llvm-project/llvm/lib/Target/SystemZ/AsmParser/SystemZAsmParser.cpp

780 lines
27 KiB
C++

//===-- SystemZAsmParser.cpp - Parse SystemZ assembly instructions --------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "MCTargetDesc/SystemZMCTargetDesc.h"
#include "llvm/ADT/STLExtras.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCExpr.h"
#include "llvm/MC/MCInst.h"
#include "llvm/MC/MCParser/MCParsedAsmOperand.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/MC/MCSubtargetInfo.h"
#include "llvm/MC/MCTargetAsmParser.h"
#include "llvm/Support/TargetRegistry.h"
using namespace llvm;
// Return true if Expr is in the range [MinValue, MaxValue].
static bool inRange(const MCExpr *Expr, int64_t MinValue, int64_t MaxValue) {
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
int64_t Value = CE->getValue();
return Value >= MinValue && Value <= MaxValue;
}
return false;
}
namespace {
enum RegisterKind {
GR32Reg,
GRH32Reg,
GR64Reg,
GR128Reg,
ADDR32Reg,
ADDR64Reg,
FP32Reg,
FP64Reg,
FP128Reg
};
enum MemoryKind {
BDMem,
BDXMem,
BDLMem
};
class SystemZOperand : public MCParsedAsmOperand {
public:
private:
enum OperandKind {
KindInvalid,
KindToken,
KindReg,
KindAccessReg,
KindImm,
KindMem
};
OperandKind Kind;
SMLoc StartLoc, EndLoc;
// A string of length Length, starting at Data.
struct TokenOp {
const char *Data;
unsigned Length;
};
// LLVM register Num, which has kind Kind. In some ways it might be
// easier for this class to have a register bank (general, floating-point
// or access) and a raw register number (0-15). This would postpone the
// interpretation of the operand to the add*() methods and avoid the need
// for context-dependent parsing. However, we do things the current way
// because of the virtual getReg() method, which needs to distinguish
// between (say) %r0 used as a single register and %r0 used as a pair.
// Context-dependent parsing can also give us slightly better error
// messages when invalid pairs like %r1 are used.
struct RegOp {
RegisterKind Kind;
unsigned Num;
};
// Base + Disp + Index, where Base and Index are LLVM registers or 0.
// RegKind says what type the registers have (ADDR32Reg or ADDR64Reg).
// Length is the operand length for D(L,B)-style operands, otherwise
// it is null.
struct MemOp {
unsigned Base : 8;
unsigned Index : 8;
unsigned RegKind : 8;
unsigned Unused : 8;
const MCExpr *Disp;
const MCExpr *Length;
};
union {
TokenOp Token;
RegOp Reg;
unsigned AccessReg;
const MCExpr *Imm;
MemOp Mem;
};
void addExpr(MCInst &Inst, const MCExpr *Expr) const {
// Add as immediates when possible. Null MCExpr = 0.
if (!Expr)
Inst.addOperand(MCOperand::CreateImm(0));
else if (auto *CE = dyn_cast<MCConstantExpr>(Expr))
Inst.addOperand(MCOperand::CreateImm(CE->getValue()));
else
Inst.addOperand(MCOperand::CreateExpr(Expr));
}
public:
SystemZOperand(OperandKind kind, SMLoc startLoc, SMLoc endLoc)
: Kind(kind), StartLoc(startLoc), EndLoc(endLoc) {}
// Create particular kinds of operand.
