forked from OSchip/llvm-project
1352 lines
48 KiB
C++
1352 lines
48 KiB
C++
//===-- Symtab.cpp --------------------------------------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include <map>
|
|
#include <set>
|
|
|
|
#include "lldb/Core/DataFileCache.h"
|
|
#include "lldb/Core/Module.h"
|
|
#include "lldb/Core/RichManglingContext.h"
|
|
#include "lldb/Core/Section.h"
|
|
#include "lldb/Symbol/ObjectFile.h"
|
|
#include "lldb/Symbol/Symbol.h"
|
|
#include "lldb/Symbol/SymbolContext.h"
|
|
#include "lldb/Symbol/Symtab.h"
|
|
#include "lldb/Target/Language.h"
|
|
#include "lldb/Utility/DataEncoder.h"
|
|
#include "lldb/Utility/Endian.h"
|
|
#include "lldb/Utility/RegularExpression.h"
|
|
#include "lldb/Utility/Stream.h"
|
|
#include "lldb/Utility/Timer.h"
|
|
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/Support/DJB.h"
|
|
|
|
using namespace lldb;
|
|
using namespace lldb_private;
|
|
|
|
Symtab::Symtab(ObjectFile *objfile)
|
|
: m_objfile(objfile), m_symbols(), m_file_addr_to_index(*this),
|
|
m_name_to_symbol_indices(), m_mutex(),
|
|
m_file_addr_to_index_computed(false), m_name_indexes_computed(false),
|
|
m_loaded_from_cache(false), m_saved_to_cache(false) {
|
|
m_name_to_symbol_indices.emplace(std::make_pair(
|
|
lldb::eFunctionNameTypeNone, UniqueCStringMap<uint32_t>()));
|
|
m_name_to_symbol_indices.emplace(std::make_pair(
|
|
lldb::eFunctionNameTypeBase, UniqueCStringMap<uint32_t>()));
|
|
m_name_to_symbol_indices.emplace(std::make_pair(
|
|
lldb::eFunctionNameTypeMethod, UniqueCStringMap<uint32_t>()));
|
|
m_name_to_symbol_indices.emplace(std::make_pair(
|
|
lldb::eFunctionNameTypeSelector, UniqueCStringMap<uint32_t>()));
|
|
}
|
|
|
|
Symtab::~Symtab() = default;
|
|
|
|
void Symtab::Reserve(size_t count) {
|
|
// Clients should grab the mutex from this symbol table and lock it manually
|
|
// when calling this function to avoid performance issues.
|
|
m_symbols.reserve(count);
|
|
}
|
|
|
|
Symbol *Symtab::Resize(size_t count) {
|
|
// Clients should grab the mutex from this symbol table and lock it manually
|
|
// when calling this function to avoid performance issues.
|
|
m_symbols.resize(count);
|
|
return m_symbols.empty() ? nullptr : &m_symbols[0];
|
|
}
|
|
|
|
uint32_t Symtab::AddSymbol(const Symbol &symbol) {
|
|
// Clients should grab the mutex from this symbol table and lock it manually
|
|
// when calling this function to avoid performance issues.
|
|
uint32_t symbol_idx = m_symbols.size();
|
|
auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
|
|
name_to_index.Clear();
|
|
m_file_addr_to_index.Clear();
|
|
m_symbols.push_back(symbol);
|
|
m_file_addr_to_index_computed = false;
|
|
m_name_indexes_computed = false;
|
|
return symbol_idx;
|
|
}
|
|
|
|
size_t Symtab::GetNumSymbols() const {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
return m_symbols.size();
|
|
}
|
|
|
|
void Symtab::SectionFileAddressesChanged() {
|
|
auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
|
|
name_to_index.Clear();
|
|
m_file_addr_to_index_computed = false;
|
|
}
|
|
|
|
void Symtab::Dump(Stream *s, Target *target, SortOrder sort_order,
|
|
Mangled::NamePreference name_preference) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
// s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
|
|
s->Indent();
|
|
const FileSpec &file_spec = m_objfile->GetFileSpec();
|
|
const char *object_name = nullptr;
|
|
if (m_objfile->GetModule())
|
|
object_name = m_objfile->GetModule()->GetObjectName().GetCString();
|
|
|
|
if (file_spec)
|
|
s->Printf("Symtab, file = %s%s%s%s, num_symbols = %" PRIu64,
|
|
file_spec.GetPath().c_str(), object_name ? "(" : "",
|
|
object_name ? object_name : "", object_name ? ")" : "",
|
|
(uint64_t)m_symbols.size());
|
|
else
|
|
s->Printf("Symtab, num_symbols = %" PRIu64 "", (uint64_t)m_symbols.size());
|
|
|
|
if (!m_symbols.empty()) {
|
|
switch (sort_order) {
|
|
case eSortOrderNone: {
|
|
s->PutCString(":\n");
|
|
DumpSymbolHeader(s);
|
|
const_iterator begin = m_symbols.begin();
|
|
const_iterator end = m_symbols.end();
|
|
for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
|
|
s->Indent();
|
|
pos->Dump(s, target, std::distance(begin, pos), name_preference);
|
|
}
|
|
}
|
|
break;
|
|
|
|
case eSortOrderByName: {
|
|
// Although we maintain a lookup by exact name map, the table isn't
|
|
// sorted by name. So we must make the ordered symbol list up ourselves.
