llvm-project/llvm/lib/Target/R600/AMDGPUISelLowering.cpp

2312 lines
83 KiB
C++

//===-- AMDGPUISelLowering.cpp - AMDGPU Common DAG lowering functions -----===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
/// \brief This is the parent TargetLowering class for hardware code gen
/// targets.
//
//===----------------------------------------------------------------------===//
#include "AMDGPUISelLowering.h"
#include "AMDGPU.h"
#include "AMDGPUFrameLowering.h"
#include "AMDGPUIntrinsicInfo.h"
#include "AMDGPURegisterInfo.h"
#include "AMDGPUSubtarget.h"
#include "R600MachineFunctionInfo.h"
#include "SIMachineFunctionInfo.h"
#include "llvm/CodeGen/CallingConvLower.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineRegisterInfo.h"
#include "llvm/CodeGen/SelectionDAG.h"
#include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/IR/DiagnosticPrinter.h"
using namespace llvm;
namespace {
/// Diagnostic information for unimplemented or unsupported feature reporting.
class DiagnosticInfoUnsupported : public DiagnosticInfo {
private:
const Twine &Description;
const Function &Fn;
static int KindID;
static int getKindID() {
if (KindID == 0)
KindID = llvm::getNextAvailablePluginDiagnosticKind();
return KindID;
}
public:
DiagnosticInfoUnsupported(const Function &Fn, const Twine &Desc,
DiagnosticSeverity Severity = DS_Error)
: DiagnosticInfo(getKindID(), Severity),
Description(Desc),
Fn(Fn) { }
const Function &getFunction() const { return Fn; }
const Twine &getDescription() const { return Description; }
void print(DiagnosticPrinter &DP) const override {
DP << "unsupported " << getDescription() << " in " << Fn.getName();
}
static bool classof(const DiagnosticInfo *DI) {
return DI->getKind() == getKindID();
}
};
int DiagnosticInfoUnsupported::KindID = 0;
}
static bool allocateStack(unsigned ValNo, MVT ValVT, MVT LocVT,
CCValAssign::LocInfo LocInfo,
ISD::ArgFlagsTy ArgFlags, CCState &State) {
unsigned Offset = State.AllocateStack(ValVT.getStoreSize(),
ArgFlags.getOrigAlign());
State.addLoc(CCValAssign::getMem(ValNo, ValVT, Offset, LocVT, LocInfo));
return true;
}
#include "AMDGPUGenCallingConv.inc"
// Find a larger type to do a load / store of a vector with.
EVT AMDGPUTargetLowering::getEquivalentMemType(LLVMContext &Ctx, EVT VT) {
unsigned StoreSize = VT.getStoreSizeInBits();
if (StoreSize <= 32)
return EVT::getIntegerVT(Ctx, StoreSize);
assert(StoreSize % 32 == 0 && "Store size not a multiple of 32");
return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
}
// Type for a vector that will be loaded to.
EVT AMDGPUTargetLowering::getEquivalentLoadRegType(LLVMContext &Ctx, EVT VT) {
unsigned StoreSize = VT.getStoreSizeInBits();
if (StoreSize <= 32)
return EVT::getIntegerVT(Ctx, 32);
return EVT::getVectorVT(Ctx, MVT::i32, StoreSize / 32);
}
AMDGPUTargetLowering::AMDGPUTargetLowering(TargetMachine &TM) :
TargetLowering(TM, new TargetLoweringObjectFileELF()) {
Subtarget = &TM.getSubtarget<AMDGPUSubtarget>();
setOperationAction(ISD::Constant, MVT::i32, Legal);
setOperationAction(ISD::Constant, MVT::i64, Legal);
setOperationAction(ISD::ConstantFP, MVT::f32, Legal);
setOperationAction(ISD::ConstantFP, MVT::f64, Legal);
setOperationAction(ISD::BR_JT, MVT::Other, Expand);
setOperationAction(ISD::BRIND, MVT::Other, Expand);
// We need to custom lower some of the intrinsics
setOperationAction(ISD::INTRINSIC_WO_CHAIN, MVT::Other, Custom);
// Library functions. These default to Expand, but we have instructions
// for them.
setOperationAction(ISD::FCEIL, MVT::f32, Legal);
setOperationAction(ISD::FEXP2, MVT::f32, Legal);
setOperationAction(ISD::FPOW, MVT::f32, Legal);
setOperationAction(ISD::FLOG2, MVT::f32, Legal);
setOperationAction(ISD::FABS, MVT::f32, Legal);
setOperationAction(ISD::FFLOOR, MVT::f32, Legal);
setOperationAction(ISD::FRINT, MVT::f32, Legal);
setOperationAction(ISD::FROUND, MVT::f32, Legal);
setOperationAction(ISD::FTRUNC, MVT::f32, Legal);
// Lower floating point store/load to integer store/load to reduce the number
// of patterns in tablegen.
setOperationAction(ISD::STORE, MVT::f32, Promote);
AddPromotedToType(ISD::STORE, MVT::f32, MVT::i32);
setOperationAction(ISD::STORE, MVT::v2f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v2f32, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::i64, Promote);
AddPromotedToType(ISD::STORE, MVT::i64, MVT::v2i32);
setOperationAction(ISD::STORE, MVT::v4f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v4f32, MVT::v4i32);
setOperationAction(ISD::STORE, MVT::v8f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v8f32, MVT::v8i32);
setOperationAction(ISD::STORE, MVT::v16f32, Promote);
AddPromotedToType(ISD::STORE, MVT::v16f32, MVT::v16i32);
setOperationAction(ISD::STORE, MVT::f64, Promote);
AddPromotedToType(ISD::STORE, MVT::f64, MVT::i64);
setOperationAction(ISD::STORE, MVT::v2f64, Promote);
AddPromotedToType(ISD::STORE, MVT::v2f64, MVT::v2i64);
// Custom lowering of vector stores is required for local address space
// stores.
setOperationAction(ISD::STORE, MVT::v4i32, Custom);
// XXX: Native v2i32 local address space stores are possible, but not
// currently implemented.
setOperationAction(ISD::STORE, MVT::v2i32, Custom);
setTruncStoreAction(MVT::v2i32, MVT::v2i16, Custom);
setTruncStoreAction(MVT::v2i32, MVT::v2i8, Custom);
setTruncStoreAction(MVT::v4i32, MVT::v4i8, Custom);
// XXX: This can be change to Custom, once ExpandVectorStores can
// handle 64-bit stores.
setTruncStoreAction(MVT::v4i32, MVT::v4i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i16, Expand);
setTruncStoreAction(MVT::i64, MVT::i8, Expand);
setTruncStoreAction(MVT::i64, MVT::i1, Expand);
setTruncStoreAction(MVT::v2i64, MVT::v2i1, Expand);
setTruncStoreAction(MVT::v4i64, MVT::v4i1, Expand);
setOperationAction(ISD::LOAD, MVT::f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::f32, MVT::i32);
setOperationAction(ISD::LOAD, MVT::v2f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2f32, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::i64, Promote);
AddPromotedToType(ISD::LOAD, MVT::i64, MVT::v2i32);
setOperationAction(ISD::LOAD, MVT::v4f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v4f32, MVT::v4i32);
setOperationAction(ISD::LOAD, MVT::v8f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v8f32, MVT::v8i32);
setOperationAction(ISD::LOAD, MVT::v16f32, Promote);
AddPromotedToType(ISD::LOAD, MVT::v16f32, MVT::v16i32);
setOperationAction(ISD::LOAD, MVT::f64, Promote);
AddPromotedToType(ISD::LOAD, MVT::f64, MVT::i64);
setOperationAction(ISD::LOAD, MVT::v2f64, Promote);
AddPromotedToType(ISD::LOAD, MVT::v2f64, MVT::v2i64);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4i32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v4f32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8i32, Custom);
setOperationAction(ISD::CONCAT_VECTORS, MVT::v8f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v2i32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v4i32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8f32, Custom);
setOperationAction(ISD::EXTRACT_SUBVECTOR, MVT::v8i32, Custom);
setLoadExtAction(ISD::EXTLOAD, MVT::v2i8, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i8, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i8, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i8, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i8, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i8, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v2i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::v2i16, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v2i16, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::v4i16, Expand);
setLoadExtAction(ISD::SEXTLOAD, MVT::v4i16, Expand);
setLoadExtAction(ISD::ZEXTLOAD, MVT::v4i16, Expand);
setOperationAction(ISD::BR_CC, MVT::i1, Expand);
if (Subtarget->getGeneration() < AMDGPUSubtarget::SEA_ISLANDS) {
setOperationAction(ISD::FCEIL, MVT::f64, Custom);
setOperationAction(ISD::FTRUNC, MVT::f64, Custom);
setOperationAction(ISD::FRINT, MVT::f64, Custom);
setOperationAction(ISD::FFLOOR, MVT::f64, Custom);
}
if (!Subtarget->hasBFI()) {
// fcopysign can be done in a single instruction with BFI.
setOperationAction(ISD::FCOPYSIGN, MVT::f32, Expand);
setOperationAction(ISD::FCOPYSIGN, MVT::f64, Expand);
}
setOperationAction(ISD::FP16_TO_FP, MVT::f64, Expand);
setLoadExtAction(ISD::EXTLOAD, MVT::f16, Expand);
setTruncStoreAction(MVT::f32, MVT::f16, Expand);
setTruncStoreAction(MVT::f64, MVT::f16, Expand);
const MVT ScalarIntVTs[] = { MVT::i32, MVT::i64 };
for (MVT VT : ScalarIntVTs) {
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
// GPU does not have divrem function for signed or unsigned.
setOperationAction(ISD::SDIVREM, VT, Custom);
setOperationAction(ISD::UDIVREM, VT, Custom);
// GPU does not have [S|U]MUL_LOHI functions as a single instruction.
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
}
if (!Subtarget->hasBCNT(32))
setOperationAction(ISD::CTPOP, MVT::i32, Expand);
if (!Subtarget->hasBCNT(64))
setOperationAction(ISD::CTPOP, MVT::i64, Expand);
// The hardware supports 32-bit ROTR, but not ROTL.
setOperationAction(ISD::ROTL, MVT::i32, Expand);
setOperationAction(ISD::ROTL, MVT::i64, Expand);
setOperationAction(ISD::ROTR, MVT::i64, Expand);
setOperationAction(ISD::MUL, MVT::i64, Expand);
setOperationAction(ISD::MULHU, MVT::i64, Expand);
setOperationAction(ISD::MULHS, MVT::i64, Expand);
setOperationAction(ISD::UDIV, MVT::i32, Expand);
setOperationAction(ISD::UREM, MVT::i32, Expand);
setOperationAction(ISD::UINT_TO_FP, MVT::i64, Custom);
setOperationAction(ISD::SELECT_CC, MVT::i64, Expand);
if (!Subtarget->hasFFBH())
setOperationAction(ISD::CTLZ_ZERO_UNDEF, MVT::i32, Expand);
if (!Subtarget->hasFFBL())
setOperationAction(ISD::CTTZ_ZERO_UNDEF, MVT::i32, Expand);
static const MVT::SimpleValueType VectorIntTypes[] = {
MVT::v2i32, MVT::v4i32
};
for (MVT VT : VectorIntTypes) {
// Expand the following operations for the current type by default.