static std::unique_ptr<SystemZOperand> createInvalid(SMLoc StartLoc,
SMLoc EndLoc) {
return make_unique<SystemZOperand>(KindInvalid, StartLoc, EndLoc);
}
static std::unique_ptr<SystemZOperand> createToken(StringRef Str, SMLoc Loc) {
auto Op = make_unique<SystemZOperand>(KindToken, Loc, Loc);
Op->Token.Data = Str.data();
Op->Token.Length = Str.size();
return Op;
}
static std::unique_ptr<SystemZOperand>
createReg(RegisterKind Kind, unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = make_unique<SystemZOperand>(KindReg, StartLoc, EndLoc);
Op->Reg.Kind = Kind;
Op->Reg.Num = Num;
return Op;
}
static std::unique_ptr<SystemZOperand>
createAccessReg(unsigned Num, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = make_unique<SystemZOperand>(KindAccessReg, StartLoc, EndLoc);
Op->AccessReg = Num;
return Op;
}
static std::unique_ptr<SystemZOperand>
createImm(const MCExpr *Expr, SMLoc StartLoc, SMLoc EndLoc) {
auto Op = make_unique<SystemZOperand>(KindImm, StartLoc, EndLoc);
Op->Imm = Expr;
return Op;
}
static std::unique_ptr<SystemZOperand>
createMem(RegisterKind RegKind, unsigned Base, const MCExpr *Disp,
unsigned Index, const MCExpr *Length, SMLoc StartLoc,
SMLoc EndLoc) {
auto Op = make_unique<SystemZOperand>(KindMem, StartLoc, EndLoc);
Op->Mem.RegKind = RegKind;
Op->Mem.Base = Base;
Op->Mem.Index = Index;
Op->Mem.Disp = Disp;
Op->Mem.Length = Length;
return Op;
}
// Token operands
bool isToken() const override {
return Kind == KindToken;
}
StringRef getToken() const {
assert(Kind == KindToken && "Not a token");
return StringRef(Token.Data, Token.Length);
}
// Register operands.
bool isReg() const override {
return Kind == KindReg;
}
bool isReg(RegisterKind RegKind) const {
return Kind == KindReg && Reg.Kind == RegKind;
}
unsigned getReg() const override {
assert(Kind == KindReg && "Not a register");
return Reg.Num;
}
// Access register operands. Access registers aren't exposed to LLVM
// as registers.
bool isAccessReg() const {
return Kind == KindAccessReg;
}
// Immediate operands.
bool isImm() const override {
return Kind == KindImm;
}
bool isImm(int64_t MinValue, int64_t MaxValue) const {
return Kind == KindImm && inRange(Imm, MinValue, MaxValue);
}
const MCExpr *getImm() const {
assert(Kind == KindImm && "Not an immediate");
return Imm;
}
// Memory operands.
bool isMem() const override {
return Kind == KindMem;
}
bool isMem(RegisterKind RegKind, MemoryKind MemKind) const {
return (Kind == KindMem &&
Mem.RegKind == RegKind &&
(MemKind == BDXMem || !Mem.Index) &&
(MemKind == BDLMem) == (Mem.Length != nullptr));
}
bool isMemDisp12(RegisterKind RegKind, MemoryKind MemKind) const {
return isMem(RegKind, MemKind) && inRange(Mem.Disp, 0, 0xfff);
}
bool isMemDisp20(RegisterKind RegKind, MemoryKind MemKind) const {
return isMem(RegKind, MemKind) && inRange(Mem.Disp, -524288, 524287);
}
bool isMemDisp12Len8(RegisterKind RegKind) const {
return isMemDisp12(RegKind, BDLMem) && inRange(Mem.Length, 1, 0x100);
}
// Override MCParsedAsmOperand.
SMLoc getStartLoc() const override { return StartLoc; }
SMLoc getEndLoc() const override { return EndLoc; }
void print(raw_ostream &OS) const override;
// Used by the TableGen code to add particular types of operand
// to an instruction.
void addRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
Inst.addOperand(MCOperand::CreateReg(getReg()));
}
void addAccessRegOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
assert(Kind == KindAccessReg && "Invalid operand type");
Inst.addOperand(MCOperand::CreateImm(AccessReg));
}
void addImmOperands(MCInst &Inst, unsigned N) const {
assert(N == 1 && "Invalid number of operands");
addExpr(Inst, getImm());
}
void addBDAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 2 && "Invalid number of operands");
assert(Kind == KindMem && Mem.Index == 0 && "Invalid operand type");
Inst.addOperand(MCOperand::CreateReg(Mem.Base));
addExpr(Inst, Mem.Disp);
}
void addBDXAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(Kind == KindMem && "Invalid operand type");
Inst.addOperand(MCOperand::CreateReg(Mem.Base));
addExpr(Inst, Mem.Disp);
Inst.addOperand(MCOperand::CreateReg(Mem.Index));
}
void addBDLAddrOperands(MCInst &Inst, unsigned N) const {
assert(N == 3 && "Invalid number of operands");
assert(Kind == KindMem && "Invalid operand type");
Inst.addOperand(MCOperand::CreateReg(Mem.Base));
addExpr(Inst, Mem.Disp);
addExpr(Inst, Mem.Length);
}
// Used by the TableGen code to check for particular operand types.
bool isGR32() const { return isReg(GR32Reg); }
bool isGRH32() const { return isReg(GRH32Reg); }
bool isGRX32() const { return false; }
bool isGR64() const { return isReg(GR64Reg); }
bool isGR128() const { return isReg(GR128Reg); }
bool isADDR32() const { return isReg(ADDR32Reg); }
bool isADDR64() const { return isReg(ADDR64Reg); }
bool isADDR128() const { return false; }
bool isFP32() const { return isReg(FP32Reg); }
bool isFP64() const { return isReg(FP64Reg); }
bool isFP128() const { return isReg(FP128Reg); }
bool isBDAddr32Disp12() const { return isMemDisp12(ADDR32Reg, BDMem); }
bool isBDAddr32Disp20() const { return isMemDisp20(ADDR32Reg, BDMem); }
bool isBDAddr64Disp12() const { return isMemDisp12(ADDR64Reg, BDMem); }
bool isBDAddr64Disp20() const { return isMemDisp20(ADDR64Reg, BDMem); }
bool isBDXAddr64Disp12() const { return isMemDisp12(ADDR64Reg, BDXMem); }
bool isBDXAddr64Disp20() const { return isMemDisp20(ADDR64Reg, BDXMem); }
bool isBDLAddr64Disp12Len8() const { return isMemDisp12Len8(ADDR64Reg); }
bool isU4Imm() const { return isImm(0, 15); }
bool isU6Imm() const { return isImm(0, 63); }
bool isU8Imm() const { return isImm(0, 255); }
bool isS8Imm() const { return isImm(-128, 127); }
bool isU16Imm() const { return isImm(0, 65535); }
bool isS16Imm() const { return isImm(-32768, 32767); }
bool isU32Imm() const { return isImm(0, (1LL << 32) - 1); }
bool isS32Imm() const { return isImm(-(1LL << 31), (1LL << 31) - 1); }
};
class SystemZAsmParser : public MCTargetAsmParser {
#define GET_ASSEMBLER_HEADER
#include "SystemZGenAsmMatcher.inc"
private:
MCSubtargetInfo &STI;
MCAsmParser &Parser;
enum RegisterGroup {
RegGR,
RegFP,
RegAccess
};
struct Register {
RegisterGroup Group;
unsigned Num;
SMLoc StartLoc, EndLoc;
};
bool parseRegister(Register &Reg);
bool parseRegister(Register &Reg, RegisterGroup Group, const unsigned *Regs,
bool IsAddress = false);
OperandMatchResultTy parseRegister(OperandVector &Operands,
RegisterGroup Group, const unsigned *Regs,
RegisterKind Kind);
bool parseAddress(unsigned &Base, const MCExpr *&Disp,
unsigned &Index, const MCExpr *&Length,
const unsigned *Regs, RegisterKind RegKind);
OperandMatchResultTy parseAddress(OperandVector &Operands,
const unsigned *Regs, RegisterKind RegKind,
MemoryKind MemKind);
bool parseOperand(OperandVector &Operands, StringRef Mnemonic);
public:
SystemZAsmParser(MCSubtargetInfo &sti, MCAsmParser &parser,
const MCInstrInfo &MII,
const MCTargetOptions &Options)
: MCTargetAsmParser(), STI(sti), Parser(parser) {
MCAsmParserExtension::Initialize(Parser);
// Initialize the set of available features.
