberPointerTypeLoc L) {
|
|
auto SR = L.getLocalSourceRange();
|
|
Builder.foldNode(Builder.getRange(SR),
|
|
new (allocator()) syntax::MemberPointer, L);
|
|
return true;
|
|
}
|
|
|
|
// The code below is very regular, it could even be generated with some
|
|
// preprocessor magic. We merely assign roles to the corresponding children
|
|
// and fold resulting nodes.
|
|
bool WalkUpFromDeclStmt(DeclStmt *S) {
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::DeclarationStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromNullStmt(NullStmt *S) {
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::EmptyStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromSwitchStmt(SwitchStmt *S) {
|
|
Builder.markChildToken(S->getSwitchLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::SwitchStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCaseStmt(CaseStmt *S) {
|
|
Builder.markChildToken(S->getKeywordLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markExprChild(S->getLHS(), syntax::NodeRole::CaseStatement_value);
|
|
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::CaseStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromDefaultStmt(DefaultStmt *S) {
|
|
Builder.markChildToken(S->getKeywordLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getSubStmt(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::DefaultStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromIfStmt(IfStmt *S) {
|
|
Builder.markChildToken(S->getIfLoc(), syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getThen(),
|
|
syntax::NodeRole::IfStatement_thenStatement);
|
|
Builder.markChildToken(S->getElseLoc(),
|
|
syntax::NodeRole::IfStatement_elseKeyword);
|
|
Builder.markStmtChild(S->getElse(),
|
|
syntax::NodeRole::IfStatement_elseStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::IfStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromForStmt(ForStmt *S) {
|
|
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::ForStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromWhileStmt(WhileStmt *S) {
|
|
Builder.markChildToken(S->getWhileLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::WhileStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromContinueStmt(ContinueStmt *S) {
|
|
Builder.markChildToken(S->getContinueLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::ContinueStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromBreakStmt(BreakStmt *S) {
|
|
Builder.markChildToken(S->getBreakLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::BreakStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromReturnStmt(ReturnStmt *S) {
|
|
Builder.markChildToken(S->getReturnLoc(),
|
|
syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markExprChild(S->getRetValue(),
|
|
syntax::NodeRole::ReturnStatement_value);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::ReturnStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromCXXForRangeStmt(CXXForRangeStmt *S) {
|
|
Builder.markChildToken(S->getForLoc(), syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markStmtChild(S->getBody(), syntax::NodeRole::BodyStatement);
|
|
Builder.foldNode(Builder.getStmtRange(S),
|
|
new (allocator()) syntax::RangeBasedForStatement, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromEmptyDecl(EmptyDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::EmptyDeclaration, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromStaticAssertDecl(StaticAssertDecl *S) {
|
|
Builder.markExprChild(S->getAssertExpr(),
|
|
syntax::NodeRole::StaticAssertDeclaration_condition);
|
|
Builder.markExprChild(S->getMessage(),
|
|
syntax::NodeRole::StaticAssertDeclaration_message);
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::StaticAssertDeclaration, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromLinkageSpecDecl(LinkageSpecDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::LinkageSpecificationDeclaration,
|
|
S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromNamespaceAliasDecl(NamespaceAliasDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::NamespaceAliasDefinition, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUsingDirectiveDecl(UsingDirectiveDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::UsingNamespaceDirective, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUsingDecl(UsingDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::UsingDeclaration, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUnresolvedUsingValueDecl(UnresolvedUsingValueDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::UsingDeclaration, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromUnresolvedUsingTypenameDecl(UnresolvedUsingTypenameDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::UsingDeclaration, S);
|
|
return true;
|
|
}
|
|
|
|
bool WalkUpFromTypeAliasDecl(TypeAliasDecl *S) {
|
|
Builder.foldNode(Builder.getDeclarationRange(S),
|
|
new (allocator()) syntax::TypeAliasDeclaration, S);
|
|
return true;
|
|
}
|
|
|
|
private:
|
|
template <class T> SourceLocation getQualifiedNameStart(T *D) {
|
|
static_assert((std::is_base_of<DeclaratorDecl, T>::value ||
|
|
std::is_base_of<TypedefNameDecl, T>::value),
|
|
"only DeclaratorDecl and TypedefNameDecl are supported.");
|
|
|
|
auto DN = D->getDeclName();
|
|
bool IsAnonymous = DN.isIdentifier() && !DN.getAsIdentifierInfo();
|
|
if (IsAnonymous)
|
|
return SourceLocation();
|
|
|
|
if (const auto *DD = llvm::dyn_cast<DeclaratorDecl>(D)) {
|
|
if (DD->getQualifierLoc()) {
|
|
return DD->getQualifierLoc().getBeginLoc();
|
|
}
|
|
}
|
|
|
|
return D->getLocation();
|
|
}
|
|
|
|
SourceRange getInitializerRange(Decl *D) {
|
|
if (auto *V = llvm::dyn_cast<VarDecl>(D)) {
|
|
auto *I = V->getInit();
|
|
// Initializers in range-based-for are not part of the declarator
|
|
if (I && !V->isCXXForRangeDecl())
|
|
return I->getSourceRange();
|
|
}
|
|
|
|
return SourceRange();
|
|
}
|
|
|
|
/// Folds SimpleDeclarator node (if present) and in case this is the last
|
|
/// declarator in the chain it also folds SimpleDeclaration node.
