forked from OSchip/llvm-project
979 lines
36 KiB
C++
979 lines
36 KiB
C++
//===-- LoopUtils.cpp - Loop Utility functions -------------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file defines common loop utility functions.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Transforms/Utils/LoopUtils.h"
|
|
#include "llvm/ADT/ScopeExit.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/DomTreeUpdater.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/InstructionSimplify.h"
|
|
#include "llvm/Analysis/LoopInfo.h"
|
|
#include "llvm/Analysis/LoopPass.h"
|
|
#include "llvm/Analysis/MemorySSAUpdater.h"
|
|
#include "llvm/Analysis/MustExecute.h"
|
|
#include "llvm/Analysis/ScalarEvolution.h"
|
|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpander.h"
|
|
#include "llvm/Analysis/ScalarEvolutionExpressions.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/DIBuilder.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/ValueHandle.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/KnownBits.h"
|
|
#include "llvm/Transforms/Utils/BasicBlockUtils.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::PatternMatch;
|
|
|
|
#define DEBUG_TYPE "loop-utils"
|
|
|
|
static const char *LLVMLoopDisableNonforced = "llvm.loop.disable_nonforced";
|
|
|
|
bool llvm::formDedicatedExitBlocks(Loop *L, DominatorTree *DT, LoopInfo *LI,
|
|
MemorySSAUpdater *MSSAU,
|
|
bool PreserveLCSSA) {
|
|
bool Changed = false;
|
|
|
|
// We re-use a vector for the in-loop predecesosrs.
|
|
SmallVector<BasicBlock *, 4> InLoopPredecessors;
|
|
|
|
auto RewriteExit = [&](BasicBlock *BB) {
|
|
assert(InLoopPredecessors.empty() &&
|
|
"Must start with an empty predecessors list!");
|
|
auto Cleanup = make_scope_exit([&] { InLoopPredecessors.clear(); });
|
|
|
|
// See if there are any non-loop predecessors of this exit block and
|
|
// keep track of the in-loop predecessors.
|
|
bool IsDedicatedExit = true;
|
|
for (auto *PredBB : predecessors(BB))
|
|
if (L->contains(PredBB)) {
|
|
if (isa<IndirectBrInst>(PredBB->getTerminator()))
|
|
// We cannot rewrite exiting edges from an indirectbr.
|
|
return false;
|
|
if (isa<CallBrInst>(PredBB->getTerminator()))
|
|
// We cannot rewrite exiting edges from a callbr.
|
|
return false;
|
|
|
|
InLoopPredecessors.push_back(PredBB);
|
|
} else {
|
|
IsDedicatedExit = false;
|
|
}
|
|
|
|
assert(!InLoopPredecessors.empty() && "Must have *some* loop predecessor!");
|
|
|
|
// Nothing to do if this is already a dedicated exit.
|
|
if (IsDedicatedExit)
|
|
return false;
|
|
|
|
auto *NewExitBB = SplitBlockPredecessors(
|
|
BB, InLoopPredecessors, ".loopexit", DT, LI, MSSAU, PreserveLCSSA);
|
|
|
|
if (!NewExitBB)
|
|
LLVM_DEBUG(
|
|
dbgs() << "WARNING: Can't create a dedicated exit block for loop: "
|
|
<< *L << "\n");
|
|
else
|
|
LLVM_DEBUG(dbgs() << "LoopSimplify: Creating dedicated exit block "
|
|
<< NewExitBB->getName() << "\n");
|
|
return true;
|
|
};
|
|
|
|
// Walk the exit blocks directly rather than building up a data structure for
|
|
// them, but only visit each one once.
|
|
SmallPtrSet<BasicBlock *, 4> Visited;
|
|
for (auto *BB : L->blocks())
|
|
for (auto *SuccBB : successors(BB)) {
|
|
// We're looking for exit blocks so skip in-loop successors.
|
|
if (L->contains(SuccBB))
|
|
continue;
|
|
|
|
// Visit each exit block exactly once.
|
|
if (!Visited.insert(SuccBB).second)
|
|
continue;
|
|
|
|
Changed |= RewriteExit(SuccBB);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// Returns the instructions that use values defined in the loop.
|
|
SmallVector<Instruction *, 8> llvm::findDefsUsedOutsideOfLoop(Loop *L) {
|
|
SmallVector<Instruction *, 8> UsedOutside;
|
|
|
|
for (auto *Block : L->getBlocks())
|
|
// FIXME: I believe that this could use copy_if if the Inst reference could
|
|
// be adapted into a pointer.
|
|
for (auto &Inst : *Block) {
|
|
auto Users = Inst.users();
|
|
if (any_of(Users, [&](User *U) {
|
|
auto *Use = cast<Instruction>(U);
|
|
return !L->contains(Use->getParent());
|
|
}))
|
|
UsedOutside.push_back(&Inst);
|
|
}
|
|
|
|
return UsedOutside;
|
|
}
|
|
|
|
void llvm::getLoopAnalysisUsage(AnalysisUsage &AU) {
|
|
// By definition, all loop passes need the LoopInfo analysis and the
|
|
// Dominator tree it depends on. Because they all participate in the loop
|
|
// pass manager, they must also preserve these.
|
|
AU.addRequired<DominatorTreeWrapperPass>();
|
|
AU.addPreserved<DominatorTreeWrapperPass>();
|
|
AU.addRequired<LoopInfoWrapperPass>();
|
|
AU.addPreserved<LoopInfoWrapperPass>();
|
|
|
|
// We must also preserve LoopSimplify and LCSSA. We locally access their IDs
|
|
// here because users shouldn't directly get them from this header.