setOperationAction(ISD::ADD, VT, Expand);
setOperationAction(ISD::AND, VT, Expand);
setOperationAction(ISD::FP_TO_SINT, VT, Expand);
setOperationAction(ISD::FP_TO_UINT, VT, Expand);
setOperationAction(ISD::MUL, VT, Expand);
setOperationAction(ISD::OR, VT, Expand);
setOperationAction(ISD::SHL, VT, Expand);
setOperationAction(ISD::SRA, VT, Expand);
setOperationAction(ISD::SRL, VT, Expand);
setOperationAction(ISD::ROTL, VT, Expand);
setOperationAction(ISD::ROTR, VT, Expand);
setOperationAction(ISD::SUB, VT, Expand);
setOperationAction(ISD::SINT_TO_FP, VT, Expand);
setOperationAction(ISD::UINT_TO_FP, VT, Expand);
setOperationAction(ISD::SDIV, VT, Expand);
setOperationAction(ISD::UDIV, VT, Expand);
setOperationAction(ISD::SREM, VT, Expand);
setOperationAction(ISD::UREM, VT, Expand);
setOperationAction(ISD::SMUL_LOHI, VT, Expand);
setOperationAction(ISD::UMUL_LOHI, VT, Expand);
setOperationAction(ISD::SDIVREM, VT, Custom);
setOperationAction(ISD::UDIVREM, VT, Custom);
setOperationAction(ISD::ADDC, VT, Expand);
setOperationAction(ISD::SUBC, VT, Expand);
setOperationAction(ISD::ADDE, VT, Expand);
setOperationAction(ISD::SUBE, VT, Expand);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::XOR, VT, Expand);
setOperationAction(ISD::BSWAP, VT, Expand);
setOperationAction(ISD::CTPOP, VT, Expand);
setOperationAction(ISD::CTTZ, VT, Expand);
setOperationAction(ISD::CTTZ_ZERO_UNDEF, VT, Expand);
setOperationAction(ISD::CTLZ, VT, Expand);
setOperationAction(ISD::CTLZ_ZERO_UNDEF, VT, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
}
static const MVT::SimpleValueType FloatVectorTypes[] = {
MVT::v2f32, MVT::v4f32
};
for (MVT VT : FloatVectorTypes) {
setOperationAction(ISD::FABS, VT, Expand);
setOperationAction(ISD::FADD, VT, Expand);
setOperationAction(ISD::FCEIL, VT, Expand);
setOperationAction(ISD::FCOS, VT, Expand);
setOperationAction(ISD::FDIV, VT, Expand);
setOperationAction(ISD::FEXP2, VT, Expand);
setOperationAction(ISD::FLOG2, VT, Expand);
setOperationAction(ISD::FPOW, VT, Expand);
setOperationAction(ISD::FFLOOR, VT, Expand);
setOperationAction(ISD::FTRUNC, VT, Expand);
setOperationAction(ISD::FMUL, VT, Expand);
setOperationAction(ISD::FMA, VT, Expand);
setOperationAction(ISD::FRINT, VT, Expand);
setOperationAction(ISD::FNEARBYINT, VT, Expand);
setOperationAction(ISD::FSQRT, VT, Expand);
setOperationAction(ISD::FSIN, VT, Expand);
setOperationAction(ISD::FSUB, VT, Expand);
setOperationAction(ISD::FNEG, VT, Expand);
setOperationAction(ISD::SELECT, VT, Expand);
setOperationAction(ISD::VSELECT, VT, Expand);
setOperationAction(ISD::SELECT_CC, VT, Expand);
setOperationAction(ISD::FCOPYSIGN, VT, Expand);
setOperationAction(ISD::VECTOR_SHUFFLE, VT, Expand);
}
setOperationAction(ISD::FNEARBYINT, MVT::f32, Custom);
setOperationAction(ISD::FNEARBYINT, MVT::f64, Custom);
setTargetDAGCombine(ISD::MUL);
setTargetDAGCombine(ISD::SELECT_CC);
setTargetDAGCombine(ISD::STORE);
setSchedulingPreference(Sched::RegPressure);
setJumpIsExpensive(true);
// SI at least has hardware support for floating point exceptions, but no way
// of using or handling them is implemented. They are also optional in OpenCL
// (Section 7.3)
setHasFloatingPointExceptions(false);
setSelectIsExpensive(false);
PredictableSelectIsExpensive = false;
// There are no integer divide instructions, and these expand to a pretty
// large sequence of instructions.
setIntDivIsCheap(false);
setPow2DivIsCheap(false);
// TODO: Investigate this when 64-bit divides are implemented.
addBypassSlowDiv(64, 32);
// FIXME: Need to really handle these.
MaxStoresPerMemcpy = 4096;
MaxStoresPerMemmove = 4096;
MaxStoresPerMemset = 4096;
}
//===----------------------------------------------------------------------===//
// Target Information
//===----------------------------------------------------------------------===//
MVT AMDGPUTargetLowering::getVectorIdxTy() const {
return MVT::i32;
}
bool AMDGPUTargetLowering::isSelectSupported(SelectSupportKind SelType) const {
return true;
}
// The backend supports 32 and 64 bit floating point immediates.
// FIXME: Why are we reporting vectors of FP immediates as legal?
bool AMDGPUTargetLowering::isFPImmLegal(const APFloat &Imm, EVT VT) const {
EVT ScalarVT = VT.getScalarType();
return (ScalarVT == MVT::f32 || ScalarVT == MVT::f64);
}
// We don't want to shrink f64 / f32 constants.
bool AMDGPUTargetLowering::ShouldShrinkFPConstant(EVT VT) const {
EVT ScalarVT = VT.getScalarType();
return (ScalarVT != MVT::f32 && ScalarVT != MVT::f64);
}
bool AMDGPUTargetLowering::isLoadBitCastBeneficial(EVT LoadTy,
EVT CastTy) const {
if (LoadTy.getSizeInBits() != CastTy.getSizeInBits())
return true;
unsigned LScalarSize = LoadTy.getScalarType().getSizeInBits();
unsigned CastScalarSize = CastTy.getScalarType().getSizeInBits();
return ((LScalarSize <= CastScalarSize) ||
(CastScalarSize >= 32) ||
(LScalarSize < 32));
}
//===---------------------------------------------------------------------===//
// Target Properties
//===---------------------------------------------------------------------===//
bool AMDGPUTargetLowering::isFAbsFree(EVT VT) const {
assert(VT.isFloatingPoint());
return VT == MVT::f32;
}
bool AMDGPUTargetLowering::isFNegFree(EVT VT) const {
assert(VT.isFloatingPoint());
return VT == MVT::f32;
}
bool AMDGPUTargetLowering::isTruncateFree(EVT Source, EVT Dest) const {
// Truncate is just accessing a subregister.
return Dest.bitsLT(Source) && (Dest.getSizeInBits() % 32 == 0);
}
bool AMDGPUTargetLowering::isTruncateFree(Type *Source, Type *Dest) const {
// Truncate is just accessing a subregister.
return Dest->getPrimitiveSizeInBits() < Source->getPrimitiveSizeInBits() &&
(Dest->getPrimitiveSizeInBits() % 32 == 0);
}
bool AMDGPUTargetLowering::isZExtFree(Type *Src, Type *Dest) const {
const DataLayout *DL = getDataLayout();
unsigned SrcSize = DL->getTypeSizeInBits(Src->getScalarType());
unsigned DestSize = DL->getTypeSizeInBits(Dest->getScalarType());
return SrcSize == 32 && DestSize == 64;
}
bool AMDGPUTargetLowering::isZExtFree(EVT Src, EVT Dest) const {
// Any register load of a 64-bit value really requires 2 32-bit moves. For all
// practical purposes, the extra mov 0 to load a 64-bit is free. As used,
// this will enable reducing 64-bit operations the 32-bit, which is always
// good.
return Src == MVT::i32 && Dest == MVT::i64;
}
bool AMDGPUTargetLowering::isZExtFree(SDValue Val, EVT VT2) const {
return isZExtFree(Val.getValueType(), VT2);
}
bool AMDGPUTargetLowering::isNarrowingProfitable(EVT SrcVT, EVT DestVT) const {
// There aren't really 64-bit registers, but pairs of 32-bit ones and only a
// limited number of native 64-bit operations. Shrinking an operation to fit
// in a single 32-bit register should always be helpful. As currently used,
// this is much less general than the name suggests, and is only used in
// places trying to reduce the sizes of loads. Shrinking loads to < 32-bits is
// not profitable, and may actually be harmful.
return SrcVT.getSizeInBits() > 32 && DestVT.getSizeInBits() == 32;
}
//===---------------------------------------------------------------------===//
// TargetLowering Callbacks
//===---------------------------------------------------------------------===//
void AMDGPUTargetLowering::AnalyzeFormalArguments(CCState &State,
const SmallVectorImpl<ISD::InputArg> &Ins) const {
State.AnalyzeFormalArguments(Ins, CC_AMDGPU);
}
SDValue AMDGPUTargetLowering::LowerReturn(
SDValue Chain,
CallingConv::ID CallConv,
bool isVarArg,
const SmallVectorImpl<ISD::OutputArg> &Outs,
const SmallVectorImpl<SDValue> &OutVals,
SDLoc DL, SelectionDAG &DAG) const {
return DAG.getNode(AMDGPUISD::RET_FLAG, DL, MVT::Other, Chain);
}
//===---------------------------------------------------------------------===//
// Target specific lowering
//===---------------------------------------------------------------------===//
SDValue AMDGPUTargetLowering::LowerCall(CallLoweringInfo &CLI,
SmallVectorImpl<SDValue> &InVals) const {
SDValue Callee = CLI.Callee;
SelectionDAG &DAG = CLI.DAG;
const Function &Fn = *DAG.getMachineFunction().getFunction();
StringRef FuncName("<unknown>");
if (const ExternalSymbolSDNode *G = dyn_cast<ExternalSymbolSDNode>(Callee))
FuncName = G->getSymbol();
else if (const GlobalAddressSDNode *G = dyn_cast<GlobalAddressSDNode>(Callee))
FuncName = G->getGlobal()->getName();
DiagnosticInfoUnsupported NoCalls(Fn, "call to function " + FuncName);
DAG.getContext()->diagnose(NoCalls);
return SDValue();
}
SDValue AMDGPUTargetLowering::LowerOperation(SDValue Op,
SelectionDAG &DAG) const {
switch (Op.getOpcode()) {
default:
Op.getNode()->dump();
llvm_unreachable("Custom lowering code for this"
"instruction is not implemented yet!");
break;
case ISD::SIGN_EXTEND_INREG: return LowerSIGN_EXTEND_INREG(Op, DAG);
case ISD::CONCAT_VECTORS: return LowerCONCAT_VECTORS(Op, DAG);
case ISD::EXTRACT_SUBVECTOR: return LowerEXTRACT_SUBVECTOR(Op, DAG);
case ISD::FrameIndex: return LowerFrameIndex(Op, DAG);
case ISD::INTRINSIC_WO_CHAIN: return LowerINTRINSIC_WO_CHAIN(Op, DAG);
case ISD::UDIVREM: return LowerUDIVREM(Op, DAG);
case ISD::SDIVREM: return LowerSDIVREM(Op, DAG);
case ISD::FCEIL: return LowerFCEIL(Op, DAG);
case ISD::FTRUNC: return LowerFTRUNC(Op, DAG);
case ISD::FRINT: return LowerFRINT(Op, DAG);
case ISD::FNEARBYINT: return LowerFNEARBYINT(Op, DAG);
case ISD::FFLOOR: return LowerFFLOOR(Op, DAG);
case ISD::UINT_TO_FP: return LowerUINT_TO_FP(Op, DAG);
}
return Op;
}
void AMDGPUTargetLowering::ReplaceNodeResults(SDNode *N,
SmallVectorImpl<SDValue> &Results,
SelectionDAG &DAG) const {
switch (N->getOpcode()) {
case ISD::SIGN_EXTEND_INREG:
// Different parts of legalization seem to interpret which type of
// sign_extend_inreg is the one to check for custom lowering. The extended
// from type is what really matters, but some places check for custom
// lowering of the result type. This results in trying to use
// ReplaceNodeResults to sext_in_reg to an illegal type, so we'll just do
// nothing here and let the illegal result integer be handled normally.
return;
case ISD::LOAD: {
SDNode *Node = LowerLOAD(SDValue(N, 0), DAG).getNode();
if (!Node)
return;
Results.push_back(SDValue(Node, 0));
Results.push_back(SDValue(Node, 1));
// XXX: LLVM seems not to replace Chain Value inside CustomWidenLowerNode
// function
DAG.ReplaceAllUsesOfValueWith(SDValue(N,1), SDValue(Node, 1));
return;
}
case ISD::STORE: {
SDValue Lowered = LowerSTORE(SDValue(N, 0), DAG);
if (Lowered.getNode())
Results.push_back(Lowered);
return;
}
default:
return;
}
}
// FIXME: This implements accesses to initialized globals in the constant
// address space by copying them to private and accessing that. It does not
// properly handle illegal types or vectors. The private vector loads are not
// scalarized, and the illegal scalars hit an assertion. This technique will not
// work well with large initializers, and this should eventually be
// removed. Initialized globals should be placed into a data section that the
// runtime will load into a buffer before the kernel is executed. Uses of the
// global need to be replaced with a pointer loaded from an implicit kernel
// argument into this buffer holding the copy of the data, which will remove the
// need for any of this.