|
|
s->PutCString(" (sorted by name):\n");
|
|
DumpSymbolHeader(s);
|
|
|
|
std::multimap<llvm::StringRef, const Symbol *> name_map;
|
|
for (const_iterator pos = m_symbols.begin(), end = m_symbols.end();
|
|
pos != end; ++pos) {
|
|
const char *name = pos->GetName().AsCString();
|
|
if (name && name[0])
|
|
name_map.insert(std::make_pair(name, &(*pos)));
|
|
}
|
|
|
|
for (const auto &name_to_symbol : name_map) {
|
|
const Symbol *symbol = name_to_symbol.second;
|
|
s->Indent();
|
|
symbol->Dump(s, target, symbol - &m_symbols[0], name_preference);
|
|
}
|
|
} break;
|
|
|
|
case eSortOrderByAddress:
|
|
s->PutCString(" (sorted by address):\n");
|
|
DumpSymbolHeader(s);
|
|
if (!m_file_addr_to_index_computed)
|
|
InitAddressIndexes();
|
|
const size_t num_entries = m_file_addr_to_index.GetSize();
|
|
for (size_t i = 0; i < num_entries; ++i) {
|
|
s->Indent();
|
|
const uint32_t symbol_idx = m_file_addr_to_index.GetEntryRef(i).data;
|
|
m_symbols[symbol_idx].Dump(s, target, symbol_idx, name_preference);
|
|
}
|
|
break;
|
|
}
|
|
} else {
|
|
s->PutCString("\n");
|
|
}
|
|
}
|
|
|
|
void Symtab::Dump(Stream *s, Target *target, std::vector<uint32_t> &indexes,
|
|
Mangled::NamePreference name_preference) const {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
const size_t num_symbols = GetNumSymbols();
|
|
// s->Printf("%.*p: ", (int)sizeof(void*) * 2, this);
|
|
s->Indent();
|
|
s->Printf("Symtab %" PRIu64 " symbol indexes (%" PRIu64 " symbols total):\n",
|
|
(uint64_t)indexes.size(), (uint64_t)m_symbols.size());
|
|
s->IndentMore();
|
|
|
|
if (!indexes.empty()) {
|
|
std::vector<uint32_t>::const_iterator pos;
|
|
std::vector<uint32_t>::const_iterator end = indexes.end();
|
|
DumpSymbolHeader(s);
|
|
for (pos = indexes.begin(); pos != end; ++pos) {
|
|
size_t idx = *pos;
|
|
if (idx < num_symbols) {
|
|
s->Indent();
|
|
m_symbols[idx].Dump(s, target, idx, name_preference);
|
|
}
|
|
}
|
|
}
|
|
s->IndentLess();
|
|
}
|
|
|
|
void Symtab::DumpSymbolHeader(Stream *s) {
|
|
s->Indent(" Debug symbol\n");
|
|
s->Indent(" |Synthetic symbol\n");
|
|
s->Indent(" ||Externally Visible\n");
|
|
s->Indent(" |||\n");
|
|
s->Indent("Index UserID DSX Type File Address/Value Load "
|
|
"Address Size Flags Name\n");
|
|
s->Indent("------- ------ --- --------------- ------------------ "
|
|
"------------------ ------------------ ---------- "
|
|
"----------------------------------\n");
|
|
}
|
|
|
|
static int CompareSymbolID(const void *key, const void *p) {
|
|
const user_id_t match_uid = *(const user_id_t *)key;
|
|
const user_id_t symbol_uid = ((const Symbol *)p)->GetID();
|
|
if (match_uid < symbol_uid)
|
|
return -1;
|
|
if (match_uid > symbol_uid)
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
Symbol *Symtab::FindSymbolByID(lldb::user_id_t symbol_uid) const {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
Symbol *symbol =
|
|
(Symbol *)::bsearch(&symbol_uid, &m_symbols[0], m_symbols.size(),
|
|
sizeof(m_symbols[0]), CompareSymbolID);
|
|
return symbol;
|
|
}
|
|
|
|
Symbol *Symtab::SymbolAtIndex(size_t idx) {
|
|
// Clients should grab the mutex from this symbol table and lock it manually
|
|
// when calling this function to avoid performance issues.
|
|
if (idx < m_symbols.size())
|
|
return &m_symbols[idx];
|
|
return nullptr;
|
|
}
|
|
|
|
const Symbol *Symtab::SymbolAtIndex(size_t idx) const {
|
|
// Clients should grab the mutex from this symbol table and lock it manually
|
|
// when calling this function to avoid performance issues.
|
|
if (idx < m_symbols.size())
|
|
return &m_symbols[idx];
|
|
return nullptr;
|
|
}
|
|
|
|
static bool lldb_skip_name(llvm::StringRef mangled,
|
|
Mangled::ManglingScheme scheme) {
|
|
switch (scheme) {
|
|
case Mangled::eManglingSchemeItanium: {
|
|
if (mangled.size() < 3 || !mangled.startswith("_Z"))
|
|
return true;
|
|
|
|
// Avoid the following types of symbols in the index.
|
|
switch (mangled[2]) {
|
|
case 'G': // guard variables
|
|
case 'T': // virtual tables, VTT structures, typeinfo structures + names
|
|
case 'Z': // named local entities (if we eventually handle
|
|
// eSymbolTypeData, we will want this back)
|
|
return true;
|
|
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Include this name in the index.
|
|
return false;
|
|
}
|
|
|
|
// No filters for this scheme yet. Include all names in indexing.
|
|
case Mangled::eManglingSchemeMSVC:
|
|
case Mangled::eManglingSchemeRustV0:
|
|
case Mangled::eManglingSchemeD:
|
|
return false;
|
|
|
|
// Don't try and demangle things we can't categorize.
|
|
case Mangled::eManglingSchemeNone:
|
|
return true;
|
|
}
|
|
llvm_unreachable("unknown scheme!");
|
|
}
|
|
|
|
void Symtab::InitNameIndexes() {
|
|
// Protected function, no need to lock mutex...
|
|
if (!m_name_indexes_computed) {
|
|
m_name_indexes_computed = true;
|
|
ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime());
|
|
LLDB_SCOPED_TIMER();
|
|
|
|
// Collect all loaded language plugins.
|
|
std::vector<Language *> languages;
|
|
Language::ForEach([&languages](Language *l) {
|
|
languages.push_back(l);
|
|
return true;
|
|
});
|
|
|
|
auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
|
|
auto &basename_to_index =
|
|
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
|
|
auto &method_to_index =
|
|
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
|
|
auto &selector_to_index =
|
|
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeSelector);
|
|
// Create the name index vector to be able to quickly search by name
|
|
const size_t num_symbols = m_symbols.size();
|
|
name_to_index.Reserve(num_symbols);
|
|
|
|
// The "const char *" in "class_contexts" and backlog::value_type::second
|
|
// must come from a ConstString::GetCString()
|
|
std::set<const char *> class_contexts;
|
|
std::vector<std::pair<NameToIndexMap::Entry, const char *>> backlog;
|
|
backlog.reserve(num_symbols / 2);
|
|
|
|
// Instantiation of the demangler is expensive, so better use a single one
|
|
// for all entries during batch processing.
|
|
RichManglingContext rmc;
|
|
for (uint32_t value = 0; value < num_symbols; ++value) {
|
|
Symbol *symbol = &m_symbols[value];
|
|
|
|
// Don't let trampolines get into the lookup by name map If we ever need
|
|
// the trampoline symbols to be searchable by name we can remove this and
|
|
// then possibly add a new bool to any of the Symtab functions that
|
|
// lookup symbols by name to indicate if they want trampolines. We also
|
|
// don't want any synthetic symbols with auto generated names in the
|
|
// name lookups.
|
|
if (symbol->IsTrampoline() || symbol->IsSyntheticWithAutoGeneratedName())
|
|
continue;
|
|
|
|
// If the symbol's name string matched a Mangled::ManglingScheme, it is
|
|
// stored in the mangled field.
|
|
Mangled &mangled = symbol->GetMangled();
|
|
if (ConstString name = mangled.GetMangledName()) {
|
|
name_to_index.Append(name, value);
|
|
|
|
if (symbol->ContainsLinkerAnnotations()) {
|
|
// If the symbol has linker annotations, also add the version without
|
|
// the annotations.
|
|
ConstString stripped = ConstString(
|
|
m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
|
|
name_to_index.Append(stripped, value);
|
|
}
|
|
|
|
const SymbolType type = symbol->GetType();
|
|
if (type == eSymbolTypeCode || type == eSymbolTypeResolver) {
|
|
if (mangled.DemangleWithRichManglingInfo(rmc, lldb_skip_name))
|
|
RegisterMangledNameEntry(value, class_contexts, backlog, rmc);
|
|
}
|
|
}
|
|
|
|
// Symbol name strings that didn't match a Mangled::ManglingScheme, are
|
|
// stored in the demangled field.
