llvm-project/llvm/lib/VMCore/Dominators.cpp

361 lines
12 KiB
C++

//===- Dominators.cpp - Dominator Calculation -----------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements simple dominator construction algorithms for finding
// forward dominators. Postdominators are available in libanalysis, but are not
// included in libvmcore, because it's not needed. Forward dominators are
// needed to support the Verifier pass.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/Dominators.h"
#include "llvm/Support/CFG.h"
#include "llvm/Support/Compiler.h"
#include "llvm/Support/Debug.h"
#include "llvm/ADT/DepthFirstIterator.h"
#include "llvm/ADT/SetOperations.h"
#include "llvm/ADT/SmallPtrSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/Analysis/DominatorInternals.h"
#include "llvm/Instructions.h"
#include "llvm/Support/raw_ostream.h"
#include "llvm/Support/CommandLine.h"
#include <algorithm>
using namespace llvm;
// Always verify dominfo if expensive checking is enabled.
#ifdef XDEBUG
static bool VerifyDomInfo = true;
#else
static bool VerifyDomInfo = false;
#endif
static cl::opt<bool,true>
VerifyDomInfoX("verify-dom-info", cl::location(VerifyDomInfo),
cl::desc("Verify dominator info (time consuming)"));
//===----------------------------------------------------------------------===//
// DominatorTree Implementation
//===----------------------------------------------------------------------===//
//
// Provide public access to DominatorTree information. Implementation details
// can be found in DominatorCalculation.h.
//
//===----------------------------------------------------------------------===//
TEMPLATE_INSTANTIATION(class llvm::DomTreeNodeBase<BasicBlock>);
TEMPLATE_INSTANTIATION(class llvm::DominatorTreeBase<BasicBlock>);
char DominatorTree::ID = 0;
INITIALIZE_PASS(DominatorTree, "domtree",
"Dominator Tree Construction", true, true);
bool DominatorTree::runOnFunction(Function &F) {
DT->recalculate(F);
return false;
}
void DominatorTree::verifyAnalysis() const {
if (!VerifyDomInfo) return;
Function &F = *getRoot()->getParent();
DominatorTree OtherDT;
OtherDT.getBase().recalculate(F);
assert(!compare(OtherDT) && "Invalid DominatorTree info!");
}
void DominatorTree::print(raw_ostream &OS, const Module *) const {
DT->print(OS);
}
// dominates - Return true if A dominates a use in B. This performs the
// special checks necessary if A and B are in the same basic block.
bool DominatorTree::dominates(const Instruction *A, const Instruction *B) const{
const BasicBlock *BBA = A->getParent(), *BBB = B->getParent();
// If A is an invoke instruction, its value is only available in this normal
// successor block.
if (const InvokeInst *II = dyn_cast<InvokeInst>(A))
BBA = II->getNormalDest();
if (BBA != BBB) return dominates(BBA, BBB);
// It is not possible to determine dominance between two PHI nodes
// based on their ordering.
if (isa<PHINode>(A) && isa<PHINode>(B))
return false;
// Loop through the basic block until we find A or B.
BasicBlock::const_iterator I = BBA->begin();
for (; &*I != A && &*I != B; ++I)
/*empty*/;
return &*I == A;
}
//===----------------------------------------------------------------------===//
// DominanceFrontier Implementation
//===----------------------------------------------------------------------===//
char DominanceFrontier::ID = 0;
INITIALIZE_PASS(DominanceFrontier, "domfrontier",
"Dominance Frontier Construction", true, true);
void DominanceFrontier::verifyAnalysis() const {
if (!VerifyDomInfo) return;
DominatorTree &DT = getAnalysis<DominatorTree>();
DominanceFrontier OtherDF;
const std::vector<BasicBlock*> &DTRoots = DT.getRoots();
OtherDF.calculate(DT, DT.getNode(DTRoots[0]));
assert(!compare(OtherDF) && "Invalid DominanceFrontier info!");
}
// NewBB is split and now it has one successor. Update dominance frontier to
// reflect this change.
void DominanceFrontier::splitBlock(BasicBlock *NewBB) {
assert(NewBB->getTerminator()->getNumSuccessors() == 1 &&
"NewBB should have a single successor!");
BasicBlock *NewBBSucc = NewBB->getTerminator()->getSuccessor(0);
// NewBBSucc inherits original NewBB frontier.