|
|
extern char &LoopSimplifyID;
|
|
extern char &LCSSAID;
|
|
AU.addRequiredID(LoopSimplifyID);
|
|
AU.addPreservedID(LoopSimplifyID);
|
|
AU.addRequiredID(LCSSAID);
|
|
AU.addPreservedID(LCSSAID);
|
|
// This is used in the LPPassManager to perform LCSSA verification on passes
|
|
// which preserve lcssa form
|
|
AU.addRequired<LCSSAVerificationPass>();
|
|
AU.addPreserved<LCSSAVerificationPass>();
|
|
|
|
// Loop passes are designed to run inside of a loop pass manager which means
|
|
// that any function analyses they require must be required by the first loop
|
|
// pass in the manager (so that it is computed before the loop pass manager
|
|
// runs) and preserved by all loop pasess in the manager. To make this
|
|
// reasonably robust, the set needed for most loop passes is maintained here.
|
|
// If your loop pass requires an analysis not listed here, you will need to
|
|
// carefully audit the loop pass manager nesting structure that results.
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addPreserved<AAResultsWrapperPass>();
|
|
AU.addPreserved<BasicAAWrapperPass>();
|
|
AU.addPreserved<GlobalsAAWrapperPass>();
|
|
AU.addPreserved<SCEVAAWrapperPass>();
|
|
AU.addRequired<ScalarEvolutionWrapperPass>();
|
|
AU.addPreserved<ScalarEvolutionWrapperPass>();
|
|
}
|
|
|
|
/// Manually defined generic "LoopPass" dependency initialization. This is used
|
|
/// to initialize the exact set of passes from above in \c
|
|
/// getLoopAnalysisUsage. It can be used within a loop pass's initialization
|
|
/// with:
|
|
///
|
|
/// INITIALIZE_PASS_DEPENDENCY(LoopPass)
|
|
///
|
|
/// As-if "LoopPass" were a pass.
|
|
void llvm::initializeLoopPassPass(PassRegistry &Registry) {
|
|
INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(LoopSimplify)
|
|
INITIALIZE_PASS_DEPENDENCY(LCSSAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScalarEvolutionWrapperPass)
|
|
}
|
|
|
|
/// Find string metadata for loop
|
|
///
|
|
/// If it has a value (e.g. {"llvm.distribute", 1} return the value as an
|
|
/// operand or null otherwise. If the string metadata is not found return
|
|
/// Optional's not-a-value.
|
|
Optional<const MDOperand *> llvm::findStringMetadataForLoop(const Loop *TheLoop,
|
|
StringRef Name) {
|
|
MDNode *MD = findOptionMDForLoop(TheLoop, Name);
|
|
if (!MD)
|
|
return None;
|
|
switch (MD->getNumOperands()) {
|
|
case 1:
|
|
return nullptr;
|
|
case 2:
|
|
return &MD->getOperand(1);
|
|
default:
|
|
llvm_unreachable("loop metadata has 0 or 1 operand");
|
|
}
|
|
}
|
|
|
|
static Optional<bool> getOptionalBoolLoopAttribute(const Loop *TheLoop,
|
|
StringRef Name) {
|
|
MDNode *MD = findOptionMDForLoop(TheLoop, Name);
|
|
if (!MD)
|
|
return None;
|
|
switch (MD->getNumOperands()) {
|
|
case 1:
|
|
// When the value is absent it is interpreted as 'attribute set'.
|
|
return true;
|
|
case 2:
|
|
if (ConstantInt *IntMD =
|
|
mdconst::extract_or_null<ConstantInt>(MD->getOperand(1).get()))
|
|
return IntMD->getZExtValue();
|
|
return true;
|
|
}
|
|
llvm_unreachable("unexpected number of options");
|
|
}
|
|
|
|
static bool getBooleanLoopAttribute(const Loop *TheLoop, StringRef Name) {
|
|
return getOptionalBoolLoopAttribute(TheLoop, Name).getValueOr(false);
|
|
}
|
|
|
|
llvm::Optional<int> llvm::getOptionalIntLoopAttribute(Loop *TheLoop,
|
|
StringRef Name) {
|
|
const MDOperand *AttrMD =
|
|
findStringMetadataForLoop(TheLoop, Name).getValueOr(nullptr);
|
|
if (!AttrMD)
|
|
return None;
|
|
|
|
ConstantInt *IntMD = mdconst::extract_or_null<ConstantInt>(AttrMD->get());
|
|
if (!IntMD)
|
|
return None;
|
|
|
|
return IntMD->getSExtValue();
|
|
}
|
|
|
|
Optional<MDNode *> llvm::makeFollowupLoopID(
|
|
MDNode *OrigLoopID, ArrayRef<StringRef> FollowupOptions,
|
|
const char *InheritOptionsExceptPrefix, bool AlwaysNew) {
|
|
if (!OrigLoopID) {
|
|
if (AlwaysNew)
|
|
return nullptr;
|
|
return None;
|
|
}
|
|
|
|
assert(OrigLoopID->getOperand(0) == OrigLoopID);
|
|
|
|
bool InheritAllAttrs = !InheritOptionsExceptPrefix;
|
|
bool InheritSomeAttrs =
|
|
InheritOptionsExceptPrefix && InheritOptionsExceptPrefix[0] != '\0';
|
|
SmallVector<Metadata *, 8> MDs;
|
|
MDs.push_back(nullptr);
|
|
|
|
bool Changed = false;
|
|
if (InheritAllAttrs || InheritSomeAttrs) {
|
|
for (const MDOperand &Existing : drop_begin(OrigLoopID->operands(), 1)) {
|
|
MDNode *Op = cast<MDNode>(Existing.get());
|
|
|
|
auto InheritThisAttribute = [InheritSomeAttrs,
|
|
InheritOptionsExceptPrefix](MDNode *Op) {
|
|
if (!InheritSomeAttrs)
|
|
return false;
|
|
|
|
// Skip malformatted attribute metadata nodes.