|
|
if (ConstString name = mangled.GetDemangledName()) {
|
|
name_to_index.Append(name, value);
|
|
|
|
if (symbol->ContainsLinkerAnnotations()) {
|
|
// If the symbol has linker annotations, also add the version without
|
|
// the annotations.
|
|
name = ConstString(
|
|
m_objfile->StripLinkerSymbolAnnotations(name.GetStringRef()));
|
|
name_to_index.Append(name, value);
|
|
}
|
|
|
|
// If the demangled name turns out to be an ObjC name, and is a category
|
|
// name, add the version without categories to the index too.
|
|
for (Language *lang : languages) {
|
|
for (auto variant : lang->GetMethodNameVariants(name)) {
|
|
if (variant.GetType() & lldb::eFunctionNameTypeSelector)
|
|
selector_to_index.Append(variant.GetName(), value);
|
|
else if (variant.GetType() & lldb::eFunctionNameTypeFull)
|
|
name_to_index.Append(variant.GetName(), value);
|
|
else if (variant.GetType() & lldb::eFunctionNameTypeMethod)
|
|
method_to_index.Append(variant.GetName(), value);
|
|
else if (variant.GetType() & lldb::eFunctionNameTypeBase)
|
|
basename_to_index.Append(variant.GetName(), value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
for (const auto &record : backlog) {
|
|
RegisterBacklogEntry(record.first, record.second, class_contexts);
|
|
}
|
|
|
|
name_to_index.Sort();
|
|
name_to_index.SizeToFit();
|
|
selector_to_index.Sort();
|
|
selector_to_index.SizeToFit();
|
|
basename_to_index.Sort();
|
|
basename_to_index.SizeToFit();
|
|
method_to_index.Sort();
|
|
method_to_index.SizeToFit();
|
|
}
|
|
}
|
|
|
|
void Symtab::RegisterMangledNameEntry(
|
|
uint32_t value, std::set<const char *> &class_contexts,
|
|
std::vector<std::pair<NameToIndexMap::Entry, const char *>> &backlog,
|
|
RichManglingContext &rmc) {
|
|
// Only register functions that have a base name.
|
|
rmc.ParseFunctionBaseName();
|
|
llvm::StringRef base_name = rmc.GetBufferRef();
|
|
if (base_name.empty())
|
|
return;
|
|
|
|
// The base name will be our entry's name.
|
|
NameToIndexMap::Entry entry(ConstString(base_name), value);
|
|
|
|
rmc.ParseFunctionDeclContextName();
|
|
llvm::StringRef decl_context = rmc.GetBufferRef();
|
|
|
|
// Register functions with no context.
|
|
if (decl_context.empty()) {
|
|
// This has to be a basename
|
|
auto &basename_to_index =
|
|
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
|
|
basename_to_index.Append(entry);
|
|
// If there is no context (no namespaces or class scopes that come before
|
|
// the function name) then this also could be a fullname.
|
|
auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
|
|
name_to_index.Append(entry);
|
|
return;
|
|
}
|
|
|
|
// Make sure we have a pool-string pointer and see if we already know the
|
|
// context name.
|
|
const char *decl_context_ccstr = ConstString(decl_context).GetCString();
|
|
auto it = class_contexts.find(decl_context_ccstr);
|
|
|
|
auto &method_to_index =
|
|
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
|
|
// Register constructors and destructors. They are methods and create
|
|
// declaration contexts.
|
|
if (rmc.IsCtorOrDtor()) {
|
|
method_to_index.Append(entry);
|
|
if (it == class_contexts.end())
|
|
class_contexts.insert(it, decl_context_ccstr);
|
|
return;
|
|
}
|
|
|
|
// Register regular methods with a known declaration context.
|
|
if (it != class_contexts.end()) {
|
|
method_to_index.Append(entry);
|
|
return;
|
|
}
|
|
|
|
// Regular methods in unknown declaration contexts are put to the backlog. We
|
|
// will revisit them once we processed all remaining symbols.
|
|
backlog.push_back(std::make_pair(entry, decl_context_ccstr));
|
|
}
|
|
|
|
void Symtab::RegisterBacklogEntry(
|
|
const NameToIndexMap::Entry &entry, const char *decl_context,
|
|
const std::set<const char *> &class_contexts) {
|
|
auto &method_to_index =
|
|
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeMethod);
|
|
auto it = class_contexts.find(decl_context);
|
|
if (it != class_contexts.end()) {
|
|
method_to_index.Append(entry);
|
|
} else {
|
|
// If we got here, we have something that had a context (was inside
|
|
// a namespace or class) yet we don't know the entry
|
|
method_to_index.Append(entry);
|
|
auto &basename_to_index =
|
|
GetNameToSymbolIndexMap(lldb::eFunctionNameTypeBase);
|
|
basename_to_index.Append(entry);
|
|
}
|
|
}
|
|
|
|
void Symtab::PreloadSymbols() {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
InitNameIndexes();
|
|
}
|
|
|
|
void Symtab::AppendSymbolNamesToMap(const IndexCollection &indexes,
|
|
bool add_demangled, bool add_mangled,
|
|
NameToIndexMap &name_to_index_map) const {
|
|
LLDB_SCOPED_TIMER();
|
|
if (add_demangled || add_mangled) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
// Create the name index vector to be able to quickly search by name
|
|
const size_t num_indexes = indexes.size();
|
|
for (size_t i = 0; i < num_indexes; ++i) {
|
|
uint32_t value = indexes[i];
|
|
assert(i < m_symbols.size());
|
|
const Symbol *symbol = &m_symbols[value];
|
|
|
|
const Mangled &mangled = symbol->GetMangled();
|
|
if (add_demangled) {
|
|
if (ConstString name = mangled.GetDemangledName())
|
|
name_to_index_map.Append(name, value);
|
|
}
|
|
|
|
if (add_mangled) {
|
|
if (ConstString name = mangled.GetMangledName())
|
|
name_to_index_map.Append(name, value);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
|
|
std::vector<uint32_t> &indexes,
|
|
uint32_t start_idx,
|
|
uint32_t end_index) const {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
uint32_t prev_size = indexes.size();
|
|
|
|
const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