DominanceFrontier::iterator NewBBI = find(NewBB);
if (NewBBI != end())
addBasicBlock(NewBBSucc, NewBBI->second);
// If NewBB dominates NewBBSucc, then DF(NewBB) is now going to be the
// DF(NewBBSucc) without the stuff that the new block does not dominate
// a predecessor of.
DominatorTree &DT = getAnalysis<DominatorTree>();
DomTreeNode *NewBBNode = DT.getNode(NewBB);
DomTreeNode *NewBBSuccNode = DT.getNode(NewBBSucc);
if (DT.dominates(NewBBNode, NewBBSuccNode)) {
DominanceFrontier::iterator DFI = find(NewBBSucc);
if (DFI != end()) {
DominanceFrontier::DomSetType Set = DFI->second;
// Filter out stuff in Set that we do not dominate a predecessor of.
for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
E = Set.end(); SetI != E;) {
bool DominatesPred = false;
for (pred_iterator PI = pred_begin(*SetI), E = pred_end(*SetI);
PI != E; ++PI)
if (DT.dominates(NewBBNode, DT.getNode(*PI))) {
DominatesPred = true;
break;
}
if (!DominatesPred)
Set.erase(SetI++);
else
++SetI;
}
if (NewBBI != end()) {
for (DominanceFrontier::DomSetType::iterator SetI = Set.begin(),
E = Set.end(); SetI != E; ++SetI) {
BasicBlock *SB = *SetI;
addToFrontier(NewBBI, SB);
}
} else
addBasicBlock(NewBB, Set);
}
} else {
// DF(NewBB) is {NewBBSucc} because NewBB does not strictly dominate
// NewBBSucc, but it does dominate itself (and there is an edge (NewBB ->
// NewBBSucc)). NewBBSucc is the single successor of NewBB.
DominanceFrontier::DomSetType NewDFSet;
NewDFSet.insert(NewBBSucc);
addBasicBlock(NewBB, NewDFSet);
}
// Now update dominance frontiers which either used to contain NewBBSucc
// or which now need to include NewBB.
// Collect the set of blocks which dominate a predecessor of NewBB or
// NewSuccBB and which don't dominate both. This is an initial
// approximation of the blocks whose dominance frontiers will need updates.
SmallVector<DomTreeNode *, 16> AllPredDoms;
// Compute the block which dominates both NewBBSucc and NewBB. This is
// the immediate dominator of NewBBSucc unless NewBB dominates NewBBSucc.
// The code below which climbs dominator trees will stop at this point,
// because from this point up, dominance frontiers are unaffected.
DomTreeNode *DominatesBoth = 0;
if (NewBBSuccNode) {
DominatesBoth = NewBBSuccNode->getIDom();
if (DominatesBoth == NewBBNode)
DominatesBoth = NewBBNode->getIDom();
}
// Collect the set of all blocks which dominate a predecessor of NewBB.
SmallPtrSet<DomTreeNode *, 8> NewBBPredDoms;
for (pred_iterator PI = pred_begin(NewBB), E = pred_end(NewBB); PI != E; ++PI)
for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
if (DTN == DominatesBoth)
break;
if (!NewBBPredDoms.insert(DTN))
break;
AllPredDoms.push_back(DTN);
}
// Collect the set of all blocks which dominate a predecessor of NewSuccBB.
SmallPtrSet<DomTreeNode *, 8> NewBBSuccPredDoms;
for (pred_iterator PI = pred_begin(NewBBSucc),
E = pred_end(NewBBSucc); PI != E; ++PI)
for (DomTreeNode *DTN = DT.getNode(*PI); DTN; DTN = DTN->getIDom()) {
if (DTN == DominatesBoth)
break;
if (!NewBBSuccPredDoms.insert(DTN))
break;
if (!NewBBPredDoms.count(DTN))
AllPredDoms.push_back(DTN);
}
// Visit all relevant dominance frontiers and make any needed updates.
for (SmallVectorImpl<DomTreeNode *>::const_iterator I = AllPredDoms.begin(),
E = AllPredDoms.end(); I != E; ++I) {
DomTreeNode *DTN = *I;
iterator DFI = find((*I)->getBlock());
// Only consider nodes that have NewBBSucc in their dominator frontier.