|
|
if (Op->getNumOperands() == 0)
|
|
return true;
|
|
Metadata *NameMD = Op->getOperand(0).get();
|
|
if (!isa<MDString>(NameMD))
|
|
return true;
|
|
StringRef AttrName = cast<MDString>(NameMD)->getString();
|
|
|
|
// Do not inherit excluded attributes.
|
|
return !AttrName.startswith(InheritOptionsExceptPrefix);
|
|
};
|
|
|
|
if (InheritThisAttribute(Op))
|
|
MDs.push_back(Op);
|
|
else
|
|
Changed = true;
|
|
}
|
|
} else {
|
|
// Modified if we dropped at least one attribute.
|
|
Changed = OrigLoopID->getNumOperands() > 1;
|
|
}
|
|
|
|
bool HasAnyFollowup = false;
|
|
for (StringRef OptionName : FollowupOptions) {
|
|
MDNode *FollowupNode = findOptionMDForLoopID(OrigLoopID, OptionName);
|
|
if (!FollowupNode)
|
|
continue;
|
|
|
|
HasAnyFollowup = true;
|
|
for (const MDOperand &Option : drop_begin(FollowupNode->operands(), 1)) {
|
|
MDs.push_back(Option.get());
|
|
Changed = true;
|
|
}
|
|
}
|
|
|
|
// Attributes of the followup loop not specified explicity, so signal to the
|
|
// transformation pass to add suitable attributes.
|
|
if (!AlwaysNew && !HasAnyFollowup)
|
|
return None;
|
|
|
|
// If no attributes were added or remove, the previous loop Id can be reused.
|
|
if (!AlwaysNew && !Changed)
|
|
return OrigLoopID;
|
|
|
|
// No attributes is equivalent to having no !llvm.loop metadata at all.
|
|
if (MDs.size() == 1)
|
|
return nullptr;
|
|
|
|
// Build the new loop ID.
|
|
MDTuple *FollowupLoopID = MDNode::get(OrigLoopID->getContext(), MDs);
|
|
FollowupLoopID->replaceOperandWith(0, FollowupLoopID);
|
|
return FollowupLoopID;
|
|
}
|
|
|
|
bool llvm::hasDisableAllTransformsHint(const Loop *L) {
|
|
return getBooleanLoopAttribute(L, LLVMLoopDisableNonforced);
|
|
}
|
|
|
|
TransformationMode llvm::hasUnrollTransformation(Loop *L) {
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.disable"))
|
|
return TM_SuppressedByUser;
|
|
|
|
Optional<int> Count =
|
|
getOptionalIntLoopAttribute(L, "llvm.loop.unroll.count");
|
|
if (Count.hasValue())
|
|
return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
|
|
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.enable"))
|
|
return TM_ForcedByUser;
|
|
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.unroll.full"))
|
|
return TM_ForcedByUser;
|
|
|
|
if (hasDisableAllTransformsHint(L))
|
|
return TM_Disable;
|
|
|
|
return TM_Unspecified;
|
|
}
|
|
|
|
TransformationMode llvm::hasUnrollAndJamTransformation(Loop *L) {
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.disable"))
|
|
return TM_SuppressedByUser;
|
|
|
|
Optional<int> Count =
|
|
getOptionalIntLoopAttribute(L, "llvm.loop.unroll_and_jam.count");
|
|
if (Count.hasValue())
|
|
return Count.getValue() == 1 ? TM_SuppressedByUser : TM_ForcedByUser;
|
|
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.unroll_and_jam.enable"))
|
|
return TM_ForcedByUser;
|
|
|
|
if (hasDisableAllTransformsHint(L))
|
|
return TM_Disable;
|
|
|
|
return TM_Unspecified;
|
|
}
|
|
|
|
TransformationMode llvm::hasVectorizeTransformation(Loop *L) {
|
|
Optional<bool> Enable =
|
|
getOptionalBoolLoopAttribute(L, "llvm.loop.vectorize.enable");
|
|
|
|
if (Enable == false)
|
|
return TM_SuppressedByUser;
|
|
|
|
Optional<int> VectorizeWidth =
|
|
getOptionalIntLoopAttribute(L, "llvm.loop.vectorize.width");
|
|
Optional<int> InterleaveCount =
|
|
getOptionalIntLoopAttribute(L, "llvm.loop.interleave.count");
|
|
|
|
// 'Forcing' vector width and interleave count to one effectively disables
|
|
// this tranformation.
|
|
if (Enable == true && VectorizeWidth == 1 && InterleaveCount == 1)
|
|
return TM_SuppressedByUser;
|
|
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.isvectorized"))
|
|
return TM_Disable;
|
|
|
|
if (Enable == true)
|
|
return TM_ForcedByUser;
|
|
|
|
if (VectorizeWidth == 1 && InterleaveCount == 1)
|
|
return TM_Disable;
|
|
|
|
if (VectorizeWidth > 1 || InterleaveCount > 1)
|
|
return TM_Enable;
|
|
|
|
if (hasDisableAllTransformsHint(L))
|
|
return TM_Disable;
|
|
|
|
return TM_Unspecified;
|
|
}
|
|
|
|
TransformationMode llvm::hasDistributeTransformation(Loop *L) {
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.distribute.enable"))
|
|
return TM_ForcedByUser;
|
|
|
|
if (hasDisableAllTransformsHint(L))
|
|
return TM_Disable;
|
|
|
|
return TM_Unspecified;
|
|
}
|
|
|
|
TransformationMode llvm::hasLICMVersioningTransformation(Loop *L) {
|
|
if (getBooleanLoopAttribute(L, "llvm.loop.licm_versioning.disable"))
|
|
return TM_SuppressedByUser;
|
|
|
|
if (hasDisableAllTransformsHint(L))
|
|
return TM_Disable;
|
|
|
|
return TM_Unspecified;
|
|
}
|
|
|
|
/// Does a BFS from a given node to all of its children inside a given loop.