|
|
template <class T> bool processDeclaratorAndDeclaration(T *D) {
|
|
SourceRange Initializer = getInitializerRange(D);
|
|
auto Range = getDeclaratorRange(Builder.sourceManager(),
|
|
D->getTypeSourceInfo()->getTypeLoc(),
|
|
getQualifiedNameStart(D), Initializer);
|
|
|
|
// There doesn't have to be a declarator (e.g. `void foo(int)` only has
|
|
// declaration, but no declarator).
|
|
if (Range.getBegin().isValid()) {
|
|
auto *N = new (allocator()) syntax::SimpleDeclarator;
|
|
Builder.foldNode(Builder.getRange(Range), N, nullptr);
|
|
Builder.markChild(N, syntax::NodeRole::SimpleDeclaration_declarator);
|
|
}
|
|
|
|
if (Builder.isResponsibleForCreatingDeclaration(D)) {
|
|
Builder.foldNode(Builder.getDeclarationRange(D),
|
|
new (allocator()) syntax::SimpleDeclaration, D);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
/// Returns the range of the built node.
|
|
syntax::TrailingReturnType *BuildTrailingReturn(FunctionProtoTypeLoc L) {
|
|
assert(L.getTypePtr()->hasTrailingReturn());
|
|
|
|
auto ReturnedType = L.getReturnLoc();
|
|
// Build node for the declarator, if any.
|
|
auto ReturnDeclaratorRange =
|
|
getDeclaratorRange(this->Builder.sourceManager(), ReturnedType,
|
|
/*Name=*/SourceLocation(),
|
|
/*Initializer=*/SourceLocation());
|
|
syntax::SimpleDeclarator *ReturnDeclarator = nullptr;
|
|
if (ReturnDeclaratorRange.isValid()) {
|
|
ReturnDeclarator = new (allocator()) syntax::SimpleDeclarator;
|
|
Builder.foldNode(Builder.getRange(ReturnDeclaratorRange),
|
|
ReturnDeclarator, nullptr);
|
|
}
|
|
|
|
// Build node for trailing return type.
