forked from OSchip/llvm-project
2463 lines
87 KiB
C++
2463 lines
87 KiB
C++
//===-- HexagonFrameLowering.cpp - Define frame lowering ------------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#define DEBUG_TYPE "hexagon-pei"
|
|
|
|
#include "HexagonBlockRanges.h"
|
|
#include "HexagonFrameLowering.h"
|
|
#include "HexagonInstrInfo.h"
|
|
#include "HexagonMachineFunctionInfo.h"
|
|
#include "HexagonRegisterInfo.h"
|
|
#include "HexagonSubtarget.h"
|
|
#include "HexagonTargetMachine.h"
|
|
#include "MCTargetDesc/HexagonBaseInfo.h"
|
|
#include "llvm/ADT/BitVector.h"
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/PostOrderIterator.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/CodeGen/LivePhysRegs.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineInstrBuilder.h"
|
|
#include "llvm/CodeGen/MachineMemOperand.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachinePostDominators.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/RegisterScavenging.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/MC/MCDwarf.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/CodeGen.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include "llvm/Target/TargetRegisterInfo.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cstdint>
|
|
#include <iterator>
|
|
#include <limits>
|
|
#include <map>
|
|
#include <new>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
// Hexagon stack frame layout as defined by the ABI:
|
|
//
|
|
// Incoming arguments
|
|
// passed via stack
|
|
// |
|
|
// |
|
|
// SP during function's FP during function's |
|
|
// +-- runtime (top of stack) runtime (bottom) --+ |
|
|
// | | |
|
|
// --++---------------------+------------------+-----------------++-+-------
|
|
// | parameter area for | variable-size | fixed-size |LR| arg
|
|
// | called functions | local objects | local objects |FP|
|
|
// --+----------------------+------------------+-----------------+--+-------
|
|
// <- size known -> <- size unknown -> <- size known ->
|
|
//
|
|
// Low address High address
|
|
//
|
|
// <--- stack growth
|
|
//
|
|
//
|
|
// - In any circumstances, the outgoing function arguments are always accessi-
|
|
// ble using the SP, and the incoming arguments are accessible using the FP.
|
|
// - If the local objects are not aligned, they can always be accessed using
|
|
// the FP.
|
|
// - If there are no variable-sized objects, the local objects can always be
|
|
// accessed using the SP, regardless whether they are aligned or not. (The
|
|
// alignment padding will be at the bottom of the stack (highest address),
|
|
// and so the offset with respect to the SP will be known at the compile-
|
|
// -time.)
|
|
//
|
|
// The only complication occurs if there are both, local aligned objects, and
|
|
// dynamically allocated (variable-sized) objects. The alignment pad will be
|
|
// placed between the FP and the local objects, thus preventing the use of the
|
|
// FP to access the local objects. At the same time, the variable-sized objects
|
|
// will be between the SP and the local objects, thus introducing an unknown
|
|
// distance from the SP to the locals.
|
|
//
|
|
// To avoid this problem, a new register is created that holds the aligned
|
|
// address of the bottom of the stack, referred in the sources as AP (aligned
|
|
// pointer). The AP will be equal to "FP-p", where "p" is the smallest pad
|
|
// that aligns AP to the required boundary (a maximum of the alignments of
|
|
// all stack objects, fixed- and variable-sized). All local objects[1] will
|
|
// then use AP as the base pointer.
|
|
// [1] The exception is with "fixed" stack objects. "Fixed" stack objects get
|
|
// their name from being allocated at fixed locations on the stack, relative
|
|
// to the FP. In the presence of dynamic allocation and local alignment, such
|
|
// objects can only be accessed through the FP.
|
|
//
|
|
// Illustration of the AP:
|
|
// FP --+
|
|
// |
|
|
// ---------------+---------------------+-----+-----------------------++-+--
|
|
// Rest of the | Local stack objects | Pad | Fixed stack objects |LR|
|
|
// stack frame | (aligned) | | (CSR, spills, etc.) |FP|
|
|
// ---------------+---------------------+-----+-----------------+-----+--+--
|
|
// |<-- Multiple of the -->|
|
|
// stack alignment +-- AP
|
|
//
|
|
// The AP is set up at the beginning of the function. Since it is not a dedi-
|
|
// cated (reserved) register, it needs to be kept live throughout the function
|
|
// to be available as the base register for local object accesses.
|
|
// Normally, an address of a stack objects is obtained by a pseudo-instruction
|
|
// PS_fi. To access local objects with the AP register present, a different
|
|
// pseudo-instruction needs to be used: PS_fia. The PS_fia takes one extra
|
|
// argument compared to PS_fi: the first input register is the AP register.
|
|
// This keeps the register live between its definition and its uses.
|
|
|
|
// The AP register is originally set up using pseudo-instruction PS_aligna:
|
|
// AP = PS_aligna A
|
|
// where
|
|
// A - required stack alignment
|
|
// The alignment value must be the maximum of all alignments required by
|
|
// any stack object.