SDValue AMDGPUTargetLowering::LowerConstantInitializer(const Constant* Init,
const GlobalValue *GV,
const SDValue &InitPtr,
SDValue Chain,
SelectionDAG &DAG) const {
const DataLayout *TD = getTargetMachine().getSubtargetImpl()->getDataLayout();
SDLoc DL(InitPtr);
Type *InitTy = Init->getType();
if (const ConstantInt *CI = dyn_cast<ConstantInt>(Init)) {
EVT VT = EVT::getEVT(InitTy);
PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
return DAG.getStore(Chain, DL, DAG.getConstant(*CI, VT), InitPtr,
MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
TD->getPrefTypeAlignment(InitTy));
}
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(Init)) {
EVT VT = EVT::getEVT(CFP->getType());
PointerType *PtrTy = PointerType::get(CFP->getType(), 0);
return DAG.getStore(Chain, DL, DAG.getConstantFP(*CFP, VT), InitPtr,
MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
TD->getPrefTypeAlignment(CFP->getType()));
}
if (StructType *ST = dyn_cast<StructType>(InitTy)) {
const StructLayout *SL = TD->getStructLayout(ST);
EVT PtrVT = InitPtr.getValueType();
SmallVector<SDValue, 8> Chains;
for (unsigned I = 0, N = ST->getNumElements(); I != N; ++I) {
SDValue Offset = DAG.getConstant(SL->getElementOffset(I), PtrVT);
SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
Constant *Elt = Init->getAggregateElement(I);
Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
}
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
}
if (SequentialType *SeqTy = dyn_cast<SequentialType>(InitTy)) {
EVT PtrVT = InitPtr.getValueType();
unsigned NumElements;
if (ArrayType *AT = dyn_cast<ArrayType>(SeqTy))
NumElements = AT->getNumElements();
else if (VectorType *VT = dyn_cast<VectorType>(SeqTy))
NumElements = VT->getNumElements();
else
llvm_unreachable("Unexpected type");
unsigned EltSize = TD->getTypeAllocSize(SeqTy->getElementType());
SmallVector<SDValue, 8> Chains;
for (unsigned i = 0; i < NumElements; ++i) {
SDValue Offset = DAG.getConstant(i * EltSize, PtrVT);
SDValue Ptr = DAG.getNode(ISD::ADD, DL, PtrVT, InitPtr, Offset);
Constant *Elt = Init->getAggregateElement(i);
Chains.push_back(LowerConstantInitializer(Elt, GV, Ptr, Chain, DAG));
}
return DAG.getNode(ISD::TokenFactor, DL, MVT::Other, Chains);
}
if (isa<UndefValue>(Init)) {
EVT VT = EVT::getEVT(InitTy);
PointerType *PtrTy = PointerType::get(InitTy, AMDGPUAS::PRIVATE_ADDRESS);
return DAG.getStore(Chain, DL, DAG.getUNDEF(VT), InitPtr,
MachinePointerInfo(UndefValue::get(PtrTy)), false, false,
TD->getPrefTypeAlignment(InitTy));
}
Init->dump();
llvm_unreachable("Unhandled constant initializer");
}
SDValue AMDGPUTargetLowering::LowerGlobalAddress(AMDGPUMachineFunction* MFI,
SDValue Op,
SelectionDAG &DAG) const {
const DataLayout *TD = getTargetMachine().getSubtargetImpl()->getDataLayout();
GlobalAddressSDNode *G = cast<GlobalAddressSDNode>(Op);
const GlobalValue *GV = G->getGlobal();
switch (G->getAddressSpace()) {
default: llvm_unreachable("Global Address lowering not implemented for this "
"address space");
case AMDGPUAS::LOCAL_ADDRESS: {
// XXX: What does the value of G->getOffset() mean?
assert(G->getOffset() == 0 &&
"Do not know what to do with an non-zero offset");
unsigned Offset;
if (MFI->LocalMemoryObjects.count(GV) == 0) {
uint64_t Size = TD->getTypeAllocSize(GV->getType()->getElementType());
Offset = MFI->LDSSize;
MFI->LocalMemoryObjects[GV] = Offset;
// XXX: Account for alignment?
MFI->LDSSize += Size;
} else {
Offset = MFI->LocalMemoryObjects[GV];
}
return DAG.getConstant(Offset, getPointerTy(AMDGPUAS::LOCAL_ADDRESS));
}
case AMDGPUAS::CONSTANT_ADDRESS: {
MachineFrameInfo *FrameInfo = DAG.getMachineFunction().getFrameInfo();
Type *EltType = GV->getType()->getElementType();
unsigned Size = TD->getTypeAllocSize(EltType);
unsigned Alignment = TD->getPrefTypeAlignment(EltType);
MVT PrivPtrVT = getPointerTy(AMDGPUAS::PRIVATE_ADDRESS);
MVT ConstPtrVT = getPointerTy(AMDGPUAS::CONSTANT_ADDRESS);
int FI = FrameInfo->CreateStackObject(Size, Alignment, false);
SDValue InitPtr = DAG.getFrameIndex(FI, PrivPtrVT);
const GlobalVariable *Var = cast<GlobalVariable>(GV);
if (!Var->hasInitializer()) {
// This has no use, but bugpoint will hit it.
return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
}
const Constant *Init = Var->getInitializer();
SmallVector<SDNode*, 8> WorkList;
for (SDNode::use_iterator I = DAG.getEntryNode()->use_begin(),
E = DAG.getEntryNode()->use_end(); I != E; ++I) {
if (I->getOpcode() != AMDGPUISD::REGISTER_LOAD && I->getOpcode() != ISD::LOAD)
continue;
WorkList.push_back(*I);
}
SDValue Chain = LowerConstantInitializer(Init, GV, InitPtr, DAG.getEntryNode(), DAG);
for (SmallVector<SDNode*, 8>::iterator I = WorkList.begin(),
E = WorkList.end(); I != E; ++I) {
SmallVector<SDValue, 8> Ops;
Ops.push_back(Chain);
for (unsigned i = 1; i < (*I)->getNumOperands(); ++i) {
Ops.push_back((*I)->getOperand(i));
}
DAG.UpdateNodeOperands(*I, Ops);
}
return DAG.getZExtOrTrunc(InitPtr, SDLoc(Op), ConstPtrVT);
}
}
}
SDValue AMDGPUTargetLowering::LowerCONCAT_VECTORS(SDValue Op,
SelectionDAG &DAG) const {
SmallVector<SDValue, 8> Args;
SDValue A = Op.getOperand(0);
SDValue B = Op.getOperand(1);
DAG.ExtractVectorElements(A, Args);
DAG.ExtractVectorElements(B, Args);
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
}
SDValue AMDGPUTargetLowering::LowerEXTRACT_SUBVECTOR(SDValue Op,
SelectionDAG &DAG) const {
SmallVector<SDValue, 8> Args;
unsigned Start = cast<ConstantSDNode>(Op.getOperand(1))->getZExtValue();
EVT VT = Op.getValueType();
DAG.ExtractVectorElements(Op.getOperand(0), Args, Start,
VT.getVectorNumElements());
return DAG.getNode(ISD::BUILD_VECTOR, SDLoc(Op), Op.getValueType(), Args);
}
SDValue AMDGPUTargetLowering::LowerFrameIndex(SDValue Op,
SelectionDAG &DAG) const {
MachineFunction &MF = DAG.getMachineFunction();
const AMDGPUFrameLowering *TFL = static_cast<const AMDGPUFrameLowering *>(
getTargetMachine().getSubtargetImpl()->getFrameLowering());
FrameIndexSDNode *FIN = cast<FrameIndexSDNode>(Op);
unsigned FrameIndex = FIN->getIndex();
unsigned Offset = TFL->getFrameIndexOffset(MF, FrameIndex);
return DAG.getConstant(Offset * 4 * TFL->getStackWidth(MF),
Op.getValueType());
}
SDValue AMDGPUTargetLowering::LowerINTRINSIC_WO_CHAIN(SDValue Op,
SelectionDAG &DAG) const {
unsigned IntrinsicID = cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue();
SDLoc DL(Op);
EVT VT = Op.getValueType();
switch (IntrinsicID) {
default: return Op;
case AMDGPUIntrinsic::AMDGPU_abs:
case AMDGPUIntrinsic::AMDIL_abs: // Legacy name.
return LowerIntrinsicIABS(Op, DAG);
case AMDGPUIntrinsic::AMDGPU_lrp:
return LowerIntrinsicLRP(Op, DAG);
case AMDGPUIntrinsic::AMDGPU_fract:
case AMDGPUIntrinsic::AMDIL_fraction: // Legacy name.
return DAG.getNode(AMDGPUISD::FRACT, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_clamp:
case AMDGPUIntrinsic::AMDIL_clamp: // Legacy name.
return DAG.getNode(AMDGPUISD::CLAMP, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::AMDGPU_div_scale: {
// 3rd parameter required to be a constant.
const ConstantSDNode *Param = dyn_cast<ConstantSDNode>(Op.getOperand(3));
if (!Param)
return DAG.getUNDEF(VT);
// Translate to the operands expected by the machine instruction. The
// first parameter must be the same as the first instruction.