|
|
|
|
for (uint32_t i = start_idx; i < count; ++i) {
|
|
if (symbol_type == eSymbolTypeAny || m_symbols[i].GetType() == symbol_type)
|
|
indexes.push_back(i);
|
|
}
|
|
|
|
return indexes.size() - prev_size;
|
|
}
|
|
|
|
uint32_t Symtab::AppendSymbolIndexesWithTypeAndFlagsValue(
|
|
SymbolType symbol_type, uint32_t flags_value,
|
|
std::vector<uint32_t> &indexes, uint32_t start_idx,
|
|
uint32_t end_index) const {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
uint32_t prev_size = indexes.size();
|
|
|
|
const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
|
|
|
|
for (uint32_t i = start_idx; i < count; ++i) {
|
|
if ((symbol_type == eSymbolTypeAny ||
|
|
m_symbols[i].GetType() == symbol_type) &&
|
|
m_symbols[i].GetFlags() == flags_value)
|
|
indexes.push_back(i);
|
|
}
|
|
|
|
return indexes.size() - prev_size;
|
|
}
|
|
|
|
uint32_t Symtab::AppendSymbolIndexesWithType(SymbolType symbol_type,
|
|
Debug symbol_debug_type,
|
|
Visibility symbol_visibility,
|
|
std::vector<uint32_t> &indexes,
|
|
uint32_t start_idx,
|
|
uint32_t end_index) const {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
uint32_t prev_size = indexes.size();
|
|
|
|
const uint32_t count = std::min<uint32_t>(m_symbols.size(), end_index);
|
|
|
|
for (uint32_t i = start_idx; i < count; ++i) {
|
|
if (symbol_type == eSymbolTypeAny ||
|
|
m_symbols[i].GetType() == symbol_type) {
|
|
if (CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
|
|
indexes.push_back(i);
|
|
}
|
|
}
|
|
|
|
return indexes.size() - prev_size;
|
|
}
|
|
|
|
uint32_t Symtab::GetIndexForSymbol(const Symbol *symbol) const {
|
|
if (!m_symbols.empty()) {
|
|
const Symbol *first_symbol = &m_symbols[0];
|
|
if (symbol >= first_symbol && symbol < first_symbol + m_symbols.size())
|
|
return symbol - first_symbol;
|
|
}
|
|
return UINT32_MAX;
|
|
}
|
|
|
|
struct SymbolSortInfo {
|
|
const bool sort_by_load_addr;
|
|
const Symbol *symbols;
|
|
};
|
|
|
|
namespace {
|
|
struct SymbolIndexComparator {
|
|
const std::vector<Symbol> &symbols;
|
|
std::vector<lldb::addr_t> &addr_cache;
|
|
|
|
// Getting from the symbol to the Address to the File Address involves some
|
|
// work. Since there are potentially many symbols here, and we're using this
|
|
// for sorting so we're going to be computing the address many times, cache
|
|
// that in addr_cache. The array passed in has to be the same size as the
|
|
// symbols array passed into the member variable symbols, and should be
|
|
// initialized with LLDB_INVALID_ADDRESS.
|
|
// NOTE: You have to make addr_cache externally and pass it in because
|
|
// std::stable_sort
|
|
// makes copies of the comparator it is initially passed in, and you end up
|
|
// spending huge amounts of time copying this array...
|
|
|
|
SymbolIndexComparator(const std::vector<Symbol> &s,
|
|
std::vector<lldb::addr_t> &a)
|
|
: symbols(s), addr_cache(a) {
|
|
assert(symbols.size() == addr_cache.size());
|
|
}
|
|
bool operator()(uint32_t index_a, uint32_t index_b) {
|
|
addr_t value_a = addr_cache[index_a];
|
|
if (value_a == LLDB_INVALID_ADDRESS) {
|
|
value_a = symbols[index_a].GetAddressRef().GetFileAddress();
|
|
addr_cache[index_a] = value_a;
|
|
}
|
|
|
|
addr_t value_b = addr_cache[index_b];
|
|
if (value_b == LLDB_INVALID_ADDRESS) {
|
|
value_b = symbols[index_b].GetAddressRef().GetFileAddress();
|
|
addr_cache[index_b] = value_b;
|
|
}
|
|
|
|
if (value_a == value_b) {
|
|
// The if the values are equal, use the original symbol user ID
|
|
lldb::user_id_t uid_a = symbols[index_a].GetID();
|
|
lldb::user_id_t uid_b = symbols[index_b].GetID();
|
|
if (uid_a < uid_b)
|
|
return true;
|
|
if (uid_a > uid_b)
|
|
return false;
|
|
return false;
|
|
} else if (value_a < value_b)
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
};
|
|
}
|
|
|
|
void Symtab::SortSymbolIndexesByValue(std::vector<uint32_t> &indexes,
|
|
bool remove_duplicates) const {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
LLDB_SCOPED_TIMER();
|
|
// No need to sort if we have zero or one items...
|
|
if (indexes.size() <= 1)
|
|
return;
|
|
|
|
// Sort the indexes in place using std::stable_sort.
|
|
// NOTE: The use of std::stable_sort instead of llvm::sort here is strictly
|
|
// for performance, not correctness. The indexes vector tends to be "close"
|
|
// to sorted, which the stable sort handles better.
|
|
|
|
std::vector<lldb::addr_t> addr_cache(m_symbols.size(), LLDB_INVALID_ADDRESS);
|
|
|
|
SymbolIndexComparator comparator(m_symbols, addr_cache);
|
|
std::stable_sort(indexes.begin(), indexes.end(), comparator);
|
|
|
|
// Remove any duplicates if requested
|
|
if (remove_duplicates) {
|
|
auto last = std::unique(indexes.begin(), indexes.end());
|
|
indexes.erase(last, indexes.end());
|
|
}
|
|
}
|
|
|
|
uint32_t Symtab::GetNameIndexes(ConstString symbol_name,
|
|
std::vector<uint32_t> &indexes) {
|
|
auto &name_to_index = GetNameToSymbolIndexMap(lldb::eFunctionNameTypeNone);
|
|
const uint32_t count = name_to_index.GetValues(symbol_name, indexes);
|
|
if (count)
|
|
return count;
|
|
// Synthetic symbol names are not added to the name indexes, but they start
|
|
// with a prefix and end with a the symbol UserID. This allows users to find
|
|
// these symbols without having to add them to the name indexes. These
|
|
// queries will not happen very often since the names don't mean anything, so
|
|
// performance is not paramount in this case.
|
|
llvm::StringRef name = symbol_name.GetStringRef();
|
|
// String the synthetic prefix if the name starts with it.