|
|
/// The returned vector of nodes includes the starting point.
|
|
SmallVector<DomTreeNode *, 16>
|
|
llvm::collectChildrenInLoop(DomTreeNode *N, const Loop *CurLoop) {
|
|
SmallVector<DomTreeNode *, 16> Worklist;
|
|
auto AddRegionToWorklist = [&](DomTreeNode *DTN) {
|
|
// Only include subregions in the top level loop.
|
|
BasicBlock *BB = DTN->getBlock();
|
|
if (CurLoop->contains(BB))
|
|
Worklist.push_back(DTN);
|
|
};
|
|
|
|
AddRegionToWorklist(N);
|
|
|
|
for (size_t I = 0; I < Worklist.size(); I++)
|
|
for (DomTreeNode *Child : Worklist[I]->getChildren())
|
|
AddRegionToWorklist(Child);
|
|
|
|
return Worklist;
|
|
}
|
|
|
|
void llvm::deleteDeadLoop(Loop *L, DominatorTree *DT = nullptr,
|
|
ScalarEvolution *SE = nullptr,
|
|
LoopInfo *LI = nullptr) {
|
|
assert((!DT || L->isLCSSAForm(*DT)) && "Expected LCSSA!");
|
|
auto *Preheader = L->getLoopPreheader();
|
|
assert(Preheader && "Preheader should exist!");
|
|
|
|
// Now that we know the removal is safe, remove the loop by changing the
|
|
// branch from the preheader to go to the single exit block.
|
|
//
|
|
// Because we're deleting a large chunk of code at once, the sequence in which
|
|
// we remove things is very important to avoid invalidation issues.
|
|
|
|
// Tell ScalarEvolution that the loop is deleted. Do this before
|
|
// deleting the loop so that ScalarEvolution can look at the loop
|
|
// to determine what it needs to clean up.
|
|
if (SE)
|
|
SE->forgetLoop(L);
|
|
|
|
auto *ExitBlock = L->getUniqueExitBlock();
|
|
assert(ExitBlock && "Should have a unique exit block!");
|
|
assert(L->hasDedicatedExits() && "Loop should have dedicated exits!");
|
|
|
|
auto *OldBr = dyn_cast<BranchInst>(Preheader->getTerminator());
|
|
assert(OldBr && "Preheader must end with a branch");
|
|
assert(OldBr->isUnconditional() && "Preheader must have a single successor");
|
|
// Connect the preheader to the exit block. Keep the old edge to the header
|
|
// around to perform the dominator tree update in two separate steps
|
|
// -- #1 insertion of the edge preheader -> exit and #2 deletion of the edge
|
|
// preheader -> header.
|
|
//
|
|
//
|
|
// 0. Preheader 1. Preheader 2. Preheader
|
|
// | | | |
|
|
// V | V |
|
|
// Header <--\ | Header <--\ | Header <--\
|
|
// | | | | | | | | | | |
|
|
// | V | | | V | | | V |
|
|
// | Body --/ | | Body --/ | | Body --/
|
|
// V V V V V
|
|
// Exit Exit Exit
|
|
//
|
|
// By doing this is two separate steps we can perform the dominator tree
|
|
// update without using the batch update API.
|
|
//
|
|
// Even when the loop is never executed, we cannot remove the edge from the
|
|
// source block to the exit block. Consider the case where the unexecuted loop
|
|
// branches back to an outer loop. If we deleted the loop and removed the edge
|
|
// coming to this inner loop, this will break the outer loop structure (by
|
|
// deleting the backedge of the outer loop). If the outer loop is indeed a
|
|
// non-loop, it will be deleted in a future iteration of loop deletion pass.
|
|
IRBuilder<> Builder(OldBr);
|
|
Builder.CreateCondBr(Builder.getFalse(), L->getHeader(), ExitBlock);
|
|
// Remove the old branch. The conditional branch becomes a new terminator.
|
|
OldBr->eraseFromParent();
|
|
|
|
// Rewrite phis in the exit block to get their inputs from the Preheader
|
|
// instead of the exiting block.
|
|
for (PHINode &P : ExitBlock->phis()) {
|
|
// Set the zero'th element of Phi to be from the preheader and remove all
|
|
// other incoming values. Given the loop has dedicated exits, all other
|
|
// incoming values must be from the exiting blocks.
|
|
int PredIndex = 0;
|
|
P.setIncomingBlock(PredIndex, Preheader);
|
|
// Removes all incoming values from all other exiting blocks (including
|
|
// duplicate values from an exiting block).
|
|
// Nuke all entries except the zero'th entry which is the preheader entry.
|
|
// NOTE! We need to remove Incoming Values in the reverse order as done
|
|
// below, to keep the indices valid for deletion (removeIncomingValues
|
|
// updates getNumIncomingValues and shifts all values down into the operand
|
|
// being deleted).
|
|
for (unsigned i = 0, e = P.getNumIncomingValues() - 1; i != e; ++i)
|
|
P.removeIncomingValue(e - i, false);
|
|
|
|
assert((P.getNumIncomingValues() == 1 &&
|
|
P.getIncomingBlock(PredIndex) == Preheader) &&
|
|
"Should have exactly one value and that's from the preheader!");
|
|
}
|
|
|
|
// Disconnect the loop body by branching directly to its exit.
|
|
Builder.SetInsertPoint(Preheader->getTerminator());
|
|
Builder.CreateBr(ExitBlock);
|
|
// Remove the old branch.