|
|
|
|
// The dynamic allocation uses a pseudo-instruction PS_alloca:
|
|
// Rd = PS_alloca Rs, A
|
|
// where
|
|
// Rd - address of the allocated space
|
|
// Rs - minimum size (the actual allocated can be larger to accommodate
|
|
// alignment)
|
|
// A - required alignment
|
|
|
|
using namespace llvm;
|
|
|
|
static cl::opt<bool> DisableDeallocRet("disable-hexagon-dealloc-ret",
|
|
cl::Hidden, cl::desc("Disable Dealloc Return for Hexagon target"));
|
|
|
|
static cl::opt<unsigned> NumberScavengerSlots("number-scavenger-slots",
|
|
cl::Hidden, cl::desc("Set the number of scavenger slots"), cl::init(2),
|
|
cl::ZeroOrMore);
|
|
|
|
static cl::opt<int> SpillFuncThreshold("spill-func-threshold",
|
|
cl::Hidden, cl::desc("Specify O2(not Os) spill func threshold"),
|
|
cl::init(6), cl::ZeroOrMore);
|
|
|
|
static cl::opt<int> SpillFuncThresholdOs("spill-func-threshold-Os",
|
|
cl::Hidden, cl::desc("Specify Os spill func threshold"),
|
|
cl::init(1), cl::ZeroOrMore);
|
|
|
|
static cl::opt<bool> EnableStackOVFSanitizer("enable-stackovf-sanitizer",
|
|
cl::Hidden, cl::desc("Enable runtime checks for stack overflow."),
|
|
cl::init(false), cl::ZeroOrMore);
|
|
|
|
static cl::opt<bool> EnableShrinkWrapping("hexagon-shrink-frame",
|
|
cl::init(true), cl::Hidden, cl::ZeroOrMore,
|
|
cl::desc("Enable stack frame shrink wrapping"));
|
|
|
|
static cl::opt<unsigned> ShrinkLimit("shrink-frame-limit",
|
|
cl::init(std::numeric_limits<unsigned>::max()), cl::Hidden, cl::ZeroOrMore,
|
|
cl::desc("Max count of stack frame shrink-wraps"));
|
|
|
|
static cl::opt<bool> EnableSaveRestoreLong("enable-save-restore-long",
|
|
cl::Hidden, cl::desc("Enable long calls for save-restore stubs."),
|
|
cl::init(false), cl::ZeroOrMore);
|
|
|
|
static cl::opt<bool> UseAllocframe("use-allocframe", cl::init(true),
|
|
cl::Hidden, cl::desc("Use allocframe more conservatively"));
|
|
|
|
static cl::opt<bool> OptimizeSpillSlots("hexagon-opt-spill", cl::Hidden,
|
|
cl::init(true), cl::desc("Optimize spill slots"));
|
|
|
|
#ifndef NDEBUG
|
|
static cl::opt<unsigned> SpillOptMax("spill-opt-max", cl::Hidden,
|
|
cl::init(std::numeric_limits<unsigned>::max()));
|
|
static unsigned SpillOptCount = 0;
|
|
#endif
|
|
|
|
namespace llvm {
|
|
|
|
void initializeHexagonCallFrameInformationPass(PassRegistry&);
|
|
FunctionPass *createHexagonCallFrameInformation();
|
|
|
|
} // end namespace llvm
|
|
|
|
namespace {
|
|
|
|
class HexagonCallFrameInformation : public MachineFunctionPass {
|
|
public:
|
|
static char ID;
|
|
|
|
HexagonCallFrameInformation() : MachineFunctionPass(ID) {
|
|
PassRegistry &PR = *PassRegistry::getPassRegistry();
|
|
initializeHexagonCallFrameInformationPass(PR);
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
MachineFunctionProperties getRequiredProperties() const override {
|
|
return MachineFunctionProperties().set(
|
|
MachineFunctionProperties::Property::NoVRegs);
|
|
}
|
|
};
|
|
|
|
char HexagonCallFrameInformation::ID = 0;
|
|
|
|
} // end anonymous namespace
|
|
|
|
bool HexagonCallFrameInformation::runOnMachineFunction(MachineFunction &MF) {
|
|
auto &HFI = *MF.getSubtarget<HexagonSubtarget>().getFrameLowering();
|
|
bool NeedCFI = MF.getMMI().hasDebugInfo() ||
|
|
MF.getFunction()->needsUnwindTableEntry();
|
|
|
|
if (!NeedCFI)
|
|
return false;
|
|
HFI.insertCFIInstructions(MF);
|
|
return true;
|
|
}
|
|
|
|
INITIALIZE_PASS(HexagonCallFrameInformation, "hexagon-cfi",
|
|
"Hexagon call frame information", false, false)
|
|
|
|
FunctionPass *llvm::createHexagonCallFrameInformation() {
|
|
return new HexagonCallFrameInformation();
|
|
}
|
|
|
|
/// Map a register pair Reg to the subregister that has the greater "number",
|
|
/// i.e. D3 (aka R7:6) will be mapped to R7, etc.