|
|
if (!name.consume_front(Symbol::GetSyntheticSymbolPrefix()))
|
|
return 0; // Not a synthetic symbol name
|
|
|
|
// Extract the user ID from the symbol name
|
|
unsigned long long uid = 0;
|
|
if (getAsUnsignedInteger(name, /*Radix=*/10, uid))
|
|
return 0; // Failed to extract the user ID as an integer
|
|
Symbol *symbol = FindSymbolByID(uid);
|
|
if (symbol == nullptr)
|
|
return 0;
|
|
const uint32_t symbol_idx = GetIndexForSymbol(symbol);
|
|
if (symbol_idx == UINT32_MAX)
|
|
return 0;
|
|
indexes.push_back(symbol_idx);
|
|
return 1;
|
|
}
|
|
|
|
uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
|
|
std::vector<uint32_t> &indexes) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
if (symbol_name) {
|
|
if (!m_name_indexes_computed)
|
|
InitNameIndexes();
|
|
|
|
return GetNameIndexes(symbol_name, indexes);
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint32_t Symtab::AppendSymbolIndexesWithName(ConstString symbol_name,
|
|
Debug symbol_debug_type,
|
|
Visibility symbol_visibility,
|
|
std::vector<uint32_t> &indexes) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
LLDB_SCOPED_TIMER();
|
|
if (symbol_name) {
|
|
const size_t old_size = indexes.size();
|
|
if (!m_name_indexes_computed)
|
|
InitNameIndexes();
|
|
|
|
std::vector<uint32_t> all_name_indexes;
|
|
const size_t name_match_count =
|
|
GetNameIndexes(symbol_name, all_name_indexes);
|
|
for (size_t i = 0; i < name_match_count; ++i) {
|
|
if (CheckSymbolAtIndex(all_name_indexes[i], symbol_debug_type,
|
|
symbol_visibility))
|
|
indexes.push_back(all_name_indexes[i]);
|
|
}
|
|
return indexes.size() - old_size;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
uint32_t
|
|
Symtab::AppendSymbolIndexesWithNameAndType(ConstString symbol_name,
|
|
SymbolType symbol_type,
|
|
std::vector<uint32_t> &indexes) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
if (AppendSymbolIndexesWithName(symbol_name, indexes) > 0) {
|
|
std::vector<uint32_t>::iterator pos = indexes.begin();
|
|
while (pos != indexes.end()) {
|
|
if (symbol_type == eSymbolTypeAny ||
|
|
m_symbols[*pos].GetType() == symbol_type)
|
|
++pos;
|
|
else
|
|
pos = indexes.erase(pos);
|
|
}
|
|
}
|
|
return indexes.size();
|
|
}
|
|
|
|
uint32_t Symtab::AppendSymbolIndexesWithNameAndType(
|
|
ConstString symbol_name, SymbolType symbol_type,
|
|
Debug symbol_debug_type, Visibility symbol_visibility,
|
|
std::vector<uint32_t> &indexes) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
if (AppendSymbolIndexesWithName(symbol_name, symbol_debug_type,
|
|
symbol_visibility, indexes) > 0) {
|
|
std::vector<uint32_t>::iterator pos = indexes.begin();
|
|
while (pos != indexes.end()) {
|
|
if (symbol_type == eSymbolTypeAny ||
|
|
m_symbols[*pos].GetType() == symbol_type)
|
|
++pos;
|
|
else
|
|
pos = indexes.erase(pos);
|
|
}
|
|
}
|
|
return indexes.size();
|
|
}
|
|
|
|
uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
|
|
const RegularExpression ®exp, SymbolType symbol_type,
|
|
std::vector<uint32_t> &indexes) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
uint32_t prev_size = indexes.size();
|
|
uint32_t sym_end = m_symbols.size();
|
|
|
|
for (uint32_t i = 0; i < sym_end; i++) {
|
|
if (symbol_type == eSymbolTypeAny ||
|
|
m_symbols[i].GetType() == symbol_type) {
|
|
const char *name = m_symbols[i].GetName().AsCString();
|
|
if (name) {
|
|
if (regexp.Execute(name))
|
|
indexes.push_back(i);
|
|
}
|
|
}
|
|
}
|
|
return indexes.size() - prev_size;
|
|
}
|
|
|
|
uint32_t Symtab::AppendSymbolIndexesMatchingRegExAndType(
|
|
const RegularExpression ®exp, SymbolType symbol_type,
|
|
Debug symbol_debug_type, Visibility symbol_visibility,
|
|
std::vector<uint32_t> &indexes) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
uint32_t prev_size = indexes.size();
|
|
uint32_t sym_end = m_symbols.size();
|
|
|
|
for (uint32_t i = 0; i < sym_end; i++) {
|
|
if (symbol_type == eSymbolTypeAny ||
|
|
m_symbols[i].GetType() == symbol_type) {
|
|
if (!CheckSymbolAtIndex(i, symbol_debug_type, symbol_visibility))
|
|
continue;
|
|
|
|
const char *name = m_symbols[i].GetName().AsCString();
|
|
if (name) {
|
|
if (regexp.Execute(name))
|
|
indexes.push_back(i);
|
|
}
|
|
}
|
|
}
|
|
return indexes.size() - prev_size;
|
|
}
|
|
|
|
Symbol *Symtab::FindSymbolWithType(SymbolType symbol_type,
|
|
Debug symbol_debug_type,
|
|
Visibility symbol_visibility,
|
|
uint32_t &start_idx) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
const size_t count = m_symbols.size();
|
|
for (size_t idx = start_idx; idx < count; ++idx) {
|
|
if (symbol_type == eSymbolTypeAny ||
|
|
m_symbols[idx].GetType() == symbol_type) {
|
|
if (CheckSymbolAtIndex(idx, symbol_debug_type, symbol_visibility)) {
|
|
start_idx = idx;
|
|
return &m_symbols[idx];
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void
|
|
Symtab::FindAllSymbolsWithNameAndType(ConstString name,
|
|
SymbolType symbol_type,
|
|
std::vector<uint32_t> &symbol_indexes) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
// Initialize all of the lookup by name indexes before converting NAME to a
|
|
// uniqued string NAME_STR below.
|
|
if (!m_name_indexes_computed)
|
|
InitNameIndexes();
|
|
|
|
if (name) {
|
|
// The string table did have a string that matched, but we need to check
|
|
// the symbols and match the symbol_type if any was given.
|
|
AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_indexes);
|
|
}
|
|
}
|
|
|
|
void Symtab::FindAllSymbolsWithNameAndType(
|
|
ConstString name, SymbolType symbol_type, Debug symbol_debug_type,
|
|
Visibility symbol_visibility, std::vector<uint32_t> &symbol_indexes) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
LLDB_SCOPED_TIMER();
|
|
// Initialize all of the lookup by name indexes before converting NAME to a
|
|
// uniqued string NAME_STR below.
|
|
if (!m_name_indexes_computed)
|
|
InitNameIndexes();
|
|
|
|
if (name) {
|
|
// The string table did have a string that matched, but we need to check
|
|
// the symbols and match the symbol_type if any was given.
|
|
AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
|
|
symbol_visibility, symbol_indexes);
|
|
}
|
|
}
|
|
|
|
void Symtab::FindAllSymbolsMatchingRexExAndType(
|
|
const RegularExpression ®ex, SymbolType symbol_type,
|
|
Debug symbol_debug_type, Visibility symbol_visibility,
|
|
std::vector<uint32_t> &symbol_indexes) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
AppendSymbolIndexesMatchingRegExAndType(regex, symbol_type, symbol_debug_type,
|
|
symbol_visibility, symbol_indexes);
|
|
}
|
|
|
|
Symbol *Symtab::FindFirstSymbolWithNameAndType(ConstString name,
|
|
SymbolType symbol_type,
|
|
Debug symbol_debug_type,
|
|
Visibility symbol_visibility) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
LLDB_SCOPED_TIMER();
|
|
if (!m_name_indexes_computed)
|
|
InitNameIndexes();
|
|
|
|
if (name) {
|
|
std::vector<uint32_t> matching_indexes;
|
|
// The string table did have a string that matched, but we need to check
|
|
// the symbols and match the symbol_type if any was given.