|
|
Preheader->getTerminator()->eraseFromParent();
|
|
|
|
DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Eager);
|
|
if (DT) {
|
|
// Update the dominator tree by informing it about the new edge from the
|
|
// preheader to the exit and the removed edge.
|
|
DTU.applyUpdates({{DominatorTree::Insert, Preheader, ExitBlock},
|
|
{DominatorTree::Delete, Preheader, L->getHeader()}});
|
|
}
|
|
|
|
// Use a map to unique and a vector to guarantee deterministic ordering.
|
|
llvm::SmallDenseSet<std::pair<DIVariable *, DIExpression *>, 4> DeadDebugSet;
|
|
llvm::SmallVector<DbgVariableIntrinsic *, 4> DeadDebugInst;
|
|
|
|
// Given LCSSA form is satisfied, we should not have users of instructions
|
|
// within the dead loop outside of the loop. However, LCSSA doesn't take
|
|
// unreachable uses into account. We handle them here.
|
|
// We could do it after drop all references (in this case all users in the
|
|
// loop will be already eliminated and we have less work to do but according
|
|
// to API doc of User::dropAllReferences only valid operation after dropping
|
|
// references, is deletion. So let's substitute all usages of
|
|
// instruction from the loop with undef value of corresponding type first.
|
|
for (auto *Block : L->blocks())
|
|
for (Instruction &I : *Block) {
|
|
auto *Undef = UndefValue::get(I.getType());
|
|
for (Value::use_iterator UI = I.use_begin(), E = I.use_end(); UI != E;) {
|
|
Use &U = *UI;
|
|
++UI;
|
|
if (auto *Usr = dyn_cast<Instruction>(U.getUser()))
|
|
if (L->contains(Usr->getParent()))
|
|
continue;
|
|
// If we have a DT then we can check that uses outside a loop only in
|
|
// unreachable block.
|
|
if (DT)
|
|
assert(!DT->isReachableFromEntry(U) &&
|
|
"Unexpected user in reachable block");
|
|
U.set(Undef);
|
|
}
|
|
auto *DVI = dyn_cast<DbgVariableIntrinsic>(&I);
|
|
if (!DVI)
|
|
continue;
|
|
auto Key = DeadDebugSet.find({DVI->getVariable(), DVI->getExpression()});
|
|
if (Key != DeadDebugSet.end())
|
|
continue;
|
|
DeadDebugSet.insert({DVI->getVariable(), DVI->getExpression()});
|
|
DeadDebugInst.push_back(DVI);
|
|
}
|
|
|
|
// After the loop has been deleted all the values defined and modified
|
|
// inside the loop are going to be unavailable.
|
|
// Since debug values in the loop have been deleted, inserting an undef
|
|
// dbg.value truncates the range of any dbg.value before the loop where the
|
|
// loop used to be. This is particularly important for constant values.
|
|
DIBuilder DIB(*ExitBlock->getModule());
|
|
for (auto *DVI : DeadDebugInst)
|
|
DIB.insertDbgValueIntrinsic(
|
|
UndefValue::get(Builder.getInt32Ty()), DVI->getVariable(),
|
|
DVI->getExpression(), DVI->getDebugLoc(), ExitBlock->getFirstNonPHI());
|
|
|
|
// Remove the block from the reference counting scheme, so that we can
|
|
// delete it freely later.
|
|
for (auto *Block : L->blocks())
|
|
Block->dropAllReferences();
|
|
|
|
if (LI) {
|
|
// Erase the instructions and the blocks without having to worry
|
|
// about ordering because we already dropped the references.
|
|
// NOTE: This iteration is safe because erasing the block does not remove
|
|
// its entry from the loop's block list. We do that in the next section.
|
|
for (Loop::block_iterator LpI = L->block_begin(), LpE = L->block_end();
|
|
LpI != LpE; ++LpI)
|
|
(*LpI)->eraseFromParent();
|
|
|
|
// Finally, the blocks from loopinfo. This has to happen late because
|
|
// otherwise our loop iterators won't work.
|
|
|
|
SmallPtrSet<BasicBlock *, 8> blocks;
|
|
blocks.insert(L->block_begin(), L->block_end());
|
|
for (BasicBlock *BB : blocks)
|
|
LI->removeBlock(BB);
|
|
|
|
// The last step is to update LoopInfo now that we've eliminated this loop.
|
|
LI->erase(L);
|
|
}
|
|
}
|
|
|
|
Optional<unsigned> llvm::getLoopEstimatedTripCount(Loop *L) {
|
|
// Only support loops with a unique exiting block, and a latch.
|
|
if (!L->getExitingBlock())
|
|
return None;
|
|
|
|
// Get the branch weights for the loop's backedge.
|
|
BranchInst *LatchBR =
|
|
dyn_cast<BranchInst>(L->getLoopLatch()->getTerminator());
|
|
if (!LatchBR || LatchBR->getNumSuccessors() != 2)
|
|
return None;
|
|
|
|
assert((LatchBR->getSuccessor(0) == L->getHeader() ||
|
|
LatchBR->getSuccessor(1) == L->getHeader()) &&
|
|
"At least one edge out of the latch must go to the header");
|
|
|
|
// To estimate the number of times the loop body was executed, we want to
|
|
// know the number of times the backedge was taken, vs. the number of times
|
|
// we exited the loop.
|
|
uint64_t TrueVal, FalseVal;
|
|
if (!LatchBR->extractProfMetadata(TrueVal, FalseVal))
|
|
return None;
|
|
|
|
if (!TrueVal || !FalseVal)
|
|
return 0;
|
|
|
|
// Divide the count of the backedge by the count of the edge exiting the loop,
|
|
// rounding to nearest.