if (DFI == end() || !DFI->second.count(NewBBSucc)) continue;
// If the block dominates a predecessor of NewBB but does not properly
// dominate NewBB itself, add NewBB to its dominance frontier.
if (NewBBPredDoms.count(DTN) &&
!DT.properlyDominates(DTN, NewBBNode))
addToFrontier(DFI, NewBB);
// If the block does not dominate a predecessor of NewBBSucc or
// properly dominates NewBBSucc itself, remove NewBBSucc from its
// dominance frontier.
if (!NewBBSuccPredDoms.count(DTN) ||
DT.properlyDominates(DTN, NewBBSuccNode))
removeFromFrontier(DFI, NewBBSucc);
}
}
namespace {
class DFCalculateWorkObject {
public:
DFCalculateWorkObject(BasicBlock *B, BasicBlock *P,
const DomTreeNode *N,
const DomTreeNode *PN)
: currentBB(B), parentBB(P), Node(N), parentNode(PN) {}
BasicBlock *currentBB;
BasicBlock *parentBB;
const DomTreeNode *Node;
const DomTreeNode *parentNode;
};
}
const DominanceFrontier::DomSetType &
DominanceFrontier::calculate(const DominatorTree &DT,
const DomTreeNode *Node) {
BasicBlock *BB = Node->getBlock();
DomSetType *Result = NULL;
std::vector<DFCalculateWorkObject> workList;
SmallPtrSet<BasicBlock *, 32> visited;
workList.push_back(DFCalculateWorkObject(BB, NULL, Node, NULL));
do {
DFCalculateWorkObject *currentW = &workList.back();
assert (currentW && "Missing work object.");
BasicBlock *currentBB = currentW->currentBB;
BasicBlock *parentBB = currentW->parentBB;
const DomTreeNode *currentNode = currentW->Node;
const DomTreeNode *parentNode = currentW->parentNode;
assert (currentBB && "Invalid work object. Missing current Basic Block");
assert (currentNode && "Invalid work object. Missing current Node");
DomSetType &S = Frontiers[currentBB];
// Visit each block only once.
if (visited.count(currentBB) == 0) {
visited.insert(currentBB);
// Loop over CFG successors to calculate DFlocal[currentNode]
for (succ_iterator SI = succ_begin(currentBB), SE = succ_end(currentBB);
SI != SE; ++SI) {
// Does Node immediately dominate this successor?
if (DT[*SI]->getIDom() != currentNode)
S.insert(*SI);
}
}
// At this point, S is DFlocal. Now we union in DFup's of our children...
// Loop through and visit the nodes that Node immediately dominates (Node's
// children in the IDomTree)
bool visitChild = false;
for (DomTreeNode::const_iterator NI = currentNode->begin(),
NE = currentNode->end(); NI != NE; ++NI) {
DomTreeNode *IDominee = *NI;
BasicBlock *childBB = IDominee->getBlock();
if (visited.count(childBB) == 0) {
workList.push_back(DFCalculateWorkObject(childBB, currentBB,
IDominee, currentNode));
visitChild = true;
}
}
// If all children are visited or there is any child then pop this block
// from the workList.
if (!visitChild) {
if (!parentBB) {
Result = &S;
break;
}
DomSetType::const_iterator CDFI = S.begin(), CDFE = S.end();
DomSetType &parentSet = Frontiers[parentBB];
for (; CDFI != CDFE; ++CDFI) {
if (!DT.properlyDominates(parentNode, DT[*CDFI]))
parentSet.insert(*CDFI);
}
workList.pop_back();
}
} while (!workList.empty());
return *Result;
}
void DominanceFrontierBase::print(raw_ostream &OS, const Module* ) const {
for (const_iterator I = begin(), E = end(); I != E; ++I) {
OS << " DomFrontier for BB ";
if (I->first)
WriteAsOperand(OS, I->first, false);
else
OS << " <<exit node>>";
OS << " is:\t";
const std::set<BasicBlock*> &BBs = I->second;
for (std::set<BasicBlock*>::const_iterator I = BBs.begin(), E = BBs.end();
I != E; ++I) {
OS << ' ';
if (*I)
WriteAsOperand(OS, *I, false);
else
OS << "<<exit node>>";
}
OS << "\n";
}
}
void DominanceFrontierBase::dump() const {
print(dbgs());
}