SDValue Numerator = Op.getOperand(1);
SDValue Denominator = Op.getOperand(2);
SDValue Src0 = Param->isAllOnesValue() ? Numerator : Denominator;
return DAG.getNode(AMDGPUISD::DIV_SCALE, DL, Op->getVTList(), Src0,
Denominator, Numerator);
}
case Intrinsic::AMDGPU_div_fmas:
return DAG.getNode(AMDGPUISD::DIV_FMAS, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::AMDGPU_div_fixup:
return DAG.getNode(AMDGPUISD::DIV_FIXUP, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case Intrinsic::AMDGPU_trig_preop:
return DAG.getNode(AMDGPUISD::TRIG_PREOP, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case Intrinsic::AMDGPU_rcp:
return DAG.getNode(AMDGPUISD::RCP, DL, VT, Op.getOperand(1));
case Intrinsic::AMDGPU_rsq:
return DAG.getNode(AMDGPUISD::RSQ, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_legacy_rsq:
return DAG.getNode(AMDGPUISD::RSQ_LEGACY, DL, VT, Op.getOperand(1));
case Intrinsic::AMDGPU_rsq_clamped:
return DAG.getNode(AMDGPUISD::RSQ_CLAMPED, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_imax:
return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Op.getOperand(1),
Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_umax:
return DAG.getNode(AMDGPUISD::UMAX, DL, VT, Op.getOperand(1),
Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_imin:
return DAG.getNode(AMDGPUISD::SMIN, DL, VT, Op.getOperand(1),
Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_umin:
return DAG.getNode(AMDGPUISD::UMIN, DL, VT, Op.getOperand(1),
Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_umul24:
return DAG.getNode(AMDGPUISD::MUL_U24, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_imul24:
return DAG.getNode(AMDGPUISD::MUL_I24, DL, VT,
Op.getOperand(1), Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_umad24:
return DAG.getNode(AMDGPUISD::MAD_U24, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case AMDGPUIntrinsic::AMDGPU_imad24:
return DAG.getNode(AMDGPUISD::MAD_I24, DL, VT,
Op.getOperand(1), Op.getOperand(2), Op.getOperand(3));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte0:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE0, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte1:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE1, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte2:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE2, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_cvt_f32_ubyte3:
return DAG.getNode(AMDGPUISD::CVT_F32_UBYTE3, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_bfe_i32:
return DAG.getNode(AMDGPUISD::BFE_I32, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
case AMDGPUIntrinsic::AMDGPU_bfe_u32:
return DAG.getNode(AMDGPUISD::BFE_U32, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
case AMDGPUIntrinsic::AMDGPU_bfi:
return DAG.getNode(AMDGPUISD::BFI, DL, VT,
Op.getOperand(1),
Op.getOperand(2),
Op.getOperand(3));
case AMDGPUIntrinsic::AMDGPU_bfm:
return DAG.getNode(AMDGPUISD::BFM, DL, VT,
Op.getOperand(1),
Op.getOperand(2));
case AMDGPUIntrinsic::AMDGPU_brev:
return DAG.getNode(AMDGPUISD::BREV, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDIL_exp: // Legacy name.
return DAG.getNode(ISD::FEXP2, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDIL_round_nearest: // Legacy name.
return DAG.getNode(ISD::FRINT, DL, VT, Op.getOperand(1));
case AMDGPUIntrinsic::AMDGPU_trunc: // Legacy name.
return DAG.getNode(ISD::FTRUNC, DL, VT, Op.getOperand(1));
}
}
///IABS(a) = SMAX(sub(0, a), a)
SDValue AMDGPUTargetLowering::LowerIntrinsicIABS(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Neg = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
Op.getOperand(1));
return DAG.getNode(AMDGPUISD::SMAX, DL, VT, Neg, Op.getOperand(1));
}
/// Linear Interpolation
/// LRP(a, b, c) = muladd(a, b, (1 - a) * c)
SDValue AMDGPUTargetLowering::LowerIntrinsicLRP(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue OneSubA = DAG.getNode(ISD::FSUB, DL, VT,
DAG.getConstantFP(1.0f, MVT::f32),
Op.getOperand(1));
SDValue OneSubAC = DAG.getNode(ISD::FMUL, DL, VT, OneSubA,
Op.getOperand(3));
return DAG.getNode(ISD::FADD, DL, VT,
DAG.getNode(ISD::FMUL, DL, VT, Op.getOperand(1), Op.getOperand(2)),
OneSubAC);
}
/// \brief Generate Min/Max node
SDValue AMDGPUTargetLowering::CombineMinMax(SDNode *N,
SelectionDAG &DAG) const {
SDLoc DL(N);
EVT VT = N->getValueType(0);
SDValue LHS = N->getOperand(0);
SDValue RHS = N->getOperand(1);
SDValue True = N->getOperand(2);
SDValue False = N->getOperand(3);
SDValue CC = N->getOperand(4);
if (VT != MVT::f32 ||
!((LHS == True && RHS == False) || (LHS == False && RHS == True))) {
return SDValue();
}
ISD::CondCode CCOpcode = cast<CondCodeSDNode>(CC)->get();
switch (CCOpcode) {
case ISD::SETOEQ:
case ISD::SETONE:
case ISD::SETUNE:
case ISD::SETNE:
case ISD::SETUEQ:
case ISD::SETEQ:
case ISD::SETFALSE:
case ISD::SETFALSE2:
case ISD::SETTRUE:
case ISD::SETTRUE2:
case ISD::SETUO:
case ISD::SETO:
llvm_unreachable("Operation should already be optimised!");
case ISD::SETULE:
case ISD::SETULT:
case ISD::SETOLE:
case ISD::SETOLT:
case ISD::SETLE:
case ISD::SETLT: {
unsigned Opc = (LHS == True) ? AMDGPUISD::FMIN : AMDGPUISD::FMAX;
return DAG.getNode(Opc, DL, VT, LHS, RHS);
}
case ISD::SETGT:
case ISD::SETGE:
case ISD::SETUGE:
case ISD::SETOGE:
case ISD::SETUGT:
case ISD::SETOGT: {
unsigned Opc = (LHS == True) ? AMDGPUISD::FMAX : AMDGPUISD::FMIN;
return DAG.getNode(Opc, DL, VT, LHS, RHS);
}
case ISD::SETCC_INVALID:
llvm_unreachable("Invalid setcc condcode!");
}
return SDValue();
}
SDValue AMDGPUTargetLowering::ScalarizeVectorLoad(const SDValue Op,
SelectionDAG &DAG) const {
LoadSDNode *Load = cast<LoadSDNode>(Op);
EVT MemVT = Load->getMemoryVT();
EVT MemEltVT = MemVT.getVectorElementType();
EVT LoadVT = Op.getValueType();
EVT EltVT = LoadVT.getVectorElementType();
EVT PtrVT = Load->getBasePtr().getValueType();
unsigned NumElts = Load->getMemoryVT().getVectorNumElements();
SmallVector<SDValue, 8> Loads;
SmallVector<SDValue, 8> Chains;
SDLoc SL(Op);
unsigned MemEltSize = MemEltVT.getStoreSize();
MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
for (unsigned i = 0; i < NumElts; ++i) {
SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Load->getBasePtr(),
DAG.getConstant(i * MemEltSize, PtrVT));
SDValue NewLoad
= DAG.getExtLoad(Load->getExtensionType(), SL, EltVT,
Load->getChain(), Ptr,
SrcValue.getWithOffset(i * MemEltSize),
MemEltVT, Load->isVolatile(), Load->isNonTemporal(),
Load->isInvariant(), Load->getAlignment());
Loads.push_back(NewLoad.getValue(0));
Chains.push_back(NewLoad.getValue(1));
}
SDValue Ops[] = {
DAG.getNode(ISD::BUILD_VECTOR, SL, LoadVT, Loads),
DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains)
};
return DAG.getMergeValues(Ops, SL);
}
SDValue AMDGPUTargetLowering::SplitVectorLoad(const SDValue Op,
SelectionDAG &DAG) const {
EVT VT = Op.getValueType();
// If this is a 2 element vector, we really want to scalarize and not create
// weird 1 element vectors.
if (VT.getVectorNumElements() == 2)
return ScalarizeVectorLoad(Op, DAG);
LoadSDNode *Load = cast<LoadSDNode>(Op);
SDValue BasePtr = Load->getBasePtr();
EVT PtrVT = BasePtr.getValueType();
EVT MemVT = Load->getMemoryVT();
SDLoc SL(Op);
MachinePointerInfo SrcValue(Load->getMemOperand()->getValue());
EVT LoVT, HiVT;
EVT LoMemVT, HiMemVT;
SDValue Lo, Hi;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
std::tie(Lo, Hi) = DAG.SplitVector(Op, SL, LoVT, HiVT);
SDValue LoLoad
= DAG.getExtLoad(Load->getExtensionType(), SL, LoVT,
Load->getChain(), BasePtr,
SrcValue,
LoMemVT, Load->isVolatile(), Load->isNonTemporal(),
Load->isInvariant(), Load->getAlignment());
SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
SDValue HiLoad
= DAG.getExtLoad(Load->getExtensionType(), SL, HiVT,
Load->getChain(), HiPtr,
SrcValue.getWithOffset(LoMemVT.getStoreSize()),
HiMemVT, Load->isVolatile(), Load->isNonTemporal(),
Load->isInvariant(), Load->getAlignment());
SDValue Ops[] = {
DAG.getNode(ISD::CONCAT_VECTORS, SL, VT, LoLoad, HiLoad),
DAG.getNode(ISD::TokenFactor, SL, MVT::Other,
LoLoad.getValue(1), HiLoad.getValue(1))
};
return DAG.getMergeValues(Ops, SL);
}
SDValue AMDGPUTargetLowering::MergeVectorStore(const SDValue &Op,
SelectionDAG &DAG) const {
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT MemVT = Store->getMemoryVT();
unsigned MemBits = MemVT.getSizeInBits();
// Byte stores are really expensive, so if possible, try to pack 32-bit vector
// truncating store into an i32 store.
// XXX: We could also handle optimize other vector bitwidths.
if (!MemVT.isVector() || MemBits > 32) {
return SDValue();
}
SDLoc DL(Op);
SDValue Value = Store->getValue();
EVT VT = Value.getValueType();
EVT ElemVT = VT.getVectorElementType();
SDValue Ptr = Store->getBasePtr();
EVT MemEltVT = MemVT.getVectorElementType();
unsigned MemEltBits = MemEltVT.getSizeInBits();
unsigned MemNumElements = MemVT.getVectorNumElements();
unsigned PackedSize = MemVT.getStoreSizeInBits();
SDValue Mask = DAG.getConstant((1 << MemEltBits) - 1, MVT::i32);
assert(Value.getValueType().getScalarSizeInBits() >= 32);
SDValue PackedValue;
for (unsigned i = 0; i < MemNumElements; ++i) {
SDValue Elt = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, DL, ElemVT, Value,
DAG.getConstant(i, MVT::i32));
Elt = DAG.getZExtOrTrunc(Elt, DL, MVT::i32);
Elt = DAG.getNode(ISD::AND, DL, MVT::i32, Elt, Mask); // getZeroExtendInReg
SDValue Shift = DAG.getConstant(MemEltBits * i, MVT::i32);
Elt = DAG.getNode(ISD::SHL, DL, MVT::i32, Elt, Shift);
if (i == 0) {
PackedValue = Elt;
} else {
PackedValue = DAG.getNode(ISD::OR, DL, MVT::i32, PackedValue, Elt);
}
}
if (PackedSize < 32) {
EVT PackedVT = EVT::getIntegerVT(*DAG.getContext(), PackedSize);
return DAG.getTruncStore(Store->getChain(), DL, PackedValue, Ptr,
Store->getMemOperand()->getPointerInfo(),
PackedVT,
Store->isNonTemporal(), Store->isVolatile(),
Store->getAlignment());
}
return DAG.getStore(Store->getChain(), DL, PackedValue, Ptr,
Store->getMemOperand()->getPointerInfo(),
Store->isVolatile(), Store->isNonTemporal(),
Store->getAlignment());
}
SDValue AMDGPUTargetLowering::ScalarizeVectorStore(SDValue Op,
SelectionDAG &DAG) const {
StoreSDNode *Store = cast<StoreSDNode>(Op);
EVT MemEltVT = Store->getMemoryVT().getVectorElementType();
EVT EltVT = Store->getValue().getValueType().getVectorElementType();
EVT PtrVT = Store->getBasePtr().getValueType();
unsigned NumElts = Store->getMemoryVT().getVectorNumElements();
SDLoc SL(Op);
SmallVector<SDValue, 8> Chains;
unsigned EltSize = MemEltVT.getStoreSize();
MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
for (unsigned i = 0, e = NumElts; i != e; ++i) {
SDValue Val = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, EltVT,
Store->getValue(),
DAG.getConstant(i, MVT::i32));
SDValue Offset = DAG.getConstant(i * MemEltVT.getStoreSize(), PtrVT);
SDValue Ptr = DAG.getNode(ISD::ADD, SL, PtrVT, Store->getBasePtr(), Offset);
SDValue NewStore =
DAG.getTruncStore(Store->getChain(), SL, Val, Ptr,
SrcValue.getWithOffset(i * EltSize),
MemEltVT, Store->isNonTemporal(), Store->isVolatile(),
Store->getAlignment());
Chains.push_back(NewStore);
}
return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, Chains);
}
SDValue AMDGPUTargetLowering::SplitVectorStore(SDValue Op,
SelectionDAG &DAG) const {
StoreSDNode *Store = cast<StoreSDNode>(Op);
SDValue Val = Store->getValue();
EVT VT = Val.getValueType();
// If this is a 2 element vector, we really want to scalarize and not create
// weird 1 element vectors.