|
|
if (LatchBR->getSuccessor(0) == L->getHeader())
|
|
return (TrueVal + (FalseVal / 2)) / FalseVal;
|
|
else
|
|
return (FalseVal + (TrueVal / 2)) / TrueVal;
|
|
}
|
|
|
|
bool llvm::hasIterationCountInvariantInParent(Loop *InnerLoop,
|
|
ScalarEvolution &SE) {
|
|
Loop *OuterL = InnerLoop->getParentLoop();
|
|
if (!OuterL)
|
|
return true;
|
|
|
|
// Get the backedge taken count for the inner loop
|
|
BasicBlock *InnerLoopLatch = InnerLoop->getLoopLatch();
|
|
const SCEV *InnerLoopBECountSC = SE.getExitCount(InnerLoop, InnerLoopLatch);
|
|
if (isa<SCEVCouldNotCompute>(InnerLoopBECountSC) ||
|
|
!InnerLoopBECountSC->getType()->isIntegerTy())
|
|
return false;
|
|
|
|
// Get whether count is invariant to the outer loop
|
|
ScalarEvolution::LoopDisposition LD =
|
|
SE.getLoopDisposition(InnerLoopBECountSC, OuterL);
|
|
if (LD != ScalarEvolution::LoopInvariant)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
static Value *addFastMathFlag(Value *V, FastMathFlags FMF) {
|
|
if (isa<FPMathOperator>(V))
|
|
cast<Instruction>(V)->setFastMathFlags(FMF);
|
|
return V;
|
|
}
|
|
|
|
Value *llvm::createMinMaxOp(IRBuilder<> &Builder,
|
|
RecurrenceDescriptor::MinMaxRecurrenceKind RK,
|
|
Value *Left, Value *Right) {
|
|
CmpInst::Predicate P = CmpInst::ICMP_NE;
|
|
switch (RK) {
|
|
default:
|
|
llvm_unreachable("Unknown min/max recurrence kind");
|
|
case RecurrenceDescriptor::MRK_UIntMin:
|
|
P = CmpInst::ICMP_ULT;
|
|
break;
|
|
case RecurrenceDescriptor::MRK_UIntMax:
|
|
P = CmpInst::ICMP_UGT;
|
|
break;
|
|
case RecurrenceDescriptor::MRK_SIntMin:
|
|
P = CmpInst::ICMP_SLT;
|
|
break;
|
|
case RecurrenceDescriptor::MRK_SIntMax:
|
|
P = CmpInst::ICMP_SGT;
|
|
break;
|
|
case RecurrenceDescriptor::MRK_FloatMin:
|
|
P = CmpInst::FCMP_OLT;
|
|
break;
|
|
case RecurrenceDescriptor::MRK_FloatMax:
|
|
P = CmpInst::FCMP_OGT;
|
|
break;
|
|
}
|
|
|
|
// We only match FP sequences that are 'fast', so we can unconditionally
|
|
// set it on any generated instructions.
|
|
IRBuilder<>::FastMathFlagGuard FMFG(Builder);
|
|
FastMathFlags FMF;
|
|
FMF.setFast();
|
|
Builder.setFastMathFlags(FMF);
|
|
|
|
Value *Cmp;
|
|
if (RK == RecurrenceDescriptor::MRK_FloatMin ||
|
|
RK == RecurrenceDescriptor::MRK_FloatMax)
|
|
Cmp = Builder.CreateFCmp(P, Left, Right, "rdx.minmax.cmp");
|
|
else
|
|
Cmp = Builder.CreateICmp(P, Left, Right, "rdx.minmax.cmp");
|
|
|
|
Value *Select = Builder.CreateSelect(Cmp, Left, Right, "rdx.minmax.select");
|
|
return Select;
|
|
}
|
|
|
|
// Helper to generate an ordered reduction.
|
|
Value *
|
|
llvm::getOrderedReduction(IRBuilder<> &Builder, Value *Acc, Value *Src,
|
|
unsigned Op,
|
|
RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
|
|
ArrayRef<Value *> RedOps) {
|
|
unsigned VF = Src->getType()->getVectorNumElements();
|
|
|
|
// Extract and apply reduction ops in ascending order:
|
|
// e.g. ((((Acc + Scl[0]) + Scl[1]) + Scl[2]) + ) ... + Scl[VF-1]
|
|
Value *Result = Acc;
|
|
for (unsigned ExtractIdx = 0; ExtractIdx != VF; ++ExtractIdx) {
|
|
Value *Ext =
|
|
Builder.CreateExtractElement(Src, Builder.getInt32(ExtractIdx));
|
|
|
|
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
|
|
Result = Builder.CreateBinOp((Instruction::BinaryOps)Op, Result, Ext,
|
|
"bin.rdx");
|
|
} else {
|
|
assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
|
|
"Invalid min/max");
|
|
Result = createMinMaxOp(Builder, MinMaxKind, Result, Ext);
|
|
}
|
|
|
|
if (!RedOps.empty())
|
|
propagateIRFlags(Result, RedOps);
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Helper to generate a log2 shuffle reduction.
|
|
Value *
|
|
llvm::getShuffleReduction(IRBuilder<> &Builder, Value *Src, unsigned Op,
|
|
RecurrenceDescriptor::MinMaxRecurrenceKind MinMaxKind,
|
|
FastMathFlags FMF, ArrayRef<Value *> RedOps) {
|
|
unsigned VF = Src->getType()->getVectorNumElements();
|
|
// VF is a power of 2 so we can emit the reduction using log2(VF) shuffles
|
|
// and vector ops, reducing the set of values being computed by half each
|
|
// round.
|
|
assert(isPowerOf2_32(VF) &&
|
|
"Reduction emission only supported for pow2 vectors!");
|
|
Value *TmpVec = Src;
|
|
SmallVector<Constant *, 32> ShuffleMask(VF, nullptr);
|
|
for (unsigned i = VF; i != 1; i >>= 1) {
|
|
// Move the upper half of the vector to the lower half.