setAvailableFeatures(ComputeAvailableFeatures(STI.getFeatureBits()));
}
// Override MCTargetAsmParser.
bool ParseDirective(AsmToken DirectiveID) override;
bool ParseRegister(unsigned &RegNo, SMLoc &StartLoc, SMLoc &EndLoc) override;
bool ParseInstruction(ParseInstructionInfo &Info, StringRef Name,
SMLoc NameLoc, OperandVector &Operands) override;
bool MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands, MCStreamer &Out,
unsigned &ErrorInfo,
bool MatchingInlineAsm) override;
// Used by the TableGen code to parse particular operand types.
OperandMatchResultTy parseGR32(OperandVector &Operands) {
return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, GR32Reg);
}
OperandMatchResultTy parseGRH32(OperandVector &Operands) {
return parseRegister(Operands, RegGR, SystemZMC::GRH32Regs, GRH32Reg);
}
OperandMatchResultTy parseGRX32(OperandVector &Operands) {
llvm_unreachable("GRX32 should only be used for pseudo instructions");
}
OperandMatchResultTy parseGR64(OperandVector &Operands) {
return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, GR64Reg);
}
OperandMatchResultTy parseGR128(OperandVector &Operands) {
return parseRegister(Operands, RegGR, SystemZMC::GR128Regs, GR128Reg);
}
OperandMatchResultTy parseADDR32(OperandVector &Operands) {
return parseRegister(Operands, RegGR, SystemZMC::GR32Regs, ADDR32Reg);
}
OperandMatchResultTy parseADDR64(OperandVector &Operands) {
return parseRegister(Operands, RegGR, SystemZMC::GR64Regs, ADDR64Reg);
}
OperandMatchResultTy parseADDR128(OperandVector &Operands) {
llvm_unreachable("Shouldn't be used as an operand");
}
OperandMatchResultTy parseFP32(OperandVector &Operands) {
return parseRegister(Operands, RegFP, SystemZMC::FP32Regs, FP32Reg);
}
OperandMatchResultTy parseFP64(OperandVector &Operands) {
return parseRegister(Operands, RegFP, SystemZMC::FP64Regs, FP64Reg);
}
OperandMatchResultTy parseFP128(OperandVector &Operands) {
return parseRegister(Operands, RegFP, SystemZMC::FP128Regs, FP128Reg);
}
OperandMatchResultTy parseBDAddr32(OperandVector &Operands) {
return parseAddress(Operands, SystemZMC::GR32Regs, ADDR32Reg, BDMem);
}
OperandMatchResultTy parseBDAddr64(OperandVector &Operands) {
return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDMem);
}
OperandMatchResultTy parseBDXAddr64(OperandVector &Operands) {
return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDXMem);
}
OperandMatchResultTy parseBDLAddr64(OperandVector &Operands) {
return parseAddress(Operands, SystemZMC::GR64Regs, ADDR64Reg, BDLMem);
}
OperandMatchResultTy parseAccessReg(OperandVector &Operands);
OperandMatchResultTy parsePCRel(OperandVector &Operands, int64_t MinVal,
int64_t MaxVal);
OperandMatchResultTy parsePCRel16(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 16), (1LL << 16) - 1);
}
OperandMatchResultTy parsePCRel32(OperandVector &Operands) {
return parsePCRel(Operands, -(1LL << 32), (1LL << 32) - 1);
}
};
} // end anonymous namespace
#define GET_REGISTER_MATCHER
#define GET_SUBTARGET_FEATURE_NAME
#define GET_MATCHER_IMPLEMENTATION
#include "SystemZGenAsmMatcher.inc"
void SystemZOperand::print(raw_ostream &OS) const {
llvm_unreachable("Not implemented");
}
// Parse one register of the form %<prefix><number>.
bool SystemZAsmParser::parseRegister(Register &Reg) {
Reg.StartLoc = Parser.getTok().getLoc();
// Eat the % prefix.
if (Parser.getTok().isNot(AsmToken::Percent))
return Error(Parser.getTok().getLoc(), "register expected");
Parser.Lex();
// Expect a register name.
if (Parser.getTok().isNot(AsmToken::Identifier))
return Error(Reg.StartLoc, "invalid register");
// Check that there's a prefix.