if (VT.getVectorNumElements() == 2)
return ScalarizeVectorStore(Op, DAG);
EVT MemVT = Store->getMemoryVT();
SDValue Chain = Store->getChain();
SDValue BasePtr = Store->getBasePtr();
SDLoc SL(Op);
EVT LoVT, HiVT;
EVT LoMemVT, HiMemVT;
SDValue Lo, Hi;
std::tie(LoVT, HiVT) = DAG.GetSplitDestVTs(VT);
std::tie(LoMemVT, HiMemVT) = DAG.GetSplitDestVTs(MemVT);
std::tie(Lo, Hi) = DAG.SplitVector(Val, SL, LoVT, HiVT);
EVT PtrVT = BasePtr.getValueType();
SDValue HiPtr = DAG.getNode(ISD::ADD, SL, PtrVT, BasePtr,
DAG.getConstant(LoMemVT.getStoreSize(), PtrVT));
MachinePointerInfo SrcValue(Store->getMemOperand()->getValue());
SDValue LoStore
= DAG.getTruncStore(Chain, SL, Lo,
BasePtr,
SrcValue,
LoMemVT,
Store->isNonTemporal(),
Store->isVolatile(),
Store->getAlignment());
SDValue HiStore
= DAG.getTruncStore(Chain, SL, Hi,
HiPtr,
SrcValue.getWithOffset(LoMemVT.getStoreSize()),
HiMemVT,
Store->isNonTemporal(),
Store->isVolatile(),
Store->getAlignment());
return DAG.getNode(ISD::TokenFactor, SL, MVT::Other, LoStore, HiStore);
}
SDValue AMDGPUTargetLowering::LowerLOAD(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
LoadSDNode *Load = cast<LoadSDNode>(Op);
ISD::LoadExtType ExtType = Load->getExtensionType();
EVT VT = Op.getValueType();
EVT MemVT = Load->getMemoryVT();
if (ExtType != ISD::NON_EXTLOAD && !VT.isVector() && VT.getSizeInBits() > 32) {
// We can do the extload to 32-bits, and then need to separately extend to
// 64-bits.
SDValue ExtLoad32 = DAG.getExtLoad(ExtType, DL, MVT::i32,
Load->getChain(),
Load->getBasePtr(),
MemVT,
Load->getMemOperand());
SDValue Ops[] = {
DAG.getNode(ISD::getExtForLoadExtType(ExtType), DL, VT, ExtLoad32),
ExtLoad32.getValue(1)
};
return DAG.getMergeValues(Ops, DL);
}
if (ExtType == ISD::NON_EXTLOAD && VT.getSizeInBits() < 32) {
assert(VT == MVT::i1 && "Only i1 non-extloads expected");
// FIXME: Copied from PPC
// First, load into 32 bits, then truncate to 1 bit.
SDValue Chain = Load->getChain();
SDValue BasePtr = Load->getBasePtr();
MachineMemOperand *MMO = Load->getMemOperand();
SDValue NewLD = DAG.getExtLoad(ISD::EXTLOAD, DL, MVT::i32, Chain,
BasePtr, MVT::i8, MMO);
SDValue Ops[] = {
DAG.getNode(ISD::TRUNCATE, DL, VT, NewLD),
NewLD.getValue(1)
};
return DAG.getMergeValues(Ops, DL);
}
if (Subtarget->getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS ||
Load->getAddressSpace() != AMDGPUAS::PRIVATE_ADDRESS ||
ExtType == ISD::NON_EXTLOAD || Load->getMemoryVT().bitsGE(MVT::i32))
return SDValue();
SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, Load->getBasePtr(),
DAG.getConstant(2, MVT::i32));
SDValue Ret = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, Op.getValueType(),
Load->getChain(), Ptr,
DAG.getTargetConstant(0, MVT::i32),
Op.getOperand(2));
SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32,
Load->getBasePtr(),
DAG.getConstant(0x3, MVT::i32));
SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
DAG.getConstant(3, MVT::i32));
Ret = DAG.getNode(ISD::SRL, DL, MVT::i32, Ret, ShiftAmt);
EVT MemEltVT = MemVT.getScalarType();
if (ExtType == ISD::SEXTLOAD) {
SDValue MemEltVTNode = DAG.getValueType(MemEltVT);
SDValue Ops[] = {
DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, Ret, MemEltVTNode),
Load->getChain()
};
return DAG.getMergeValues(Ops, DL);
}
SDValue Ops[] = {
DAG.getZeroExtendInReg(Ret, DL, MemEltVT),
Load->getChain()
};
return DAG.getMergeValues(Ops, DL);
}
SDValue AMDGPUTargetLowering::LowerSTORE(SDValue Op, SelectionDAG &DAG) const {
SDLoc DL(Op);
SDValue Result = AMDGPUTargetLowering::MergeVectorStore(Op, DAG);
if (Result.getNode()) {
return Result;
}
StoreSDNode *Store = cast<StoreSDNode>(Op);
SDValue Chain = Store->getChain();
if ((Store->getAddressSpace() == AMDGPUAS::LOCAL_ADDRESS ||
Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS) &&
Store->getValue().getValueType().isVector()) {
return ScalarizeVectorStore(Op, DAG);
}
EVT MemVT = Store->getMemoryVT();
if (Store->getAddressSpace() == AMDGPUAS::PRIVATE_ADDRESS &&
MemVT.bitsLT(MVT::i32)) {
unsigned Mask = 0;
if (Store->getMemoryVT() == MVT::i8) {
Mask = 0xff;
} else if (Store->getMemoryVT() == MVT::i16) {
Mask = 0xffff;
}
SDValue BasePtr = Store->getBasePtr();
SDValue Ptr = DAG.getNode(ISD::SRL, DL, MVT::i32, BasePtr,
DAG.getConstant(2, MVT::i32));
SDValue Dst = DAG.getNode(AMDGPUISD::REGISTER_LOAD, DL, MVT::i32,
Chain, Ptr, DAG.getTargetConstant(0, MVT::i32));
SDValue ByteIdx = DAG.getNode(ISD::AND, DL, MVT::i32, BasePtr,
DAG.getConstant(0x3, MVT::i32));
SDValue ShiftAmt = DAG.getNode(ISD::SHL, DL, MVT::i32, ByteIdx,
DAG.getConstant(3, MVT::i32));
SDValue SExtValue = DAG.getNode(ISD::SIGN_EXTEND, DL, MVT::i32,
Store->getValue());
SDValue MaskedValue = DAG.getZeroExtendInReg(SExtValue, DL, MemVT);
SDValue ShiftedValue = DAG.getNode(ISD::SHL, DL, MVT::i32,
MaskedValue, ShiftAmt);
SDValue DstMask = DAG.getNode(ISD::SHL, DL, MVT::i32, DAG.getConstant(Mask, MVT::i32),
ShiftAmt);
DstMask = DAG.getNode(ISD::XOR, DL, MVT::i32, DstMask,
DAG.getConstant(0xffffffff, MVT::i32));
Dst = DAG.getNode(ISD::AND, DL, MVT::i32, Dst, DstMask);
SDValue Value = DAG.getNode(ISD::OR, DL, MVT::i32, Dst, ShiftedValue);
return DAG.getNode(AMDGPUISD::REGISTER_STORE, DL, MVT::Other,
Chain, Value, Ptr, DAG.getTargetConstant(0, MVT::i32));
}
return SDValue();
}
// This is a shortcut for integer division because we have fast i32<->f32
// conversions, and fast f32 reciprocal instructions. The fractional part of a
// float is enough to accurately represent up to a 24-bit integer.
SDValue AMDGPUTargetLowering::LowerDIVREM24(SDValue Op, SelectionDAG &DAG, bool sign) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
MVT IntVT = MVT::i32;
MVT FltVT = MVT::f32;
ISD::NodeType ToFp = sign ? ISD::SINT_TO_FP : ISD::UINT_TO_FP;
ISD::NodeType ToInt = sign ? ISD::FP_TO_SINT : ISD::FP_TO_UINT;
if (VT.isVector()) {
unsigned NElts = VT.getVectorNumElements();
IntVT = MVT::getVectorVT(MVT::i32, NElts);
FltVT = MVT::getVectorVT(MVT::f32, NElts);
}
unsigned BitSize = VT.getScalarType().getSizeInBits();
SDValue jq = DAG.getConstant(1, IntVT);
if (sign) {
// char|short jq = ia ^ ib;
jq = DAG.getNode(ISD::XOR, DL, VT, LHS, RHS);
// jq = jq >> (bitsize - 2)
jq = DAG.getNode(ISD::SRA, DL, VT, jq, DAG.getConstant(BitSize - 2, VT));
// jq = jq | 0x1
jq = DAG.getNode(ISD::OR, DL, VT, jq, DAG.getConstant(1, VT));
// jq = (int)jq
jq = DAG.getSExtOrTrunc(jq, DL, IntVT);
}
// int ia = (int)LHS;
SDValue ia = sign ?
DAG.getSExtOrTrunc(LHS, DL, IntVT) : DAG.getZExtOrTrunc(LHS, DL, IntVT);
// int ib, (int)RHS;
SDValue ib = sign ?