|
|
for (unsigned j = 0; j != i / 2; ++j)
|
|
ShuffleMask[j] = Builder.getInt32(i / 2 + j);
|
|
|
|
// Fill the rest of the mask with undef.
|
|
std::fill(&ShuffleMask[i / 2], ShuffleMask.end(),
|
|
UndefValue::get(Builder.getInt32Ty()));
|
|
|
|
Value *Shuf = Builder.CreateShuffleVector(
|
|
TmpVec, UndefValue::get(TmpVec->getType()),
|
|
ConstantVector::get(ShuffleMask), "rdx.shuf");
|
|
|
|
if (Op != Instruction::ICmp && Op != Instruction::FCmp) {
|
|
// Floating point operations had to be 'fast' to enable the reduction.
|
|
TmpVec = addFastMathFlag(Builder.CreateBinOp((Instruction::BinaryOps)Op,
|
|
TmpVec, Shuf, "bin.rdx"),
|
|
FMF);
|
|
} else {
|
|
assert(MinMaxKind != RecurrenceDescriptor::MRK_Invalid &&
|
|
"Invalid min/max");
|
|
TmpVec = createMinMaxOp(Builder, MinMaxKind, TmpVec, Shuf);
|
|
}
|
|
if (!RedOps.empty())
|
|
propagateIRFlags(TmpVec, RedOps);
|
|
}
|
|
// The result is in the first element of the vector.
|
|
return Builder.CreateExtractElement(TmpVec, Builder.getInt32(0));
|
|
}
|
|
|
|
/// Create a simple vector reduction specified by an opcode and some
|
|
/// flags (if generating min/max reductions).
|
|
Value *llvm::createSimpleTargetReduction(
|
|
IRBuilder<> &Builder, const TargetTransformInfo *TTI, unsigned Opcode,
|
|
Value *Src, TargetTransformInfo::ReductionFlags Flags, FastMathFlags FMF,
|
|
ArrayRef<Value *> RedOps) {
|
|
assert(isa<VectorType>(Src->getType()) && "Type must be a vector");
|
|
|
|
Value *ScalarUdf = UndefValue::get(Src->getType()->getVectorElementType());
|
|
std::function<Value *()> BuildFunc;
|
|
using RD = RecurrenceDescriptor;
|
|
RD::MinMaxRecurrenceKind MinMaxKind = RD::MRK_Invalid;
|
|
// TODO: Support creating ordered reductions.
|
|
FastMathFlags FMFFast;
|
|
FMFFast.setFast();
|
|
|
|
switch (Opcode) {
|
|
case Instruction::Add:
|
|
BuildFunc = [&]() { return Builder.CreateAddReduce(Src); };
|
|
break;
|
|
case Instruction::Mul:
|
|
BuildFunc = [&]() { return Builder.CreateMulReduce(Src); };
|
|
break;
|
|
case Instruction::And:
|
|
BuildFunc = [&]() { return Builder.CreateAndReduce(Src); };
|
|
break;
|
|
case Instruction::Or:
|
|
BuildFunc = [&]() { return Builder.CreateOrReduce(Src); };
|
|
break;
|
|
case Instruction::Xor:
|
|
BuildFunc = [&]() { return Builder.CreateXorReduce(Src); };
|
|
break;
|
|
case Instruction::FAdd:
|
|
BuildFunc = [&]() {
|
|
auto Rdx = Builder.CreateFAddReduce(ScalarUdf, Src);
|
|
cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
|
|
return Rdx;
|
|
};
|
|
break;
|
|
case Instruction::FMul:
|
|
BuildFunc = [&]() {
|
|
auto Rdx = Builder.CreateFMulReduce(ScalarUdf, Src);
|
|
cast<CallInst>(Rdx)->setFastMathFlags(FMFFast);
|
|
return Rdx;
|
|
};
|
|
break;
|
|
case Instruction::ICmp:
|
|
if (Flags.IsMaxOp) {
|
|
MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMax : RD::MRK_UIntMax;
|
|
BuildFunc = [&]() {
|
|
return Builder.CreateIntMaxReduce(Src, Flags.IsSigned);
|
|
};
|
|
} else {
|
|
MinMaxKind = Flags.IsSigned ? RD::MRK_SIntMin : RD::MRK_UIntMin;
|
|
BuildFunc = [&]() {
|
|
return Builder.CreateIntMinReduce(Src, Flags.IsSigned);
|
|
};
|
|
}
|
|
break;
|
|
case Instruction::FCmp:
|
|
if (Flags.IsMaxOp) {
|
|
MinMaxKind = RD::MRK_FloatMax;
|
|
BuildFunc = [&]() { return Builder.CreateFPMaxReduce(Src, Flags.NoNaN); };
|
|
} else {
|
|
MinMaxKind = RD::MRK_FloatMin;
|
|
BuildFunc = [&]() { return Builder.CreateFPMinReduce(Src, Flags.NoNaN); };
|
|
}
|
|
break;
|
|
default:
|
|
llvm_unreachable("Unhandled opcode");
|
|
break;
|
|
}
|
|
if (TTI->useReductionIntrinsic(Opcode, Src->getType(), Flags))
|
|
return BuildFunc();
|
|
return getShuffleReduction(Builder, Src, Opcode, MinMaxKind, FMF, RedOps);
|
|
}
|
|
|
|
/// Create a vector reduction using a given recurrence descriptor.
|
|
Value *llvm::createTargetReduction(IRBuilder<> &B,
|
|
const TargetTransformInfo *TTI,
|
|
RecurrenceDescriptor &Desc, Value *Src,
|
|
bool NoNaN) {
|
|
// TODO: Support in-order reductions based on the recurrence descriptor.