|
|
if (AppendSymbolIndexesWithNameAndType(name, symbol_type, symbol_debug_type,
|
|
symbol_visibility,
|
|
matching_indexes)) {
|
|
std::vector<uint32_t>::const_iterator pos, end = matching_indexes.end();
|
|
for (pos = matching_indexes.begin(); pos != end; ++pos) {
|
|
Symbol *symbol = SymbolAtIndex(*pos);
|
|
|
|
if (symbol->Compare(name, symbol_type))
|
|
return symbol;
|
|
}
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
typedef struct {
|
|
const Symtab *symtab;
|
|
const addr_t file_addr;
|
|
Symbol *match_symbol;
|
|
const uint32_t *match_index_ptr;
|
|
addr_t match_offset;
|
|
} SymbolSearchInfo;
|
|
|
|
// Add all the section file start address & size to the RangeVector, recusively
|
|
// adding any children sections.
|
|
static void AddSectionsToRangeMap(SectionList *sectlist,
|
|
RangeVector<addr_t, addr_t> §ion_ranges) {
|
|
const int num_sections = sectlist->GetNumSections(0);
|
|
for (int i = 0; i < num_sections; i++) {
|
|
SectionSP sect_sp = sectlist->GetSectionAtIndex(i);
|
|
if (sect_sp) {
|
|
SectionList &child_sectlist = sect_sp->GetChildren();
|
|
|
|
// If this section has children, add the children to the RangeVector.
|
|
// Else add this section to the RangeVector.
|
|
if (child_sectlist.GetNumSections(0) > 0) {
|
|
AddSectionsToRangeMap(&child_sectlist, section_ranges);
|
|
} else {
|
|
size_t size = sect_sp->GetByteSize();
|
|
if (size > 0) {
|
|
addr_t base_addr = sect_sp->GetFileAddress();
|
|
RangeVector<addr_t, addr_t>::Entry entry;
|
|
entry.SetRangeBase(base_addr);
|
|
entry.SetByteSize(size);
|
|
section_ranges.Append(entry);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void Symtab::InitAddressIndexes() {
|
|
// Protected function, no need to lock mutex...
|
|
if (!m_file_addr_to_index_computed && !m_symbols.empty()) {
|
|
m_file_addr_to_index_computed = true;
|
|
|
|
FileRangeToIndexMap::Entry entry;
|
|
const_iterator begin = m_symbols.begin();
|
|
const_iterator end = m_symbols.end();
|
|
for (const_iterator pos = m_symbols.begin(); pos != end; ++pos) {
|
|
if (pos->ValueIsAddress()) {
|
|
entry.SetRangeBase(pos->GetAddressRef().GetFileAddress());
|
|
entry.SetByteSize(pos->GetByteSize());
|
|
entry.data = std::distance(begin, pos);
|
|
m_file_addr_to_index.Append(entry);
|
|
}
|
|
}
|
|
const size_t num_entries = m_file_addr_to_index.GetSize();
|
|
if (num_entries > 0) {
|
|
m_file_addr_to_index.Sort();
|
|
|
|
// Create a RangeVector with the start & size of all the sections for
|
|
// this objfile. We'll need to check this for any FileRangeToIndexMap
|
|
// entries with an uninitialized size, which could potentially be a large
|
|
// number so reconstituting the weak pointer is busywork when it is
|
|
// invariant information.
|
|
SectionList *sectlist = m_objfile->GetSectionList();
|
|
RangeVector<addr_t, addr_t> section_ranges;
|
|
if (sectlist) {
|
|
AddSectionsToRangeMap(sectlist, section_ranges);
|
|
section_ranges.Sort();
|
|
}
|
|
|
|
// Iterate through the FileRangeToIndexMap and fill in the size for any
|
|
// entries that didn't already have a size from the Symbol (e.g. if we
|
|
// have a plain linker symbol with an address only, instead of debug info
|
|
// where we get an address and a size and a type, etc.)
|
|
for (size_t i = 0; i < num_entries; i++) {
|
|
FileRangeToIndexMap::Entry *entry =
|
|
m_file_addr_to_index.GetMutableEntryAtIndex(i);
|
|
if (entry->GetByteSize() == 0) {
|
|
addr_t curr_base_addr = entry->GetRangeBase();
|
|
const RangeVector<addr_t, addr_t>::Entry *containing_section =
|
|
section_ranges.FindEntryThatContains(curr_base_addr);
|
|
|
|
// Use the end of the section as the default max size of the symbol
|
|
addr_t sym_size = 0;
|
|
if (containing_section) {
|
|
sym_size =
|
|
containing_section->GetByteSize() -
|
|
(entry->GetRangeBase() - containing_section->GetRangeBase());
|
|
}
|
|
|
|
for (size_t j = i; j < num_entries; j++) {
|
|
FileRangeToIndexMap::Entry *next_entry =
|
|
m_file_addr_to_index.GetMutableEntryAtIndex(j);
|
|
addr_t next_base_addr = next_entry->GetRangeBase();
|
|
if (next_base_addr > curr_base_addr) {
|
|
addr_t size_to_next_symbol = next_base_addr - curr_base_addr;
|
|
|
|
// Take the difference between this symbol and the next one as
|
|
// its size, if it is less than the size of the section.
|
|
if (sym_size == 0 || size_to_next_symbol < sym_size) {
|
|
sym_size = size_to_next_symbol;
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (sym_size > 0) {
|
|
entry->SetByteSize(sym_size);
|
|
Symbol &symbol = m_symbols[entry->data];
|
|
symbol.SetByteSize(sym_size);
|
|
symbol.SetSizeIsSynthesized(true);
|
|
}
|
|
}
|
|
}
|
|
|
|
// Sort again in case the range size changes the ordering
|
|
m_file_addr_to_index.Sort();
|
|
}
|
|
}
|
|
}
|
|
|
|
void Symtab::Finalize() {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
// Calculate the size of symbols inside InitAddressIndexes.