StringRef Name = Parser.getTok().getString();
if (Name.size() < 2)
return Error(Reg.StartLoc, "invalid register");
char Prefix = Name[0];
// Treat the rest of the register name as a register number.
if (Name.substr(1).getAsInteger(10, Reg.Num))
return Error(Reg.StartLoc, "invalid register");
// Look for valid combinations of prefix and number.
if (Prefix == 'r' && Reg.Num < 16)
Reg.Group = RegGR;
else if (Prefix == 'f' && Reg.Num < 16)
Reg.Group = RegFP;
else if (Prefix == 'a' && Reg.Num < 16)
Reg.Group = RegAccess;
else
return Error(Reg.StartLoc, "invalid register");
Reg.EndLoc = Parser.getTok().getLoc();
Parser.Lex();
return false;
}
// Parse a register of group Group. If Regs is nonnull, use it to map
// the raw register number to LLVM numbering, with zero entries indicating
// an invalid register. IsAddress says whether the register appears in an
// address context.
bool SystemZAsmParser::parseRegister(Register &Reg, RegisterGroup Group,
const unsigned *Regs, bool IsAddress) {
if (parseRegister(Reg))
return true;
if (Reg.Group != Group)
return Error(Reg.StartLoc, "invalid operand for instruction");
if (Regs && Regs[Reg.Num] == 0)
return Error(Reg.StartLoc, "invalid register pair");
if (Reg.Num == 0 && IsAddress)
return Error(Reg.StartLoc, "%r0 used in an address");
if (Regs)
Reg.Num = Regs[Reg.Num];
return false;
}
// Parse a register and add it to Operands. The other arguments are as above.
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parseRegister(OperandVector &Operands, RegisterGroup Group,
const unsigned *Regs, RegisterKind Kind) {
if (Parser.getTok().isNot(AsmToken::Percent))
return MatchOperand_NoMatch;
Register Reg;
bool IsAddress = (Kind == ADDR32Reg || Kind == ADDR64Reg);
if (parseRegister(Reg, Group, Regs, IsAddress))
return MatchOperand_ParseFail;
Operands.push_back(SystemZOperand::createReg(Kind, Reg.Num,
Reg.StartLoc, Reg.EndLoc));
return MatchOperand_Success;
}
// Parse a memory operand into Base, Disp, Index and Length.
// Regs maps asm register numbers to LLVM register numbers and RegKind
// says what kind of address register we're using (ADDR32Reg or ADDR64Reg).
bool SystemZAsmParser::parseAddress(unsigned &Base, const MCExpr *&Disp,
unsigned &Index, const MCExpr *&Length,
const unsigned *Regs,
RegisterKind RegKind) {
// Parse the displacement, which must always be present.
if (getParser().parseExpression(Disp))
return true;
// Parse the optional base and index.
Index = 0;
Base = 0;
Length = nullptr;
if (getLexer().is(AsmToken::LParen)) {
Parser.Lex();
if (getLexer().is(AsmToken::Percent)) {
// Parse the first register and decide whether it's a base or an index.
Register Reg;
if (parseRegister(Reg, RegGR, Regs, RegKind))
return true;
if (getLexer().is(AsmToken::Comma))
Index = Reg.Num;
else
Base = Reg.Num;
} else {
// Parse the length.
if (getParser().parseExpression(Length))
return true;
}
// Check whether there's a second register. It's the base if so.
if (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
Register Reg;
if (parseRegister(Reg, RegGR, Regs, RegKind))
return true;
Base = Reg.Num;
}
// Consume the closing bracket.
if (getLexer().isNot(AsmToken::RParen))
return Error(Parser.getTok().getLoc(), "unexpected token in address");
Parser.Lex();
}
return false;
}
// Parse a memory operand and add it to Operands. The other arguments
// are as above.