|
|
using RD = RecurrenceDescriptor;
|
|
RD::RecurrenceKind RecKind = Desc.getRecurrenceKind();
|
|
TargetTransformInfo::ReductionFlags Flags;
|
|
Flags.NoNaN = NoNaN;
|
|
switch (RecKind) {
|
|
case RD::RK_FloatAdd:
|
|
return createSimpleTargetReduction(B, TTI, Instruction::FAdd, Src, Flags,
|
|
Desc.getFastMathFlags());
|
|
case RD::RK_FloatMult:
|
|
return createSimpleTargetReduction(B, TTI, Instruction::FMul, Src, Flags,
|
|
Desc.getFastMathFlags());
|
|
case RD::RK_IntegerAdd:
|
|
return createSimpleTargetReduction(B, TTI, Instruction::Add, Src, Flags,
|
|
Desc.getFastMathFlags());
|
|
case RD::RK_IntegerMult:
|
|
return createSimpleTargetReduction(B, TTI, Instruction::Mul, Src, Flags,
|
|
Desc.getFastMathFlags());
|
|
case RD::RK_IntegerAnd:
|
|
return createSimpleTargetReduction(B, TTI, Instruction::And, Src, Flags,
|
|
Desc.getFastMathFlags());
|
|
case RD::RK_IntegerOr:
|
|
return createSimpleTargetReduction(B, TTI, Instruction::Or, Src, Flags,
|
|
Desc.getFastMathFlags());
|
|
case RD::RK_IntegerXor:
|
|
return createSimpleTargetReduction(B, TTI, Instruction::Xor, Src, Flags,
|
|
Desc.getFastMathFlags());
|
|
case RD::RK_IntegerMinMax: {
|
|
RD::MinMaxRecurrenceKind MMKind = Desc.getMinMaxRecurrenceKind();
|
|
Flags.IsMaxOp = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_UIntMax);
|
|
Flags.IsSigned = (MMKind == RD::MRK_SIntMax || MMKind == RD::MRK_SIntMin);
|
|
return createSimpleTargetReduction(B, TTI, Instruction::ICmp, Src, Flags,
|
|
Desc.getFastMathFlags());
|
|
}
|
|
case RD::RK_FloatMinMax: {
|
|
Flags.IsMaxOp = Desc.getMinMaxRecurrenceKind() == RD::MRK_FloatMax;
|
|
return createSimpleTargetReduction(B, TTI, Instruction::FCmp, Src, Flags,
|
|
Desc.getFastMathFlags());
|
|
}
|
|
default:
|
|
llvm_unreachable("Unhandled RecKind");
|
|
}
|
|
}
|
|
|
|
void llvm::propagateIRFlags(Value *I, ArrayRef<Value *> VL, Value *OpValue) {
|
|
auto *VecOp = dyn_cast<Instruction>(I);
|
|
if (!VecOp)
|
|
return;
|
|
auto *Intersection = (OpValue == nullptr) ? dyn_cast<Instruction>(VL[0])
|
|
: dyn_cast<Instruction>(OpValue);
|
|
if (!Intersection)
|
|
return;
|
|
const unsigned Opcode = Intersection->getOpcode();
|
|
VecOp->copyIRFlags(Intersection);
|
|
for (auto *V : VL) {
|
|
auto *Instr = dyn_cast<Instruction>(V);
|
|
if (!Instr)
|
|
continue;
|
|
if (OpValue == nullptr || Opcode == Instr->getOpcode())
|
|
VecOp->andIRFlags(V);
|
|
}
|
|
}
|
|
|
|
bool llvm::isKnownNegativeInLoop(const SCEV *S, const Loop *L,
|
|
ScalarEvolution &SE) {
|
|
const SCEV *Zero = SE.getZero(S->getType());
|
|
return SE.isAvailableAtLoopEntry(S, L) &&
|
|
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SLT, S, Zero);
|
|
}
|
|
|
|
bool llvm::isKnownNonNegativeInLoop(const SCEV *S, const Loop *L,
|
|
ScalarEvolution &SE) {
|
|
const SCEV *Zero = SE.getZero(S->getType());
|
|
return SE.isAvailableAtLoopEntry(S, L) &&
|
|
SE.isLoopEntryGuardedByCond(L, ICmpInst::ICMP_SGE, S, Zero);
|
|
}
|
|
|
|
bool llvm::cannotBeMinInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
|
|
bool Signed) {
|
|
unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
|
|
APInt Min = Signed ? APInt::getSignedMinValue(BitWidth) :
|
|
APInt::getMinValue(BitWidth);
|
|
auto Predicate = Signed ? ICmpInst::ICMP_SGT : ICmpInst::ICMP_UGT;
|
|
return SE.isAvailableAtLoopEntry(S, L) &&
|
|
SE.isLoopEntryGuardedByCond(L, Predicate, S,
|
|
SE.getConstant(Min));
|
|
}
|
|
|
|
bool llvm::cannotBeMaxInLoop(const SCEV *S, const Loop *L, ScalarEvolution &SE,
|
|
bool Signed) {
|
|
unsigned BitWidth = cast<IntegerType>(S->getType())->getBitWidth();
|
|
APInt Max = Signed ? APInt::getSignedMaxValue(BitWidth) :
|
|
APInt::getMaxValue(BitWidth);
|
|
auto Predicate = Signed ? ICmpInst::ICMP_SLT : ICmpInst::ICMP_ULT;
|
|
return SE.isAvailableAtLoopEntry(S, L) &&
|
|
SE.isLoopEntryGuardedByCond(L, Predicate, S,
|
|
SE.getConstant(Max));
|
|
}
|