DAG.getSExtOrTrunc(RHS, DL, IntVT) : DAG.getZExtOrTrunc(RHS, DL, IntVT);
// float fa = (float)ia;
SDValue fa = DAG.getNode(ToFp, DL, FltVT, ia);
// float fb = (float)ib;
SDValue fb = DAG.getNode(ToFp, DL, FltVT, ib);
// float fq = native_divide(fa, fb);
SDValue fq = DAG.getNode(ISD::FMUL, DL, FltVT,
fa, DAG.getNode(AMDGPUISD::RCP, DL, FltVT, fb));
// fq = trunc(fq);
fq = DAG.getNode(ISD::FTRUNC, DL, FltVT, fq);
// float fqneg = -fq;
SDValue fqneg = DAG.getNode(ISD::FNEG, DL, FltVT, fq);
// float fr = mad(fqneg, fb, fa);
SDValue fr = DAG.getNode(ISD::FADD, DL, FltVT,
DAG.getNode(ISD::FMUL, DL, FltVT, fqneg, fb), fa);
// int iq = (int)fq;
SDValue iq = DAG.getNode(ToInt, DL, IntVT, fq);
// fr = fabs(fr);
fr = DAG.getNode(ISD::FABS, DL, FltVT, fr);
// fb = fabs(fb);
fb = DAG.getNode(ISD::FABS, DL, FltVT, fb);
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), VT);
// int cv = fr >= fb;
SDValue cv = DAG.getSetCC(DL, SetCCVT, fr, fb, ISD::SETOGE);
// jq = (cv ? jq : 0);
jq = DAG.getNode(ISD::SELECT, DL, VT, cv, jq, DAG.getConstant(0, VT));
// dst = trunc/extend to legal type
iq = sign ? DAG.getSExtOrTrunc(iq, DL, VT) : DAG.getZExtOrTrunc(iq, DL, VT);
// dst = iq + jq;
SDValue Div = DAG.getNode(ISD::ADD, DL, VT, iq, jq);
// Rem needs compensation, it's easier to recompute it
SDValue Rem = DAG.getNode(ISD::MUL, DL, VT, Div, RHS);
Rem = DAG.getNode(ISD::SUB, DL, VT, LHS, Rem);
SDValue Res[2] = {
Div,
Rem
};
return DAG.getMergeValues(Res, DL);
}
SDValue AMDGPUTargetLowering::LowerUDIVREM(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue Num = Op.getOperand(0);
SDValue Den = Op.getOperand(1);
if (VT == MVT::i32) {
if (DAG.MaskedValueIsZero(Op.getOperand(0), APInt(32, 0xff << 24)) &&
DAG.MaskedValueIsZero(Op.getOperand(1), APInt(32, 0xff << 24))) {
// TODO: We technically could do this for i64, but shouldn't that just be
// handled by something generally reducing 64-bit division on 32-bit
// values to 32-bit?
return LowerDIVREM24(Op, DAG, false);
}
}
// RCP = URECIP(Den) = 2^32 / Den + e
// e is rounding error.
SDValue RCP = DAG.getNode(AMDGPUISD::URECIP, DL, VT, Den);
// RCP_LO = umulo(RCP, Den) */
SDValue RCP_LO = DAG.getNode(ISD::UMULO, DL, VT, RCP, Den);
// RCP_HI = mulhu (RCP, Den) */
SDValue RCP_HI = DAG.getNode(ISD::MULHU, DL, VT, RCP, Den);
// NEG_RCP_LO = -RCP_LO
SDValue NEG_RCP_LO = DAG.getNode(ISD::SUB, DL, VT, DAG.getConstant(0, VT),
RCP_LO);
// ABS_RCP_LO = (RCP_HI == 0 ? NEG_RCP_LO : RCP_LO)
SDValue ABS_RCP_LO = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
NEG_RCP_LO, RCP_LO,
ISD::SETEQ);
// Calculate the rounding error from the URECIP instruction
// E = mulhu(ABS_RCP_LO, RCP)
SDValue E = DAG.getNode(ISD::MULHU, DL, VT, ABS_RCP_LO, RCP);
// RCP_A_E = RCP + E
SDValue RCP_A_E = DAG.getNode(ISD::ADD, DL, VT, RCP, E);
// RCP_S_E = RCP - E
SDValue RCP_S_E = DAG.getNode(ISD::SUB, DL, VT, RCP, E);
// Tmp0 = (RCP_HI == 0 ? RCP_A_E : RCP_SUB_E)
SDValue Tmp0 = DAG.getSelectCC(DL, RCP_HI, DAG.getConstant(0, VT),
RCP_A_E, RCP_S_E,
ISD::SETEQ);
// Quotient = mulhu(Tmp0, Num)
SDValue Quotient = DAG.getNode(ISD::MULHU, DL, VT, Tmp0, Num);
// Num_S_Remainder = Quotient * Den
SDValue Num_S_Remainder = DAG.getNode(ISD::UMULO, DL, VT, Quotient, Den);
// Remainder = Num - Num_S_Remainder
SDValue Remainder = DAG.getNode(ISD::SUB, DL, VT, Num, Num_S_Remainder);
// Remainder_GE_Den = (Remainder >= Den ? -1 : 0)
SDValue Remainder_GE_Den = DAG.getSelectCC(DL, Remainder, Den,
DAG.getConstant(-1, VT),
DAG.getConstant(0, VT),
ISD::SETUGE);
// Remainder_GE_Zero = (Num >= Num_S_Remainder ? -1 : 0)
SDValue Remainder_GE_Zero = DAG.getSelectCC(DL, Num,
Num_S_Remainder,
DAG.getConstant(-1, VT),
DAG.getConstant(0, VT),
ISD::SETUGE);
// Tmp1 = Remainder_GE_Den & Remainder_GE_Zero
SDValue Tmp1 = DAG.getNode(ISD::AND, DL, VT, Remainder_GE_Den,
Remainder_GE_Zero);
// Calculate Division result:
// Quotient_A_One = Quotient + 1
SDValue Quotient_A_One = DAG.getNode(ISD::ADD, DL, VT, Quotient,
DAG.getConstant(1, VT));
// Quotient_S_One = Quotient - 1
SDValue Quotient_S_One = DAG.getNode(ISD::SUB, DL, VT, Quotient,
DAG.getConstant(1, VT));
// Div = (Tmp1 == 0 ? Quotient : Quotient_A_One)
SDValue Div = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
Quotient, Quotient_A_One, ISD::SETEQ);
// Div = (Remainder_GE_Zero == 0 ? Quotient_S_One : Div)
Div = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
Quotient_S_One, Div, ISD::SETEQ);
// Calculate Rem result:
// Remainder_S_Den = Remainder - Den
SDValue Remainder_S_Den = DAG.getNode(ISD::SUB, DL, VT, Remainder, Den);
// Remainder_A_Den = Remainder + Den
SDValue Remainder_A_Den = DAG.getNode(ISD::ADD, DL, VT, Remainder, Den);
// Rem = (Tmp1 == 0 ? Remainder : Remainder_S_Den)
SDValue Rem = DAG.getSelectCC(DL, Tmp1, DAG.getConstant(0, VT),
Remainder, Remainder_S_Den, ISD::SETEQ);
// Rem = (Remainder_GE_Zero == 0 ? Remainder_A_Den : Rem)
Rem = DAG.getSelectCC(DL, Remainder_GE_Zero, DAG.getConstant(0, VT),
Remainder_A_Den, Rem, ISD::SETEQ);
SDValue Ops[2] = {
Div,
Rem
};
return DAG.getMergeValues(Ops, DL);
}
SDValue AMDGPUTargetLowering::LowerSDIVREM(SDValue Op,
SelectionDAG &DAG) const {
SDLoc DL(Op);
EVT VT = Op.getValueType();
SDValue LHS = Op.getOperand(0);
SDValue RHS = Op.getOperand(1);
if (VT == MVT::i32) {
if (DAG.ComputeNumSignBits(Op.getOperand(0)) > 8 &&
DAG.ComputeNumSignBits(Op.getOperand(1)) > 8) {
// TODO: We technically could do this for i64, but shouldn't that just be
// handled by something generally reducing 64-bit division on 32-bit
// values to 32-bit?
return LowerDIVREM24(Op, DAG, true);
}
}
SDValue Zero = DAG.getConstant(0, VT);
SDValue NegOne = DAG.getConstant(-1, VT);
SDValue LHSign = DAG.getSelectCC(DL, LHS, Zero, NegOne, Zero, ISD::SETLT);
SDValue RHSign = DAG.getSelectCC(DL, RHS, Zero, NegOne, Zero, ISD::SETLT);
SDValue DSign = DAG.getNode(ISD::XOR, DL, VT, LHSign, RHSign);
SDValue RSign = LHSign; // Remainder sign is the same as LHS
LHS = DAG.getNode(ISD::ADD, DL, VT, LHS, LHSign);
RHS = DAG.getNode(ISD::ADD, DL, VT, RHS, RHSign);
LHS = DAG.getNode(ISD::XOR, DL, VT, LHS, LHSign);
RHS = DAG.getNode(ISD::XOR, DL, VT, RHS, RHSign);
SDValue Div = DAG.getNode(ISD::UDIVREM, DL, DAG.getVTList(VT, VT), LHS, RHS);
SDValue Rem = Div.getValue(1);
Div = DAG.getNode(ISD::XOR, DL, VT, Div, DSign);
Rem = DAG.getNode(ISD::XOR, DL, VT, Rem, RSign);
Div = DAG.getNode(ISD::SUB, DL, VT, Div, DSign);
Rem = DAG.getNode(ISD::SUB, DL, VT, Rem, RSign);
SDValue Res[2] = {
Div,
Rem
};
return DAG.getMergeValues(Res, DL);
}
SDValue AMDGPUTargetLowering::LowerFCEIL(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
// result = trunc(src)
// if (src > 0.0 && src != result)
// result += 1.0
SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
const SDValue One = DAG.getConstantFP(1.0, MVT::f64);
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOGT);
SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, One, Zero);
return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
}
SDValue AMDGPUTargetLowering::LowerFTRUNC(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
assert(Op.getValueType() == MVT::f64);
const SDValue Zero = DAG.getConstant(0, MVT::i32);
const SDValue One = DAG.getConstant(1, MVT::i32);
SDValue VecSrc = DAG.getNode(ISD::BITCAST, SL, MVT::v2i32, Src);
// Extract the upper half, since this is where we will find the sign and
// exponent.
SDValue Hi = DAG.getNode(ISD::EXTRACT_VECTOR_ELT, SL, MVT::i32, VecSrc, One);
const unsigned FractBits = 52;
const unsigned ExpBits = 11;
// Extract the exponent.
SDValue ExpPart = DAG.getNode(AMDGPUISD::BFE_I32, SL, MVT::i32,
Hi,
DAG.getConstant(FractBits - 32, MVT::i32),
DAG.getConstant(ExpBits, MVT::i32));
SDValue Exp = DAG.getNode(ISD::SUB, SL, MVT::i32, ExpPart,
DAG.getConstant(1023, MVT::i32));
// Extract the sign bit.
const SDValue SignBitMask = DAG.getConstant(UINT32_C(1) << 31, MVT::i32);
SDValue SignBit = DAG.getNode(ISD::AND, SL, MVT::i32, Hi, SignBitMask);
// Extend back to to 64-bits.