|
|
static unsigned getMax32BitSubRegister(unsigned Reg,
|
|
const TargetRegisterInfo &TRI,
|
|
bool hireg = true) {
|
|
if (Reg < Hexagon::D0 || Reg > Hexagon::D15)
|
|
return Reg;
|
|
|
|
unsigned RegNo = 0;
|
|
for (MCSubRegIterator SubRegs(Reg, &TRI); SubRegs.isValid(); ++SubRegs) {
|
|
if (hireg) {
|
|
if (*SubRegs > RegNo)
|
|
RegNo = *SubRegs;
|
|
} else {
|
|
if (!RegNo || *SubRegs < RegNo)
|
|
RegNo = *SubRegs;
|
|
}
|
|
}
|
|
return RegNo;
|
|
}
|
|
|
|
/// Returns the callee saved register with the largest id in the vector.
|
|
static unsigned getMaxCalleeSavedReg(const std::vector<CalleeSavedInfo> &CSI,
|
|
const TargetRegisterInfo &TRI) {
|
|
static_assert(Hexagon::R1 > 0,
|
|
"Assume physical registers are encoded as positive integers");
|
|
if (CSI.empty())
|
|
return 0;
|
|
|
|
unsigned Max = getMax32BitSubRegister(CSI[0].getReg(), TRI);
|
|
for (unsigned I = 1, E = CSI.size(); I < E; ++I) {
|
|
unsigned Reg = getMax32BitSubRegister(CSI[I].getReg(), TRI);
|
|
if (Reg > Max)
|
|
Max = Reg;
|
|
}
|
|
return Max;
|
|
}
|
|
|
|
/// Checks if the basic block contains any instruction that needs a stack
|
|
/// frame to be already in place.
|
|
static bool needsStackFrame(const MachineBasicBlock &MBB, const BitVector &CSR,
|
|
const HexagonRegisterInfo &HRI) {
|
|
for (auto &I : MBB) {
|
|
const MachineInstr *MI = &I;
|
|
if (MI->isCall())
|
|
return true;
|
|
unsigned Opc = MI->getOpcode();
|
|
switch (Opc) {
|
|
case Hexagon::PS_alloca:
|
|
case Hexagon::PS_aligna:
|
|
return true;
|
|
default:
|
|
break;
|
|
}
|
|
// Check individual operands.
|
|
for (const MachineOperand &MO : MI->operands()) {
|
|
// While the presence of a frame index does not prove that a stack
|
|
// frame will be required, all frame indexes should be within alloc-
|
|
// frame/deallocframe. Otherwise, the code that translates a frame
|
|
// index into an offset would have to be aware of the placement of
|
|
// the frame creation/destruction instructions.
|
|
if (MO.isFI())
|
|
return true;
|
|
if (MO.isReg()) {
|
|
unsigned R = MO.getReg();
|
|
// Virtual registers will need scavenging, which then may require
|
|
// a stack slot.
|
|
if (TargetRegisterInfo::isVirtualRegister(R))
|
|
return true;
|
|
for (MCSubRegIterator S(R, &HRI, true); S.isValid(); ++S)
|
|
if (CSR[*S])
|
|
return true;
|
|
continue;
|
|
}
|
|
if (MO.isRegMask()) {
|
|
// A regmask would normally have all callee-saved registers marked
|
|
// as preserved, so this check would not be needed, but in case of
|
|
// ever having other regmasks (for other calling conventions),
|
|
// make sure they would be processed correctly.
|
|
const uint32_t *BM = MO.getRegMask();
|
|
for (int x = CSR.find_first(); x >= 0; x = CSR.find_next(x)) {
|
|
unsigned R = x;
|
|
// If this regmask does not preserve a CSR, a frame will be needed.
|
|
if (!(BM[R/32] & (1u << (R%32))))
|
|
return true;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
return false;
|
|
}
|
|
|
|
/// Returns true if MBB has a machine instructions that indicates a tail call
|
|
/// in the block.
|
|
static bool hasTailCall(const MachineBasicBlock &MBB) {
|
|
MachineBasicBlock::const_iterator I = MBB.getLastNonDebugInstr();
|
|
unsigned RetOpc = I->getOpcode();
|
|
return RetOpc == Hexagon::PS_tailcall_i || RetOpc == Hexagon::PS_tailcall_r;
|
|
}
|
|
|
|
/// Returns true if MBB contains an instruction that returns.
|
|
static bool hasReturn(const MachineBasicBlock &MBB) {
|
|
for (auto I = MBB.getFirstTerminator(), E = MBB.end(); I != E; ++I)
|
|
if (I->isReturn())
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
/// Returns the "return" instruction from this block, or nullptr if there
|
|
/// isn't any.
|
|
static MachineInstr *getReturn(MachineBasicBlock &MBB) {
|
|
for (auto &I : MBB)
|
|
if (I.isReturn())
|
|
return &I;
|
|
return nullptr;
|
|
}
|
|
|
|
static bool isRestoreCall(unsigned Opc) {
|
|
switch (Opc) {
|
|
case Hexagon::RESTORE_DEALLOC_RET_JMP_V4:
|
|
case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC:
|
|
case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT:
|
|
case Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC:
|
|
case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT:
|
|
case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC:
|
|
case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4:
|
|
case Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC:
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static inline bool isOptNone(const MachineFunction &MF) {
|
|
return MF.getFunction()->hasFnAttribute(Attribute::OptimizeNone) ||
|
|
MF.getTarget().getOptLevel() == CodeGenOpt::None;
|
|
}
|
|
|
|
static inline bool isOptSize(const MachineFunction &MF) {
|
|
const Function &F = *MF.getFunction();
|
|
return F.optForSize() && !F.optForMinSize();
|
|
}
|
|
|
|
static inline bool isMinSize(const MachineFunction &MF) {
|
|
return MF.getFunction()->optForMinSize();
|
|
}
|
|
|
|
/// Implements shrink-wrapping of the stack frame. By default, stack frame
|
|
/// is created in the function entry block, and is cleaned up in every block
|
|
/// that returns. This function finds alternate blocks: one for the frame
|
|
/// setup (prolog) and one for the cleanup (epilog).