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parseAddress(OperandVector &Operands, const unsigned *Regs,
RegisterKind RegKind, MemoryKind MemKind) {
SMLoc StartLoc = Parser.getTok().getLoc();
unsigned Base, Index;
const MCExpr *Disp;
const MCExpr *Length;
if (parseAddress(Base, Disp, Index, Length, Regs, RegKind))
return MatchOperand_ParseFail;
if (Index && MemKind != BDXMem)
{
Error(StartLoc, "invalid use of indexed addressing");
return MatchOperand_ParseFail;
}
if (Length && MemKind != BDLMem)
{
Error(StartLoc, "invalid use of length addressing");
return MatchOperand_ParseFail;
}
if (!Length && MemKind == BDLMem)
{
Error(StartLoc, "missing length in address");
return MatchOperand_ParseFail;
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createMem(RegKind, Base, Disp, Index,
Length, StartLoc, EndLoc));
return MatchOperand_Success;
}
bool SystemZAsmParser::ParseDirective(AsmToken DirectiveID) {
return true;
}
bool SystemZAsmParser::ParseRegister(unsigned &RegNo, SMLoc &StartLoc,
SMLoc &EndLoc) {
Register Reg;
if (parseRegister(Reg))
return true;
if (Reg.Group == RegGR)
RegNo = SystemZMC::GR64Regs[Reg.Num];
else if (Reg.Group == RegFP)
RegNo = SystemZMC::FP64Regs[Reg.Num];
else
// FIXME: Access registers aren't modelled as LLVM registers yet.
return Error(Reg.StartLoc, "invalid operand for instruction");
StartLoc = Reg.StartLoc;
EndLoc = Reg.EndLoc;
return false;
}
bool SystemZAsmParser::ParseInstruction(ParseInstructionInfo &Info,
StringRef Name, SMLoc NameLoc,
OperandVector &Operands) {
Operands.push_back(SystemZOperand::createToken(Name, NameLoc));
// Read the remaining operands.
if (getLexer().isNot(AsmToken::EndOfStatement)) {
// Read the first operand.
if (parseOperand(Operands, Name)) {
Parser.eatToEndOfStatement();
return true;
}
// Read any subsequent operands.
while (getLexer().is(AsmToken::Comma)) {
Parser.Lex();
if (parseOperand(Operands, Name)) {
Parser.eatToEndOfStatement();
return true;
}
}
if (getLexer().isNot(AsmToken::EndOfStatement)) {
SMLoc Loc = getLexer().getLoc();
Parser.eatToEndOfStatement();
return Error(Loc, "unexpected token in argument list");
}
}
// Consume the EndOfStatement.
Parser.Lex();
return false;
}
bool SystemZAsmParser::parseOperand(OperandVector &Operands,
StringRef Mnemonic) {
// Check if the current operand has a custom associated parser, if so, try to
// custom parse the operand, or fallback to the general approach.
OperandMatchResultTy ResTy = MatchOperandParserImpl(Operands, Mnemonic);
if (ResTy == MatchOperand_Success)
return false;
// If there wasn't a custom match, try the generic matcher below. Otherwise,
// there was a match, but an error occurred, in which case, just return that
// the operand parsing failed.
if (ResTy == MatchOperand_ParseFail)
return true;
// Check for a register. All real register operands should have used
// a context-dependent parse routine, which gives the required register
// class. The code is here to mop up other cases, like those where
// the instruction isn't recognized.
if (Parser.getTok().is(AsmToken::Percent)) {
Register Reg;
if (parseRegister(Reg))
return true;
Operands.push_back(SystemZOperand::createInvalid(Reg.StartLoc, Reg.EndLoc));
return false;
}
// The only other type of operand is an immediate or address. As above,
// real address operands should have used a context-dependent parse routine,
// so we treat any plain expression as an immediate.