SDValue SignBit64 = DAG.getNode(ISD::BUILD_VECTOR, SL, MVT::v2i32,
Zero, SignBit);
SignBit64 = DAG.getNode(ISD::BITCAST, SL, MVT::i64, SignBit64);
SDValue BcInt = DAG.getNode(ISD::BITCAST, SL, MVT::i64, Src);
const SDValue FractMask
= DAG.getConstant((UINT64_C(1) << FractBits) - 1, MVT::i64);
SDValue Shr = DAG.getNode(ISD::SRA, SL, MVT::i64, FractMask, Exp);
SDValue Not = DAG.getNOT(SL, Shr, MVT::i64);
SDValue Tmp0 = DAG.getNode(ISD::AND, SL, MVT::i64, BcInt, Not);
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::i32);
const SDValue FiftyOne = DAG.getConstant(FractBits - 1, MVT::i32);
SDValue ExpLt0 = DAG.getSetCC(SL, SetCCVT, Exp, Zero, ISD::SETLT);
SDValue ExpGt51 = DAG.getSetCC(SL, SetCCVT, Exp, FiftyOne, ISD::SETGT);
SDValue Tmp1 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpLt0, SignBit64, Tmp0);
SDValue Tmp2 = DAG.getNode(ISD::SELECT, SL, MVT::i64, ExpGt51, BcInt, Tmp1);
return DAG.getNode(ISD::BITCAST, SL, MVT::f64, Tmp2);
}
SDValue AMDGPUTargetLowering::LowerFRINT(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
assert(Op.getValueType() == MVT::f64);
APFloat C1Val(APFloat::IEEEdouble, "0x1.0p+52");
SDValue C1 = DAG.getConstantFP(C1Val, MVT::f64);
SDValue CopySign = DAG.getNode(ISD::FCOPYSIGN, SL, MVT::f64, C1, Src);
SDValue Tmp1 = DAG.getNode(ISD::FADD, SL, MVT::f64, Src, CopySign);
SDValue Tmp2 = DAG.getNode(ISD::FSUB, SL, MVT::f64, Tmp1, CopySign);
SDValue Fabs = DAG.getNode(ISD::FABS, SL, MVT::f64, Src);
APFloat C2Val(APFloat::IEEEdouble, "0x1.fffffffffffffp+51");
SDValue C2 = DAG.getConstantFP(C2Val, MVT::f64);
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
SDValue Cond = DAG.getSetCC(SL, SetCCVT, Fabs, C2, ISD::SETOGT);
return DAG.getSelect(SL, MVT::f64, Cond, Src, Tmp2);
}
SDValue AMDGPUTargetLowering::LowerFNEARBYINT(SDValue Op, SelectionDAG &DAG) const {
// FNEARBYINT and FRINT are the same, except in their handling of FP
// exceptions. Those aren't really meaningful for us, and OpenCL only has
// rint, so just treat them as equivalent.
return DAG.getNode(ISD::FRINT, SDLoc(Op), Op.getValueType(), Op.getOperand(0));
}
SDValue AMDGPUTargetLowering::LowerFFLOOR(SDValue Op, SelectionDAG &DAG) const {
SDLoc SL(Op);
SDValue Src = Op.getOperand(0);
// result = trunc(src);
// if (src < 0.0 && src != result)
// result += -1.0.
SDValue Trunc = DAG.getNode(ISD::FTRUNC, SL, MVT::f64, Src);
const SDValue Zero = DAG.getConstantFP(0.0, MVT::f64);
const SDValue NegOne = DAG.getConstantFP(-1.0, MVT::f64);
EVT SetCCVT = getSetCCResultType(*DAG.getContext(), MVT::f64);
SDValue Lt0 = DAG.getSetCC(SL, SetCCVT, Src, Zero, ISD::SETOLT);
SDValue NeTrunc = DAG.getSetCC(SL, SetCCVT, Src, Trunc, ISD::SETONE);
SDValue And = DAG.getNode(ISD::AND, SL, SetCCVT, Lt0, NeTrunc);
SDValue Add = DAG.getNode(ISD::SELECT, SL, MVT::f64, And, NegOne, Zero);
return DAG.getNode(ISD::FADD, SL, MVT::f64, Trunc, Add);
}
SDValue AMDGPUTargetLowering::LowerUINT_TO_FP(SDValue Op,
SelectionDAG &DAG) const {
SDValue S0 = Op.getOperand(0);
SDLoc DL(Op);
if (Op.getValueType() != MVT::f32 || S0.getValueType() != MVT::i64)
return SDValue();
// f32 uint_to_fp i64
SDValue Lo = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
DAG.getConstant(0, MVT::i32));
SDValue FloatLo = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Lo);
SDValue Hi = DAG.getNode(ISD::EXTRACT_ELEMENT, DL, MVT::i32, S0,
DAG.getConstant(1, MVT::i32));
SDValue FloatHi = DAG.getNode(ISD::UINT_TO_FP, DL, MVT::f32, Hi);
FloatHi = DAG.getNode(ISD::FMUL, DL, MVT::f32, FloatHi,
DAG.getConstantFP(4294967296.0f, MVT::f32)); // 2^32
return DAG.getNode(ISD::FADD, DL, MVT::f32, FloatLo, FloatHi);
}
SDValue AMDGPUTargetLowering::ExpandSIGN_EXTEND_INREG(SDValue Op,
unsigned BitsDiff,
SelectionDAG &DAG) const {
MVT VT = Op.getSimpleValueType();
SDLoc DL(Op);
SDValue Shift = DAG.getConstant(BitsDiff, VT);
// Shift left by 'Shift' bits.
SDValue Shl = DAG.getNode(ISD::SHL, DL, VT, Op.getOperand(0), Shift);
// Signed shift Right by 'Shift' bits.
return DAG.getNode(ISD::SRA, DL, VT, Shl, Shift);
}
SDValue AMDGPUTargetLowering::LowerSIGN_EXTEND_INREG(SDValue Op,
SelectionDAG &DAG) const {
EVT ExtraVT = cast<VTSDNode>(Op.getOperand(1))->getVT();
MVT VT = Op.getSimpleValueType();
MVT ScalarVT = VT.getScalarType();
if (!VT.isVector())
return SDValue();
SDValue Src = Op.getOperand(0);
SDLoc DL(Op);
// TODO: Don't scalarize on Evergreen?
unsigned NElts = VT.getVectorNumElements();
SmallVector<SDValue, 8> Args;
DAG.ExtractVectorElements(Src, Args, 0, NElts);
SDValue VTOp = DAG.getValueType(ExtraVT.getScalarType());
for (unsigned I = 0; I < NElts; ++I)
Args[I] = DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, ScalarVT, Args[I], VTOp);
return DAG.getNode(ISD::BUILD_VECTOR, DL, VT, Args);
}
//===----------------------------------------------------------------------===//
// Custom DAG optimizations
//===----------------------------------------------------------------------===//
static bool isU24(SDValue Op, SelectionDAG &DAG) {
APInt KnownZero, KnownOne;
EVT VT = Op.getValueType();
DAG.computeKnownBits(Op, KnownZero, KnownOne);
return (VT.getSizeInBits() - KnownZero.countLeadingOnes()) <= 24;
}
static bool isI24(SDValue Op, SelectionDAG &DAG) {
EVT VT = Op.getValueType();
// In order for this to be a signed 24-bit value, bit 23, must
// be a sign bit.
return VT.getSizeInBits() >= 24 && // Types less than 24-bit should be treated
// as unsigned 24-bit values.
(VT.getSizeInBits() - DAG.ComputeNumSignBits(Op)) < 24;
}
static void simplifyI24(SDValue Op, TargetLowering::DAGCombinerInfo &DCI) {
SelectionDAG &DAG = DCI.DAG;
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
EVT VT = Op.getValueType();
APInt Demanded = APInt::getLowBitsSet(VT.getSizeInBits(), 24);
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, true, true);
if (TLI.SimplifyDemandedBits(Op, Demanded, KnownZero, KnownOne, TLO))
DCI.CommitTargetLoweringOpt(TLO);
}
template <typename IntTy>
static SDValue constantFoldBFE(SelectionDAG &DAG, IntTy Src0,
uint32_t Offset, uint32_t Width) {
if (Width + Offset < 32) {
IntTy Result = (Src0 << (32 - Offset - Width)) >> (32 - Width);
return DAG.getConstant(Result, MVT::i32);
}
return DAG.getConstant(Src0 >> Offset, MVT::i32);
}
static bool usesAllNormalStores(SDNode *LoadVal) {
for (SDNode::use_iterator I = LoadVal->use_begin(); !I.atEnd(); ++I) {
if (!ISD::isNormalStore(*I))
return false;
}
return true;
}
// If we have a copy of an illegal type, replace it with a load / store of an
// equivalently sized legal type. This avoids intermediate bit pack / unpack
// instructions emitted when handling extloads and truncstores. Ideally we could
// recognize the pack / unpack pattern to eliminate it.
SDValue AMDGPUTargetLowering::performStoreCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
if (!DCI.isBeforeLegalize())
return SDValue();
StoreSDNode *SN = cast<StoreSDNode>(N);
SDValue Value = SN->getValue();
EVT VT = Value.getValueType();
if (isTypeLegal(VT) || SN->isVolatile() || !ISD::isNormalLoad(Value.getNode()))
return SDValue();
LoadSDNode *LoadVal = cast<LoadSDNode>(Value);
if (LoadVal->isVolatile() || !usesAllNormalStores(LoadVal))
return SDValue();
EVT MemVT = LoadVal->getMemoryVT();
SDLoc SL(N);
SelectionDAG &DAG = DCI.DAG;
EVT LoadVT = getEquivalentMemType(*DAG.getContext(), MemVT);
SDValue NewLoad = DAG.getLoad(ISD::UNINDEXED, ISD::NON_EXTLOAD,
LoadVT, SL,
LoadVal->getChain(),
LoadVal->getBasePtr(),
LoadVal->getOffset(),
LoadVT,
LoadVal->getMemOperand());
SDValue CastLoad = DAG.getNode(ISD::BITCAST, SL, VT, NewLoad.getValue(0));
DCI.CombineTo(LoadVal, CastLoad, NewLoad.getValue(1), false);
return DAG.getStore(SN->getChain(), SL, NewLoad,
SN->getBasePtr(), SN->getMemOperand());
}
SDValue AMDGPUTargetLowering::performMulCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
EVT VT = N->getValueType(0);
if (VT.isVector() || VT.getSizeInBits() > 32)
return SDValue();
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
SDValue Mul;
if (Subtarget->hasMulU24() && isU24(N0, DAG) && isU24(N1, DAG)) {
N0 = DAG.getZExtOrTrunc(N0, DL, MVT::i32);
N1 = DAG.getZExtOrTrunc(N1, DL, MVT::i32);
Mul = DAG.getNode(AMDGPUISD::MUL_U24, DL, MVT::i32, N0, N1);
} else if (Subtarget->hasMulI24() && isI24(N0, DAG) && isI24(N1, DAG)) {
N0 = DAG.getSExtOrTrunc(N0, DL, MVT::i32);
N1 = DAG.getSExtOrTrunc(N1, DL, MVT::i32);
Mul = DAG.getNode(AMDGPUISD::MUL_I24, DL, MVT::i32, N0, N1);
} else {
return SDValue();
}
// We need to use sext even for MUL_U24, because MUL_U24 is used
// for signed multiply of 8 and 16-bit types.
return DAG.getSExtOrTrunc(Mul, DL, VT);
}
SDValue AMDGPUTargetLowering::PerformDAGCombine(SDNode *N,
DAGCombinerInfo &DCI) const {
SelectionDAG &DAG = DCI.DAG;
SDLoc DL(N);
switch(N->getOpcode()) {
default: break;
case ISD::MUL:
return performMulCombine(N, DCI);
case AMDGPUISD::MUL_I24:
case AMDGPUISD::MUL_U24: {
SDValue N0 = N->getOperand(0);
SDValue N1 = N->getOperand(1);
simplifyI24(N0, DCI);
simplifyI24(N1, DCI);
return SDValue();
}
case ISD::SELECT_CC: {
return CombineMinMax(N, DAG);
}
case AMDGPUISD::BFE_I32:
case AMDGPUISD::BFE_U32: {
assert(!N->getValueType(0).isVector() &&
"Vector handling of BFE not implemented");
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(N->getOperand(2));
if (!Width)
break;
uint32_t WidthVal = Width->getZExtValue() & 0x1f;
if (WidthVal == 0)
return DAG.getConstant(0, MVT::i32);
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(N->getOperand(1));
if (!Offset)
break;
SDValue BitsFrom = N->getOperand(0);
uint32_t OffsetVal = Offset->getZExtValue() & 0x1f;
bool Signed = N->getOpcode() == AMDGPUISD::BFE_I32;
if (OffsetVal == 0) {
// This is already sign / zero extended, so try to fold away extra BFEs.
unsigned SignBits = Signed ? (32 - WidthVal + 1) : (32 - WidthVal);
unsigned OpSignBits = DAG.ComputeNumSignBits(BitsFrom);
if (OpSignBits >= SignBits)
return BitsFrom;
EVT SmallVT = EVT::getIntegerVT(*DAG.getContext(), WidthVal);
if (Signed) {
// This is a sign_extend_inreg. Replace it to take advantage of existing
// DAG Combines. If not eliminated, we will match back to BFE during
// selection.