|
|
void HexagonFrameLowering::findShrunkPrologEpilog(MachineFunction &MF,
|
|
MachineBasicBlock *&PrologB, MachineBasicBlock *&EpilogB) const {
|
|
static unsigned ShrinkCounter = 0;
|
|
|
|
if (ShrinkLimit.getPosition()) {
|
|
if (ShrinkCounter >= ShrinkLimit)
|
|
return;
|
|
ShrinkCounter++;
|
|
}
|
|
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
|
|
MachineDominatorTree MDT;
|
|
MDT.runOnMachineFunction(MF);
|
|
MachinePostDominatorTree MPT;
|
|
MPT.runOnMachineFunction(MF);
|
|
|
|
typedef DenseMap<unsigned,unsigned> UnsignedMap;
|
|
UnsignedMap RPO;
|
|
typedef ReversePostOrderTraversal<const MachineFunction*> RPOTType;
|
|
RPOTType RPOT(&MF);
|
|
unsigned RPON = 0;
|
|
for (RPOTType::rpo_iterator I = RPOT.begin(), E = RPOT.end(); I != E; ++I)
|
|
RPO[(*I)->getNumber()] = RPON++;
|
|
|
|
// Don't process functions that have loops, at least for now. Placement
|
|
// of prolog and epilog must take loop structure into account. For simpli-
|
|
// city don't do it right now.
|
|
for (auto &I : MF) {
|
|
unsigned BN = RPO[I.getNumber()];
|
|
for (auto SI = I.succ_begin(), SE = I.succ_end(); SI != SE; ++SI) {
|
|
// If found a back-edge, return.
|
|
if (RPO[(*SI)->getNumber()] <= BN)
|
|
return;
|
|
}
|
|
}
|
|
|
|
// Collect the set of blocks that need a stack frame to execute. Scan
|
|
// each block for uses/defs of callee-saved registers, calls, etc.
|
|
SmallVector<MachineBasicBlock*,16> SFBlocks;
|
|
BitVector CSR(Hexagon::NUM_TARGET_REGS);
|
|
for (const MCPhysReg *P = HRI.getCalleeSavedRegs(&MF); *P; ++P)
|
|
for (MCSubRegIterator S(*P, &HRI, true); S.isValid(); ++S)
|
|
CSR[*S] = true;
|
|
|
|
for (auto &I : MF)
|
|
if (needsStackFrame(I, CSR, HRI))
|
|
SFBlocks.push_back(&I);
|
|
|
|
DEBUG({
|
|
dbgs() << "Blocks needing SF: {";
|
|
for (auto &B : SFBlocks)
|
|
dbgs() << " BB#" << B->getNumber();
|
|
dbgs() << " }\n";
|
|
});
|
|
// No frame needed?
|
|
if (SFBlocks.empty())
|
|
return;
|
|
|
|
// Pick a common dominator and a common post-dominator.
|
|
MachineBasicBlock *DomB = SFBlocks[0];
|
|
for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
|
|
DomB = MDT.findNearestCommonDominator(DomB, SFBlocks[i]);
|
|
if (!DomB)
|
|
break;
|
|
}
|
|
MachineBasicBlock *PDomB = SFBlocks[0];
|
|
for (unsigned i = 1, n = SFBlocks.size(); i < n; ++i) {
|
|
PDomB = MPT.findNearestCommonDominator(PDomB, SFBlocks[i]);
|
|
if (!PDomB)
|
|
break;
|
|
}
|
|
DEBUG({
|
|
dbgs() << "Computed dom block: BB#";
|
|
if (DomB) dbgs() << DomB->getNumber();
|
|
else dbgs() << "<null>";
|
|
dbgs() << ", computed pdom block: BB#";
|
|
if (PDomB) dbgs() << PDomB->getNumber();
|
|
else dbgs() << "<null>";
|
|
dbgs() << "\n";
|
|
});
|
|
if (!DomB || !PDomB)
|
|
return;
|
|
|
|
// Make sure that DomB dominates PDomB and PDomB post-dominates DomB.
|
|
if (!MDT.dominates(DomB, PDomB)) {
|
|
DEBUG(dbgs() << "Dom block does not dominate pdom block\n");
|
|
return;
|
|
}
|
|
if (!MPT.dominates(PDomB, DomB)) {
|
|
DEBUG(dbgs() << "PDom block does not post-dominate dom block\n");
|
|
return;
|
|
}
|
|
|
|
// Finally, everything seems right.