|
|
auto Return = Builder.getRange(ReturnedType.getSourceRange());
|
|
const auto *Arrow = Return.begin() - 1;
|
|
assert(Arrow->kind() == tok::arrow);
|
|
auto Tokens = llvm::makeArrayRef(Arrow, Return.end());
|
|
Builder.markChildToken(Arrow, syntax::NodeRole::ArrowToken);
|
|
if (ReturnDeclarator)
|
|
Builder.markChild(ReturnDeclarator,
|
|
syntax::NodeRole::TrailingReturnType_declarator);
|
|
auto *R = new (allocator()) syntax::TrailingReturnType;
|
|
Builder.foldNode(Tokens, R, L);
|
|
return R;
|
|
}
|
|
|
|
void foldExplicitTemplateInstantiation(
|
|
ArrayRef<syntax::Token> Range, const syntax::Token *ExternKW,
|
|
const syntax::Token *TemplateKW,
|
|
syntax::SimpleDeclaration *InnerDeclaration, Decl *From) {
|
|
assert(!ExternKW || ExternKW->kind() == tok::kw_extern);
|
|
assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
|
|
Builder.markChildToken(ExternKW, syntax::NodeRole::ExternKeyword);
|
|
Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
|
|
Builder.markChild(
|
|
InnerDeclaration,
|
|
syntax::NodeRole::ExplicitTemplateInstantiation_declaration);
|
|
Builder.foldNode(
|
|
Range, new (allocator()) syntax::ExplicitTemplateInstantiation, From);
|
|
}
|
|
|
|
syntax::TemplateDeclaration *foldTemplateDeclaration(
|
|
ArrayRef<syntax::Token> Range, const syntax::Token *TemplateKW,
|
|
ArrayRef<syntax::Token> TemplatedDeclaration, Decl *From) {
|
|
assert(TemplateKW && TemplateKW->kind() == tok::kw_template);
|
|
Builder.markChildToken(TemplateKW, syntax::NodeRole::IntroducerKeyword);
|
|
|
|
auto *N = new (allocator()) syntax::TemplateDeclaration;
|
|
Builder.foldNode(Range, N, From);
|
|
Builder.markChild(N, syntax::NodeRole::TemplateDeclaration_declaration);
|
|
return N;
|
|
}
|
|
|
|
/// A small helper to save some typing.
|
|
llvm::BumpPtrAllocator &allocator() { return Builder.allocator(); }
|
|
|
|
syntax::TreeBuilder &Builder;
|
|
const LangOptions &LangOpts;
|
|
};
|
|
} // namespace
|
|
|
|
void syntax::TreeBuilder::noticeDeclWithoutSemicolon(Decl *D) {
|
|
DeclsWithoutSemicolons.insert(D);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markChildToken(SourceLocation Loc, NodeRole Role) {
|
|
if (Loc.isInvalid())
|
|
return;
|
|
Pending.assignRole(*findToken(Loc), Role);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markChildToken(const syntax::Token *T, NodeRole R) {
|
|
if (!T)
|
|
return;
|
|
Pending.assignRole(*T, R);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markChild(syntax::Node *N, NodeRole R) {
|
|
assert(N);
|
|
setRole(N, R);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markChild(ASTPtr N, NodeRole R) {
|
|
auto *SN = Mapping.find(N);
|
|
assert(SN != nullptr);
|
|
setRole(SN, R);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markStmtChild(Stmt *Child, NodeRole Role) {
|
|
if (!Child)
|
|
return;
|
|
|
|
syntax::Tree *ChildNode;
|
|
if (Expr *ChildExpr = dyn_cast<Expr>(Child)) {
|
|
// This is an expression in a statement position, consume the trailing
|
|
// semicolon and form an 'ExpressionStatement' node.
|
|
markExprChild(ChildExpr, NodeRole::ExpressionStatement_expression);
|
|
ChildNode = new (allocator()) syntax::ExpressionStatement;
|
|
// (!) 'getStmtRange()' ensures this covers a trailing semicolon.
|
|
Pending.foldChildren(Arena, getStmtRange(Child), ChildNode);
|
|
} else {
|
|
ChildNode = Mapping.find(Child);
|
|
}
|
|
assert(ChildNode != nullptr);
|
|
setRole(ChildNode, Role);
|
|
}
|
|
|
|
void syntax::TreeBuilder::markExprChild(Expr *Child, NodeRole Role) {
|
|
if (!Child)
|
|
return;
|
|
Child = Child->IgnoreImplicit();
|
|
|
|
syntax::Tree *ChildNode = Mapping.find(Child);
|
|
assert(ChildNode != nullptr);
|
|
setRole(ChildNode, Role);
|
|
}
|
|
|
|
const syntax::Token *syntax::TreeBuilder::findToken(SourceLocation L) const {
|
|
if (L.isInvalid())
|
|
return nullptr;
|
|
auto It = LocationToToken.find(L.getRawEncoding());
|
|
assert(It != LocationToToken.end());
|
|
return It->second;
|
|
}
|
|
|
|
syntax::TranslationUnit *
|
|
syntax::buildSyntaxTree(Arena &A, const TranslationUnitDecl &TU) {
|
|
TreeBuilder Builder(A);
|
|
BuildTreeVisitor(TU.getASTContext(), Builder).TraverseAST(TU.getASTContext());
|
|
return std::move(Builder).finalize();
|
|
}
|