|
|
InitAddressIndexes();
|
|
// Shrink to fit the symbols so we don't waste memory
|
|
if (m_symbols.capacity() > m_symbols.size()) {
|
|
collection new_symbols(m_symbols.begin(), m_symbols.end());
|
|
m_symbols.swap(new_symbols);
|
|
}
|
|
SaveToCache();
|
|
}
|
|
|
|
Symbol *Symtab::FindSymbolAtFileAddress(addr_t file_addr) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
if (!m_file_addr_to_index_computed)
|
|
InitAddressIndexes();
|
|
|
|
const FileRangeToIndexMap::Entry *entry =
|
|
m_file_addr_to_index.FindEntryStartsAt(file_addr);
|
|
if (entry) {
|
|
Symbol *symbol = SymbolAtIndex(entry->data);
|
|
if (symbol->GetFileAddress() == file_addr)
|
|
return symbol;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
Symbol *Symtab::FindSymbolContainingFileAddress(addr_t file_addr) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
if (!m_file_addr_to_index_computed)
|
|
InitAddressIndexes();
|
|
|
|
const FileRangeToIndexMap::Entry *entry =
|
|
m_file_addr_to_index.FindEntryThatContains(file_addr);
|
|
if (entry) {
|
|
Symbol *symbol = SymbolAtIndex(entry->data);
|
|
if (symbol->ContainsFileAddress(file_addr))
|
|
return symbol;
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
void Symtab::ForEachSymbolContainingFileAddress(
|
|
addr_t file_addr, std::function<bool(Symbol *)> const &callback) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
|
|
if (!m_file_addr_to_index_computed)
|
|
InitAddressIndexes();
|
|
|
|
std::vector<uint32_t> all_addr_indexes;
|
|
|
|
// Get all symbols with file_addr
|
|
const size_t addr_match_count =
|
|
m_file_addr_to_index.FindEntryIndexesThatContain(file_addr,
|
|
all_addr_indexes);
|
|
|
|
for (size_t i = 0; i < addr_match_count; ++i) {
|
|
Symbol *symbol = SymbolAtIndex(all_addr_indexes[i]);
|
|
if (symbol->ContainsFileAddress(file_addr)) {
|
|
if (!callback(symbol))
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
void Symtab::SymbolIndicesToSymbolContextList(
|
|
std::vector<uint32_t> &symbol_indexes, SymbolContextList &sc_list) {
|
|
// No need to protect this call using m_mutex all other method calls are
|
|
// already thread safe.
|
|
|
|
const bool merge_symbol_into_function = true;
|
|
size_t num_indices = symbol_indexes.size();
|
|
if (num_indices > 0) {
|
|
SymbolContext sc;
|
|
sc.module_sp = m_objfile->GetModule();
|
|
for (size_t i = 0; i < num_indices; i++) {
|
|
sc.symbol = SymbolAtIndex(symbol_indexes[i]);
|
|
if (sc.symbol)
|
|
sc_list.AppendIfUnique(sc, merge_symbol_into_function);
|
|
}
|
|
}
|
|
}
|
|
|
|
void Symtab::FindFunctionSymbols(ConstString name, uint32_t name_type_mask,
|
|
SymbolContextList &sc_list) {
|
|
std::vector<uint32_t> symbol_indexes;
|
|
|
|
// eFunctionNameTypeAuto should be pre-resolved by a call to
|
|
// Module::LookupInfo::LookupInfo()
|
|
assert((name_type_mask & eFunctionNameTypeAuto) == 0);
|
|
|
|
if (name_type_mask & (eFunctionNameTypeBase | eFunctionNameTypeFull)) {
|
|
std::vector<uint32_t> temp_symbol_indexes;
|
|
FindAllSymbolsWithNameAndType(name, eSymbolTypeAny, temp_symbol_indexes);
|
|
|
|
unsigned temp_symbol_indexes_size = temp_symbol_indexes.size();
|
|
if (temp_symbol_indexes_size > 0) {
|
|
std::lock_guard<std::recursive_mutex> guard(m_mutex);
|
|
for (unsigned i = 0; i < temp_symbol_indexes_size; i++) {
|
|
SymbolContext sym_ctx;
|
|
sym_ctx.symbol = SymbolAtIndex(temp_symbol_indexes[i]);
|
|
if (sym_ctx.symbol) {
|
|
switch (sym_ctx.symbol->GetType()) {
|
|
case eSymbolTypeCode:
|
|
case eSymbolTypeResolver:
|
|
case eSymbolTypeReExported:
|
|
case eSymbolTypeAbsolute:
|
|
symbol_indexes.push_back(temp_symbol_indexes[i]);
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!m_name_indexes_computed)
|
|
InitNameIndexes();
|
|
|
|
for (lldb::FunctionNameType type :
|
|
{lldb::eFunctionNameTypeBase, lldb::eFunctionNameTypeMethod,
|
|
lldb::eFunctionNameTypeSelector}) {
|
|
if (name_type_mask & type) {
|
|
auto map = GetNameToSymbolIndexMap(type);
|
|
|
|
const UniqueCStringMap<uint32_t>::Entry *match;
|
|
for (match = map.FindFirstValueForName(name); match != nullptr;
|
|
match = map.FindNextValueForName(match)) {
|
|
symbol_indexes.push_back(match->value);
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!symbol_indexes.empty()) {
|
|
llvm::sort(symbol_indexes.begin(), symbol_indexes.end());
|
|
symbol_indexes.erase(
|
|
std::unique(symbol_indexes.begin(), symbol_indexes.end()),
|
|
symbol_indexes.end());
|
|
SymbolIndicesToSymbolContextList(symbol_indexes, sc_list);
|
|
}
|
|
}
|
|
|
|
const Symbol *Symtab::GetParent(Symbol *child_symbol) const {
|
|
uint32_t child_idx = GetIndexForSymbol(child_symbol);
|
|
if (child_idx != UINT32_MAX && child_idx > 0) {
|
|
for (uint32_t idx = child_idx - 1; idx != UINT32_MAX; --idx) {
|
|
const Symbol *symbol = SymbolAtIndex(idx);
|
|
const uint32_t sibling_idx = symbol->GetSiblingIndex();
|
|
if (sibling_idx != UINT32_MAX && sibling_idx > child_idx)
|
|
return symbol;
|
|
}
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
std::string Symtab::GetCacheKey() {
|
|
std::string key;
|
|
llvm::raw_string_ostream strm(key);
|
|
// Symbol table can come from different object files for the same module. A
|
|
// module can have one object file as the main executable and might have
|
|
// another object file in a separate symbol file.
|
|
strm << m_objfile->GetModule()->GetCacheKey() << "-symtab-"
|
|
<< llvm::format_hex(m_objfile->GetCacheHash(), 10);
|
|
return strm.str();
|
|
}
|
|
|
|
void Symtab::SaveToCache() {
|
|
DataFileCache *cache = Module::GetIndexCache();
|
|
if (!cache)
|
|
return; // Caching is not enabled.
|
|
InitNameIndexes(); // Init the name indexes so we can cache them as well.
|
|
const auto byte_order = endian::InlHostByteOrder();
|
|
DataEncoder file(byte_order, /*addr_size=*/8);
|
|
// Encode will return false if the symbol table's object file doesn't have
|
|
// anything to make a signature from.
|
|
if (Encode(file))
|
|
if (cache->SetCachedData(GetCacheKey(), file.GetData()))
|
|
SetWasSavedToCache();
|
|
}
|
|
|
|
constexpr llvm::StringLiteral kIdentifierCStrMap("CMAP");
|
|
|
|
static void EncodeCStrMap(DataEncoder &encoder, ConstStringTable &strtab,
|
|
const UniqueCStringMap<uint32_t> &cstr_map) {
|
|
encoder.AppendData(kIdentifierCStrMap);
|
|
encoder.AppendU32(cstr_map.GetSize());
|
|
for (const auto &entry: cstr_map) {
|
|
// Make sure there are no empty strings.