|
|
PrologB = DomB;
|
|
EpilogB = PDomB;
|
|
}
|
|
|
|
/// Perform most of the PEI work here:
|
|
/// - saving/restoring of the callee-saved registers,
|
|
/// - stack frame creation and destruction.
|
|
/// Normally, this work is distributed among various functions, but doing it
|
|
/// in one place allows shrink-wrapping of the stack frame.
|
|
void HexagonFrameLowering::emitPrologue(MachineFunction &MF,
|
|
MachineBasicBlock &MBB) const {
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
|
|
|
|
MachineBasicBlock *PrologB = &MF.front(), *EpilogB = nullptr;
|
|
if (EnableShrinkWrapping)
|
|
findShrunkPrologEpilog(MF, PrologB, EpilogB);
|
|
|
|
bool PrologueStubs = false;
|
|
insertCSRSpillsInBlock(*PrologB, CSI, HRI, PrologueStubs);
|
|
insertPrologueInBlock(*PrologB, PrologueStubs);
|
|
updateEntryPaths(MF, *PrologB);
|
|
|
|
if (EpilogB) {
|
|
insertCSRRestoresInBlock(*EpilogB, CSI, HRI);
|
|
insertEpilogueInBlock(*EpilogB);
|
|
} else {
|
|
for (auto &B : MF)
|
|
if (B.isReturnBlock())
|
|
insertCSRRestoresInBlock(B, CSI, HRI);
|
|
|
|
for (auto &B : MF)
|
|
if (B.isReturnBlock())
|
|
insertEpilogueInBlock(B);
|
|
|
|
for (auto &B : MF) {
|
|
if (B.empty())
|
|
continue;
|
|
MachineInstr *RetI = getReturn(B);
|
|
if (!RetI || isRestoreCall(RetI->getOpcode()))
|
|
continue;
|
|
for (auto &R : CSI)
|
|
RetI->addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
|
|
}
|
|
}
|
|
|
|
if (EpilogB) {
|
|
// If there is an epilog block, it may not have a return instruction.
|
|
// In such case, we need to add the callee-saved registers as live-ins
|
|
// in all blocks on all paths from the epilog to any return block.
|
|
unsigned MaxBN = MF.getNumBlockIDs();
|
|
BitVector DoneT(MaxBN+1), DoneF(MaxBN+1), Path(MaxBN+1);
|
|
updateExitPaths(*EpilogB, *EpilogB, DoneT, DoneF, Path);
|
|
}
|
|
}
|
|
|
|
void HexagonFrameLowering::insertPrologueInBlock(MachineBasicBlock &MBB,
|
|
bool PrologueStubs) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &HII = *HST.getInstrInfo();
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
DebugLoc dl;
|
|
|
|
unsigned MaxAlign = std::max(MFI.getMaxAlignment(), getStackAlignment());
|
|
|
|
// Calculate the total stack frame size.
|
|
// Get the number of bytes to allocate from the FrameInfo.
|
|
unsigned FrameSize = MFI.getStackSize();
|
|
// Round up the max call frame size to the max alignment on the stack.
|
|
unsigned MaxCFA = alignTo(MFI.getMaxCallFrameSize(), MaxAlign);
|
|
MFI.setMaxCallFrameSize(MaxCFA);
|
|
|
|
FrameSize = MaxCFA + alignTo(FrameSize, MaxAlign);
|
|
MFI.setStackSize(FrameSize);
|
|
|
|
bool AlignStack = (MaxAlign > getStackAlignment());
|
|
|
|
// Get the number of bytes to allocate from the FrameInfo.
|
|
unsigned NumBytes = MFI.getStackSize();
|
|
unsigned SP = HRI.getStackRegister();
|
|
unsigned MaxCF = MFI.getMaxCallFrameSize();
|
|
MachineBasicBlock::iterator InsertPt = MBB.begin();
|
|
|
|
SmallVector<MachineInstr *, 4> AdjustRegs;
|
|
for (auto &MBB : MF)
|
|
for (auto &MI : MBB)
|
|
if (MI.getOpcode() == Hexagon::PS_alloca)
|
|
AdjustRegs.push_back(&MI);
|
|
|
|
for (auto MI : AdjustRegs) {
|
|
assert((MI->getOpcode() == Hexagon::PS_alloca) && "Expected alloca");
|
|
expandAlloca(MI, HII, SP, MaxCF);
|
|
MI->eraseFromParent();
|
|
}
|
|
|
|
if (!hasFP(MF))
|
|
return;
|
|
|
|
// Check for overflow.
|
|
// Hexagon_TODO: Ugh! hardcoding. Is there an API that can be used?
|
|
const unsigned int ALLOCFRAME_MAX = 16384;
|
|
|
|
// Create a dummy memory operand to avoid allocframe from being treated as
|
|
// a volatile memory reference.
|
|
MachineMemOperand *MMO =
|
|
MF.getMachineMemOperand(MachinePointerInfo(), MachineMemOperand::MOStore,
|
|
4, 4);
|
|
|
|
if (NumBytes >= ALLOCFRAME_MAX) {
|
|
// Emit allocframe(#0).