// TODO: The sext_inreg of extended types ends, although we can could
// handle them in a single BFE.
return DAG.getNode(ISD::SIGN_EXTEND_INREG, DL, MVT::i32, BitsFrom,
DAG.getValueType(SmallVT));
}
return DAG.getZeroExtendInReg(BitsFrom, DL, SmallVT);
}
if (ConstantSDNode *Val = dyn_cast<ConstantSDNode>(N->getOperand(0))) {
if (Signed) {
return constantFoldBFE<int32_t>(DAG,
Val->getSExtValue(),
OffsetVal,
WidthVal);
}
return constantFoldBFE<uint32_t>(DAG,
Val->getZExtValue(),
OffsetVal,
WidthVal);
}
APInt Demanded = APInt::getBitsSet(32,
OffsetVal,
OffsetVal + WidthVal);
if ((OffsetVal + WidthVal) >= 32) {
SDValue ShiftVal = DAG.getConstant(OffsetVal, MVT::i32);
return DAG.getNode(Signed ? ISD::SRA : ISD::SRL, DL, MVT::i32,
BitsFrom, ShiftVal);
}
APInt KnownZero, KnownOne;
TargetLowering::TargetLoweringOpt TLO(DAG, !DCI.isBeforeLegalize(),
!DCI.isBeforeLegalizeOps());
const TargetLowering &TLI = DAG.getTargetLoweringInfo();
if (TLO.ShrinkDemandedConstant(BitsFrom, Demanded) ||
TLI.SimplifyDemandedBits(BitsFrom, Demanded, KnownZero, KnownOne, TLO)) {
DCI.CommitTargetLoweringOpt(TLO);
}
break;
}
case ISD::STORE:
return performStoreCombine(N, DCI);
}
return SDValue();
}
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
void AMDGPUTargetLowering::getOriginalFunctionArgs(
SelectionDAG &DAG,
const Function *F,
const SmallVectorImpl<ISD::InputArg> &Ins,
SmallVectorImpl<ISD::InputArg> &OrigIns) const {
for (unsigned i = 0, e = Ins.size(); i < e; ++i) {
if (Ins[i].ArgVT == Ins[i].VT) {
OrigIns.push_back(Ins[i]);
continue;
}
EVT VT;
if (Ins[i].ArgVT.isVector() && !Ins[i].VT.isVector()) {
// Vector has been split into scalars.
VT = Ins[i].ArgVT.getVectorElementType();
} else if (Ins[i].VT.isVector() && Ins[i].ArgVT.isVector() &&
Ins[i].ArgVT.getVectorElementType() !=
Ins[i].VT.getVectorElementType()) {
// Vector elements have been promoted
VT = Ins[i].ArgVT;
} else {
// Vector has been spilt into smaller vectors.
VT = Ins[i].VT;
}
ISD::InputArg Arg(Ins[i].Flags, VT, VT, Ins[i].Used,
Ins[i].OrigArgIndex, Ins[i].PartOffset);
OrigIns.push_back(Arg);
}
}
bool AMDGPUTargetLowering::isHWTrueValue(SDValue Op) const {
if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
return CFP->isExactlyValue(1.0);
}
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
return C->isAllOnesValue();
}
return false;
}
bool AMDGPUTargetLowering::isHWFalseValue(SDValue Op) const {
if (ConstantFPSDNode * CFP = dyn_cast<ConstantFPSDNode>(Op)) {
return CFP->getValueAPF().isZero();
}
if (ConstantSDNode *C = dyn_cast<ConstantSDNode>(Op)) {
return C->isNullValue();
}
return false;
}
SDValue AMDGPUTargetLowering::CreateLiveInRegister(SelectionDAG &DAG,
const TargetRegisterClass *RC,
unsigned Reg, EVT VT) const {
MachineFunction &MF = DAG.getMachineFunction();
MachineRegisterInfo &MRI = MF.getRegInfo();
unsigned VirtualRegister;
if (!MRI.isLiveIn(Reg)) {
VirtualRegister = MRI.createVirtualRegister(RC);
MRI.addLiveIn(Reg, VirtualRegister);
} else {
VirtualRegister = MRI.getLiveInVirtReg(Reg);
}
return DAG.getRegister(VirtualRegister, VT);
}
#define NODE_NAME_CASE(node) case AMDGPUISD::node: return #node;
const char* AMDGPUTargetLowering::getTargetNodeName(unsigned Opcode) const {
switch (Opcode) {
default: return nullptr;
// AMDIL DAG nodes
NODE_NAME_CASE(CALL);
NODE_NAME_CASE(UMUL);
NODE_NAME_CASE(RET_FLAG);
NODE_NAME_CASE(BRANCH_COND);
// AMDGPU DAG nodes
NODE_NAME_CASE(DWORDADDR)
NODE_NAME_CASE(FRACT)
NODE_NAME_CASE(CLAMP)
NODE_NAME_CASE(FMAX)
NODE_NAME_CASE(SMAX)
NODE_NAME_CASE(UMAX)
NODE_NAME_CASE(FMIN)
NODE_NAME_CASE(SMIN)
NODE_NAME_CASE(UMIN)
NODE_NAME_CASE(URECIP)
NODE_NAME_CASE(DIV_SCALE)
NODE_NAME_CASE(DIV_FMAS)
NODE_NAME_CASE(DIV_FIXUP)
NODE_NAME_CASE(TRIG_PREOP)
NODE_NAME_CASE(RCP)
NODE_NAME_CASE(RSQ)
NODE_NAME_CASE(RSQ_LEGACY)
NODE_NAME_CASE(RSQ_CLAMPED)
NODE_NAME_CASE(DOT4)
NODE_NAME_CASE(BFE_U32)
NODE_NAME_CASE(BFE_I32)
NODE_NAME_CASE(BFI)
NODE_NAME_CASE(BFM)
NODE_NAME_CASE(BREV)
NODE_NAME_CASE(MUL_U24)
NODE_NAME_CASE(MUL_I24)
NODE_NAME_CASE(MAD_U24)
NODE_NAME_CASE(MAD_I24)
NODE_NAME_CASE(EXPORT)
NODE_NAME_CASE(CONST_ADDRESS)
NODE_NAME_CASE(REGISTER_LOAD)
NODE_NAME_CASE(REGISTER_STORE)
NODE_NAME_CASE(LOAD_CONSTANT)
NODE_NAME_CASE(LOAD_INPUT)
NODE_NAME_CASE(SAMPLE)
NODE_NAME_CASE(SAMPLEB)
NODE_NAME_CASE(SAMPLED)
NODE_NAME_CASE(SAMPLEL)
NODE_NAME_CASE(CVT_F32_UBYTE0)
NODE_NAME_CASE(CVT_F32_UBYTE1)
NODE_NAME_CASE(CVT_F32_UBYTE2)
NODE_NAME_CASE(CVT_F32_UBYTE3)
NODE_NAME_CASE(BUILD_VERTICAL_VECTOR)
NODE_NAME_CASE(CONST_DATA_PTR)
NODE_NAME_CASE(STORE_MSKOR)
NODE_NAME_CASE(TBUFFER_STORE_FORMAT)
}
}
static void computeKnownBitsForMinMax(const SDValue Op0,
const SDValue Op1,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) {
APInt Op0Zero, Op0One;
APInt Op1Zero, Op1One;
DAG.computeKnownBits(Op0, Op0Zero, Op0One, Depth);
DAG.computeKnownBits(Op1, Op1Zero, Op1One, Depth);
KnownZero = Op0Zero & Op1Zero;
KnownOne = Op0One & Op1One;
}
void AMDGPUTargetLowering::computeKnownBitsForTargetNode(
const SDValue Op,
APInt &KnownZero,
APInt &KnownOne,
const SelectionDAG &DAG,
unsigned Depth) const {
KnownZero = KnownOne = APInt(KnownOne.getBitWidth(), 0); // Don't know anything.
APInt KnownZero2;
APInt KnownOne2;
unsigned Opc = Op.getOpcode();
switch (Opc) {
default:
break;
case ISD::INTRINSIC_WO_CHAIN: {
// FIXME: The intrinsic should just use the node.
switch (cast<ConstantSDNode>(Op.getOperand(0))->getZExtValue()) {
case AMDGPUIntrinsic::AMDGPU_imax:
case AMDGPUIntrinsic::AMDGPU_umax:
case AMDGPUIntrinsic::AMDGPU_imin:
case AMDGPUIntrinsic::AMDGPU_umin:
computeKnownBitsForMinMax(Op.getOperand(1), Op.getOperand(2),
KnownZero, KnownOne, DAG, Depth);
break;
default:
break;
}
break;
}
case AMDGPUISD::SMAX:
case AMDGPUISD::UMAX:
case AMDGPUISD::SMIN:
case AMDGPUISD::UMIN:
computeKnownBitsForMinMax(Op.getOperand(0), Op.getOperand(1),
KnownZero, KnownOne, DAG, Depth);
break;
case AMDGPUISD::BFE_I32:
case AMDGPUISD::BFE_U32: {
ConstantSDNode *CWidth = dyn_cast<ConstantSDNode>(Op.getOperand(2));
if (!CWidth)
return;
unsigned BitWidth = 32;
uint32_t Width = CWidth->getZExtValue() & 0x1f;
if (Width == 0) {
KnownZero = APInt::getAllOnesValue(BitWidth);
KnownOne = APInt::getNullValue(BitWidth);
return;
}
// FIXME: This could do a lot more. If offset is 0, should be the same as
// sign_extend_inreg implementation, but that involves duplicating it.
if (Opc == AMDGPUISD::BFE_I32)
KnownOne = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
else
KnownZero = APInt::getHighBitsSet(BitWidth, BitWidth - Width);
break;
}
}
}
unsigned AMDGPUTargetLowering::ComputeNumSignBitsForTargetNode(
SDValue Op,
const SelectionDAG &DAG,
unsigned Depth) const {
switch (Op.getOpcode()) {
case AMDGPUISD::BFE_I32: {
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
if (!Width)
return 1;
unsigned SignBits = 32 - Width->getZExtValue() + 1;
ConstantSDNode *Offset = dyn_cast<ConstantSDNode>(Op.getOperand(1));
if (!Offset || !Offset->isNullValue())
return SignBits;
// TODO: Could probably figure something out with non-0 offsets.
unsigned Op0SignBits = DAG.ComputeNumSignBits(Op.getOperand(0), Depth + 1);
return std::max(SignBits, Op0SignBits);
}
case AMDGPUISD::BFE_U32: {
ConstantSDNode *Width = dyn_cast<ConstantSDNode>(Op.getOperand(2));
return Width ? 32 - (Width->getZExtValue() & 0x1f) : 1;
}
default:
return 1;
}
}