|
|
assert((bool)entry.cstring);
|
|
encoder.AppendU32(strtab.Add(entry.cstring));
|
|
encoder.AppendU32(entry.value);
|
|
}
|
|
}
|
|
|
|
bool DecodeCStrMap(const DataExtractor &data, lldb::offset_t *offset_ptr,
|
|
const StringTableReader &strtab,
|
|
UniqueCStringMap<uint32_t> &cstr_map) {
|
|
llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4);
|
|
if (identifier != kIdentifierCStrMap)
|
|
return false;
|
|
const uint32_t count = data.GetU32(offset_ptr);
|
|
for (uint32_t i=0; i<count; ++i)
|
|
{
|
|
llvm::StringRef str(strtab.Get(data.GetU32(offset_ptr)));
|
|
uint32_t value = data.GetU32(offset_ptr);
|
|
// No empty strings in the name indexes in Symtab
|
|
if (str.empty())
|
|
return false;
|
|
cstr_map.Append(ConstString(str), value);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
constexpr llvm::StringLiteral kIdentifierSymbolTable("SYMB");
|
|
constexpr uint32_t CURRENT_CACHE_VERSION = 1;
|
|
|
|
/// The encoding format for the symbol table is as follows:
|
|
///
|
|
/// Signature signature;
|
|
/// ConstStringTable strtab;
|
|
/// Identifier four character code: 'SYMB'
|
|
/// uint32_t version;
|
|
/// uint32_t num_symbols;
|
|
/// Symbol symbols[num_symbols];
|
|
/// uint8_t num_cstr_maps;
|
|
/// UniqueCStringMap<uint32_t> cstr_maps[num_cstr_maps]
|
|
bool Symtab::Encode(DataEncoder &encoder) const {
|
|
// Name indexes must be computed before calling this function.
|
|
assert(m_name_indexes_computed);
|
|
|
|
// Encode the object file's signature
|
|
CacheSignature signature(m_objfile);
|
|
if (!signature.Encode(encoder))
|
|
return false;
|
|
ConstStringTable strtab;
|
|
|
|
// Encoder the symbol table into a separate encoder first. This allows us
|
|
// gather all of the strings we willl need in "strtab" as we will need to
|
|
// write the string table out before the symbol table.
|
|
DataEncoder symtab_encoder(encoder.GetByteOrder(),
|
|
encoder.GetAddressByteSize());
|
|
symtab_encoder.AppendData(kIdentifierSymbolTable);
|
|
// Encode the symtab data version.
|
|
symtab_encoder.AppendU32(CURRENT_CACHE_VERSION);
|
|
// Encode the number of symbols.
|
|
symtab_encoder.AppendU32(m_symbols.size());
|
|
// Encode the symbol data for all symbols.
|
|
for (const auto &symbol: m_symbols)
|
|
symbol.Encode(symtab_encoder, strtab);
|
|
|
|
// Emit a byte for how many C string maps we emit. We will fix this up after
|
|
// we emit the C string maps since we skip emitting C string maps if they are
|
|
// empty.
|
|
size_t num_cmaps_offset = symtab_encoder.GetByteSize();
|
|
uint8_t num_cmaps = 0;
|
|
symtab_encoder.AppendU8(0);
|
|
for (const auto &pair: m_name_to_symbol_indices) {
|
|
if (pair.second.IsEmpty())
|
|
continue;
|
|
++num_cmaps;
|
|
symtab_encoder.AppendU8(pair.first);
|
|
EncodeCStrMap(symtab_encoder, strtab, pair.second);
|
|
}
|
|
if (num_cmaps > 0)
|
|
symtab_encoder.PutU8(num_cmaps_offset, num_cmaps);
|
|
|
|
// Now that all strings have been gathered, we will emit the string table.
|
|
strtab.Encode(encoder);
|
|
// Followed the the symbol table data.
|
|
encoder.AppendData(symtab_encoder.GetData());
|
|
return true;
|
|
}
|
|
|
|
bool Symtab::Decode(const DataExtractor &data, lldb::offset_t *offset_ptr,
|
|
bool &signature_mismatch) {
|
|
signature_mismatch = false;
|
|
CacheSignature signature;
|
|
StringTableReader strtab;
|
|
{ // Scope for "elapsed" object below so it can measure the time parse.
|
|
ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabParseTime());
|
|
if (!signature.Decode(data, offset_ptr))
|
|
return false;
|
|
if (CacheSignature(m_objfile) != signature) {
|
|
signature_mismatch = true;
|
|
return false;
|
|
}
|
|
// We now decode the string table for all strings in the data cache file.
|
|
if (!strtab.Decode(data, offset_ptr))
|
|
return false;
|
|
|
|
// And now we can decode the symbol table with string table we just decoded.
|
|
llvm::StringRef identifier((const char *)data.GetData(offset_ptr, 4), 4);
|
|
if (identifier != kIdentifierSymbolTable)
|
|
return false;
|
|
const uint32_t version = data.GetU32(offset_ptr);
|
|
if (version != CURRENT_CACHE_VERSION)
|
|
return false;
|
|
const uint32_t num_symbols = data.GetU32(offset_ptr);
|
|
if (num_symbols == 0)
|
|
return true;
|
|
m_symbols.resize(num_symbols);
|
|
SectionList *sections = m_objfile->GetModule()->GetSectionList();
|
|
for (uint32_t i=0; i<num_symbols; ++i) {
|
|
if (!m_symbols[i].Decode(data, offset_ptr, sections, strtab))
|
|
return false;
|
|
}
|
|
}
|
|
|
|
{ // Scope for "elapsed" object below so it can measure the time to index.
|
|
ElapsedTime elapsed(m_objfile->GetModule()->GetSymtabIndexTime());
|
|
const uint8_t num_cstr_maps = data.GetU8(offset_ptr);
|
|
for (uint8_t i=0; i<num_cstr_maps; ++i) {
|
|
uint8_t type = data.GetU8(offset_ptr);
|
|
UniqueCStringMap<uint32_t> &cstr_map =
|
|
GetNameToSymbolIndexMap((lldb::FunctionNameType)type);
|
|
if (!DecodeCStrMap(data, offset_ptr, strtab, cstr_map))
|
|
return false;
|
|
}
|
|
m_name_indexes_computed = true;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool Symtab::LoadFromCache() {
|
|
DataFileCache *cache = Module::GetIndexCache();
|
|
if (!cache)
|
|
return false;
|
|
|
|
std::unique_ptr<llvm::MemoryBuffer> mem_buffer_up =
|
|
cache->GetCachedData(GetCacheKey());
|
|
if (!mem_buffer_up)
|
|
return false;
|
|
DataExtractor data(mem_buffer_up->getBufferStart(),
|
|
mem_buffer_up->getBufferSize(),
|
|
m_objfile->GetByteOrder(),
|
|
m_objfile->GetAddressByteSize());
|
|
bool signature_mismatch = false;
|
|
lldb::offset_t offset = 0;
|
|
const bool result = Decode(data, &offset, signature_mismatch);
|
|
if (signature_mismatch)
|
|
cache->RemoveCacheFile(GetCacheKey());
|
|
if (result)
|
|
SetWasLoadedFromCache();
|
|
return result;
|
|
}
|