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
|
|
.addImm(0)
|
|
.addMemOperand(MMO);
|
|
|
|
// Subtract offset from frame pointer.
|
|
// We use a caller-saved non-parameter register for that.
|
|
unsigned CallerSavedReg = HRI.getFirstCallerSavedNonParamReg();
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::CONST32),
|
|
CallerSavedReg).addImm(NumBytes);
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_sub), SP)
|
|
.addReg(SP)
|
|
.addReg(CallerSavedReg);
|
|
} else {
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::S2_allocframe))
|
|
.addImm(NumBytes)
|
|
.addMemOperand(MMO);
|
|
}
|
|
|
|
if (AlignStack) {
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::A2_andir), SP)
|
|
.addReg(SP)
|
|
.addImm(-int64_t(MaxAlign));
|
|
}
|
|
|
|
// If the stack-checking is enabled, and we spilled the callee-saved
|
|
// registers inline (i.e. did not use a spill function), then call
|
|
// the stack checker directly.
|
|
if (EnableStackOVFSanitizer && !PrologueStubs)
|
|
BuildMI(MBB, InsertPt, dl, HII.get(Hexagon::PS_call_stk))
|
|
.addExternalSymbol("__runtime_stack_check");
|
|
}
|
|
|
|
void HexagonFrameLowering::insertEpilogueInBlock(MachineBasicBlock &MBB) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
if (!hasFP(MF))
|
|
return;
|
|
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &HII = *HST.getInstrInfo();
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
unsigned SP = HRI.getStackRegister();
|
|
|
|
MachineInstr *RetI = getReturn(MBB);
|
|
unsigned RetOpc = RetI ? RetI->getOpcode() : 0;
|
|
|
|
MachineBasicBlock::iterator InsertPt = MBB.getFirstTerminator();
|
|
DebugLoc DL;
|
|
if (InsertPt != MBB.end())
|
|
DL = InsertPt->getDebugLoc();
|
|
else if (!MBB.empty())
|
|
DL = std::prev(MBB.end())->getDebugLoc();
|
|
|
|
// Handle EH_RETURN.
|
|
if (RetOpc == Hexagon::EH_RETURN_JMPR) {
|
|
BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
|
|
BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::A2_add), SP)
|
|
.addReg(SP)
|
|
.addReg(Hexagon::R28);
|
|
return;
|
|
}
|
|
|
|
// Check for RESTORE_DEALLOC_RET* tail call. Don't emit an extra dealloc-
|
|
// frame instruction if we encounter it.
|
|
if (RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4 ||
|
|
RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC ||
|
|
RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT ||
|
|
RetOpc == Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC) {
|
|
MachineBasicBlock::iterator It = RetI;
|
|
++It;
|
|
// Delete all instructions after the RESTORE (except labels).
|
|
while (It != MBB.end()) {
|
|
if (!It->isLabel())
|
|
It = MBB.erase(It);
|
|
else
|
|
++It;
|
|
}
|
|
return;
|
|
}
|
|
|
|
// It is possible that the restoring code is a call to a library function.
|
|
// All of the restore* functions include "deallocframe", so we need to make
|
|
// sure that we don't add an extra one.
|
|
bool NeedsDeallocframe = true;
|
|
if (!MBB.empty() && InsertPt != MBB.begin()) {
|
|
MachineBasicBlock::iterator PrevIt = std::prev(InsertPt);
|
|
unsigned COpc = PrevIt->getOpcode();
|
|
if (COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4 ||
|
|
COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC ||
|
|
COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT ||
|
|
COpc == Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC ||
|
|
COpc == Hexagon::PS_call_nr || COpc == Hexagon::PS_callr_nr)
|
|
NeedsDeallocframe = false;
|
|
}
|
|
|
|
if (!NeedsDeallocframe)
|
|
return;
|
|
// If the returning instruction is PS_jmpret, replace it with dealloc_return,
|
|
// otherwise just add deallocframe. The function could be returning via a
|
|
// tail call.
|
|
if (RetOpc != Hexagon::PS_jmpret || DisableDeallocRet) {
|
|
BuildMI(MBB, InsertPt, DL, HII.get(Hexagon::L2_deallocframe));
|
|
return;
|
|
}
|
|
unsigned NewOpc = Hexagon::L4_return;
|
|
MachineInstr *NewI = BuildMI(MBB, RetI, DL, HII.get(NewOpc));
|
|
// Transfer the function live-out registers.