SMLoc StartLoc = Parser.getTok().getLoc();
unsigned Base, Index;
const MCExpr *Expr, *Length;
if (parseAddress(Base, Expr, Index, Length, SystemZMC::GR64Regs, ADDR64Reg))
return true;
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
if (Base || Index || Length)
Operands.push_back(SystemZOperand::createInvalid(StartLoc, EndLoc));
else
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
return false;
}
bool SystemZAsmParser::MatchAndEmitInstruction(SMLoc IDLoc, unsigned &Opcode,
OperandVector &Operands,
MCStreamer &Out,
unsigned &ErrorInfo,
bool MatchingInlineAsm) {
MCInst Inst;
unsigned MatchResult;
MatchResult = MatchInstructionImpl(Operands, Inst, ErrorInfo,
MatchingInlineAsm);
switch (MatchResult) {
default: break;
case Match_Success:
Inst.setLoc(IDLoc);
Out.EmitInstruction(Inst, STI);
return false;
case Match_MissingFeature: {
assert(ErrorInfo && "Unknown missing feature!");
// Special case the error message for the very common case where only
// a single subtarget feature is missing
std::string Msg = "instruction requires:";
unsigned Mask = 1;
for (unsigned I = 0; I < sizeof(ErrorInfo) * 8 - 1; ++I) {
if (ErrorInfo & Mask) {
Msg += " ";
Msg += getSubtargetFeatureName(ErrorInfo & Mask);
}
Mask <<= 1;
}
return Error(IDLoc, Msg);
}
case Match_InvalidOperand: {
SMLoc ErrorLoc = IDLoc;
if (ErrorInfo != ~0U) {
if (ErrorInfo >= Operands.size())
return Error(IDLoc, "too few operands for instruction");
ErrorLoc = ((SystemZOperand &)*Operands[ErrorInfo]).getStartLoc();
if (ErrorLoc == SMLoc())
ErrorLoc = IDLoc;
}
return Error(ErrorLoc, "invalid operand for instruction");
}
case Match_MnemonicFail:
return Error(IDLoc, "invalid instruction");
}
llvm_unreachable("Unexpected match type");
}
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parseAccessReg(OperandVector &Operands) {
if (Parser.getTok().isNot(AsmToken::Percent))
return MatchOperand_NoMatch;
Register Reg;
if (parseRegister(Reg, RegAccess, nullptr))
return MatchOperand_ParseFail;
Operands.push_back(SystemZOperand::createAccessReg(Reg.Num,
Reg.StartLoc,
Reg.EndLoc));
return MatchOperand_Success;
}
SystemZAsmParser::OperandMatchResultTy
SystemZAsmParser::parsePCRel(OperandVector &Operands, int64_t MinVal,
int64_t MaxVal) {
MCContext &Ctx = getContext();
MCStreamer &Out = getStreamer();
const MCExpr *Expr;
SMLoc StartLoc = Parser.getTok().getLoc();
if (getParser().parseExpression(Expr))
return MatchOperand_NoMatch;
// For consistency with the GNU assembler, treat immediates as offsets
// from ".".
if (auto *CE = dyn_cast<MCConstantExpr>(Expr)) {
int64_t Value = CE->getValue();
if ((Value & 1) || Value < MinVal || Value > MaxVal) {
Error(StartLoc, "offset out of range");
return MatchOperand_ParseFail;
}
MCSymbol *Sym = Ctx.CreateTempSymbol();
Out.EmitLabel(Sym);
const MCExpr *Base = MCSymbolRefExpr::Create(Sym, MCSymbolRefExpr::VK_None,
Ctx);
Expr = Value == 0 ? Base : MCBinaryExpr::CreateAdd(Base, Expr, Ctx);
}
SMLoc EndLoc =
SMLoc::getFromPointer(Parser.getTok().getLoc().getPointer() - 1);
Operands.push_back(SystemZOperand::createImm(Expr, StartLoc, EndLoc));
return MatchOperand_Success;
}
// Force static initialization.
extern "C" void LLVMInitializeSystemZAsmParser() {
RegisterMCAsmParser<SystemZAsmParser> X(TheSystemZTarget);
}