|
|
NewI->copyImplicitOps(MF, *RetI);
|
|
MBB.erase(RetI);
|
|
}
|
|
|
|
void HexagonFrameLowering::updateEntryPaths(MachineFunction &MF,
|
|
MachineBasicBlock &SaveB) const {
|
|
SetVector<unsigned> Worklist;
|
|
|
|
MachineBasicBlock &EntryB = MF.front();
|
|
Worklist.insert(EntryB.getNumber());
|
|
|
|
unsigned SaveN = SaveB.getNumber();
|
|
auto &CSI = MF.getFrameInfo().getCalleeSavedInfo();
|
|
|
|
for (unsigned i = 0; i < Worklist.size(); ++i) {
|
|
unsigned BN = Worklist[i];
|
|
MachineBasicBlock &MBB = *MF.getBlockNumbered(BN);
|
|
for (auto &R : CSI)
|
|
if (!MBB.isLiveIn(R.getReg()))
|
|
MBB.addLiveIn(R.getReg());
|
|
if (BN != SaveN)
|
|
for (auto &SB : MBB.successors())
|
|
Worklist.insert(SB->getNumber());
|
|
}
|
|
}
|
|
|
|
bool HexagonFrameLowering::updateExitPaths(MachineBasicBlock &MBB,
|
|
MachineBasicBlock &RestoreB, BitVector &DoneT, BitVector &DoneF,
|
|
BitVector &Path) const {
|
|
assert(MBB.getNumber() >= 0);
|
|
unsigned BN = MBB.getNumber();
|
|
if (Path[BN] || DoneF[BN])
|
|
return false;
|
|
if (DoneT[BN])
|
|
return true;
|
|
|
|
auto &CSI = MBB.getParent()->getFrameInfo().getCalleeSavedInfo();
|
|
|
|
Path[BN] = true;
|
|
bool ReachedExit = false;
|
|
for (auto &SB : MBB.successors())
|
|
ReachedExit |= updateExitPaths(*SB, RestoreB, DoneT, DoneF, Path);
|
|
|
|
if (!MBB.empty() && MBB.back().isReturn()) {
|
|
// Add implicit uses of all callee-saved registers to the reached
|
|
// return instructions. This is to prevent the anti-dependency breaker
|
|
// from renaming these registers.
|
|
MachineInstr &RetI = MBB.back();
|
|
if (!isRestoreCall(RetI.getOpcode()))
|
|
for (auto &R : CSI)
|
|
RetI.addOperand(MachineOperand::CreateReg(R.getReg(), false, true));
|
|
ReachedExit = true;
|
|
}
|
|
|
|
// We don't want to add unnecessary live-ins to the restore block: since
|
|
// the callee-saved registers are being defined in it, the entry of the
|
|
// restore block cannot be on the path from the definitions to any exit.
|
|
if (ReachedExit && &MBB != &RestoreB) {
|
|
for (auto &R : CSI)
|
|
if (!MBB.isLiveIn(R.getReg()))
|
|
MBB.addLiveIn(R.getReg());
|
|
DoneT[BN] = true;
|
|
}
|
|
if (!ReachedExit)
|
|
DoneF[BN] = true;
|
|
|
|
Path[BN] = false;
|
|
return ReachedExit;
|
|
}
|
|
|
|
static Optional<MachineBasicBlock::iterator>
|
|
findCFILocation(MachineBasicBlock &B) {
|
|
// The CFI instructions need to be inserted right after allocframe.
|
|
// An exception to this is a situation where allocframe is bundled
|
|
// with a call: then the CFI instructions need to be inserted before
|
|
// the packet with the allocframe+call (in case the call throws an
|
|
// exception).
|
|
auto End = B.instr_end();
|
|
|
|
for (MachineInstr &I : B) {
|
|
MachineBasicBlock::iterator It = I.getIterator();
|
|
if (!I.isBundle()) {
|
|
if (I.getOpcode() == Hexagon::S2_allocframe)
|
|
return std::next(It);
|
|
continue;
|
|
}
|
|
// I is a bundle.
|
|
bool HasCall = false, HasAllocFrame = false;
|
|
auto T = It.getInstrIterator();
|
|
while (++T != End && T->isBundled()) {
|
|
if (T->getOpcode() == Hexagon::S2_allocframe)
|
|
HasAllocFrame = true;
|
|
else if (T->isCall())
|
|
HasCall = true;
|
|
}
|
|
if (HasAllocFrame)
|
|
return HasCall ? It : std::next(It);
|
|
}
|
|
return None;
|
|
}
|
|
|
|
void HexagonFrameLowering::insertCFIInstructions(MachineFunction &MF) const {
|
|
for (auto &B : MF) {
|
|
auto At = findCFILocation(B);
|
|
if (At.hasValue())
|
|
insertCFIInstructionsAt(B, At.getValue());
|
|
}
|
|
}
|
|
|
|
void HexagonFrameLowering::insertCFIInstructionsAt(MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator At) const {
|
|
MachineFunction &MF = *MBB.getParent();
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineModuleInfo &MMI = MF.getMMI();
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &HII = *HST.getInstrInfo();
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
|
|
// If CFI instructions have debug information attached, something goes
|
|
// wrong with the final assembly generation: the prolog_end is placed
|
|
// in a wrong location.
|
|
DebugLoc DL;
|
|
const MCInstrDesc &CFID = HII.get(TargetOpcode::CFI_INSTRUCTION);
|
|
|
|
MCSymbol *FrameLabel = MMI.getContext().createTempSymbol();
|
|
bool HasFP = hasFP(MF);
|
|
|
|
if (HasFP) {
|
|
unsigned DwFPReg = HRI.getDwarfRegNum(HRI.getFrameRegister(), true);
|
|
unsigned DwRAReg = HRI.getDwarfRegNum(HRI.getRARegister(), true);
|
|
|
|
// Define CFA via an offset from the value of FP.
|
|
//
|
|
// -8 -4 0 (SP)
|
|
// --+----+----+---------------------
|
|
// | FP | LR | increasing addresses -->
|
|
// --+----+----+---------------------
|
|
// | +-- Old SP (before allocframe)
|
|
// +-- New FP (after allocframe)
|
|
//
|
|
// MCCFIInstruction::createDefCfa subtracts the offset from the register.
|
|
// MCCFIInstruction::createOffset takes the offset without sign change.
|
|
auto DefCfa = MCCFIInstruction::createDefCfa(FrameLabel, DwFPReg, -8);
|
|
BuildMI(MBB, At, DL, CFID)
|
|
.addCFIIndex(MF.addFrameInst(DefCfa));
|
|
// R31 (return addr) = CFA - 4
|
|
auto OffR31 = MCCFIInstruction::createOffset(FrameLabel, DwRAReg, -4);
|
|
BuildMI(MBB, At, DL, CFID)
|
|
.addCFIIndex(MF.addFrameInst(OffR31));
|
|
// R30 (frame ptr) = CFA - 8
|
|
auto OffR30 = MCCFIInstruction::createOffset(FrameLabel, DwFPReg, -8);
|
|
BuildMI(MBB, At, DL, CFID)
|
|
.addCFIIndex(MF.addFrameInst(OffR30));
|
|
}
|
|
|
|
static unsigned int RegsToMove[] = {
|
|
Hexagon::R1, Hexagon::R0, Hexagon::R3, Hexagon::R2,
|
|
Hexagon::R17, Hexagon::R16, Hexagon::R19, Hexagon::R18,
|
|
Hexagon::R21, Hexagon::R20, Hexagon::R23, Hexagon::R22,
|
|
Hexagon::R25, Hexagon::R24, Hexagon::R27, Hexagon::R26,
|
|
Hexagon::D0, Hexagon::D1, Hexagon::D8, Hexagon::D9,
|
|
Hexagon::D10, Hexagon::D11, Hexagon::D12, Hexagon::D13,
|
|
Hexagon::NoRegister
|
|
};
|
|
|
|
const std::vector<CalleeSavedInfo> &CSI = MFI.getCalleeSavedInfo();
|
|
|
|
for (unsigned i = 0; RegsToMove[i] != Hexagon::NoRegister; ++i) {
|
|
unsigned Reg = RegsToMove[i];
|
|
auto IfR = [Reg] (const CalleeSavedInfo &C) -> bool {
|
|
return C.getReg() == Reg;
|
|
};
|
|
auto F = find_if(CSI, IfR);
|
|
if (F == CSI.end())
|
|
continue;
|
|
|
|
int64_t Offset;
|
|
if (HasFP) {
|
|
// If the function has a frame pointer (i.e. has an allocframe),
|
|
// then the CFA has been defined in terms of FP. Any offsets in
|
|
// the following CFI instructions have to be defined relative
|
|
// to FP, which points to the bottom of the stack frame.
|
|
// The function getFrameIndexReference can still choose to use SP
|
|
// for the offset calculation, so we cannot simply call it here.
|
|
// Instead, get the offset (relative to the FP) directly.
|
|
Offset = MFI.getObjectOffset(F->getFrameIdx());
|
|
} else {
|
|
unsigned FrameReg;
|
|
Offset = getFrameIndexReference(MF, F->getFrameIdx(), FrameReg);
|
|
}
|
|
// Subtract 8 to make room for R30 and R31, which are added above.
|
|
Offset -= 8;
|
|
|
|
if (Reg < Hexagon::D0 || Reg > Hexagon::D15) {
|
|
unsigned DwarfReg = HRI.getDwarfRegNum(Reg, true);
|
|
auto OffReg = MCCFIInstruction::createOffset(FrameLabel, DwarfReg,
|
|
Offset);
|
|
BuildMI(MBB, At, DL, CFID)
|
|
.addCFIIndex(MF.addFrameInst(OffReg));
|
|
} else {
|
|
// Split the double regs into subregs, and generate appropriate
|
|
// cfi_offsets.
|
|
// The only reason, we are split double regs is, llvm-mc does not
|
|
// understand paired registers for cfi_offset.
|
|
// Eg .cfi_offset r1:0, -64
|
|
|
|
unsigned HiReg = HRI.getSubReg(Reg, Hexagon::isub_hi);
|
|
unsigned LoReg = HRI.getSubReg(Reg, Hexagon::isub_lo);
|
|
unsigned HiDwarfReg = HRI.getDwarfRegNum(HiReg, true);
|
|
unsigned LoDwarfReg = HRI.getDwarfRegNum(LoReg, true);
|
|
auto OffHi = MCCFIInstruction::createOffset(FrameLabel, HiDwarfReg,
|
|
Offset+4);
|
|
BuildMI(MBB, At, DL, CFID)
|
|
.addCFIIndex(MF.addFrameInst(OffHi));
|
|
auto OffLo = MCCFIInstruction::createOffset(FrameLabel, LoDwarfReg,
|
|
Offset);
|
|
BuildMI(MBB, At, DL, CFID)
|
|
.addCFIIndex(MF.addFrameInst(OffLo));
|
|
}
|
|
}
|
|
}
|
|
|
|
bool HexagonFrameLowering::hasFP(const MachineFunction &MF) const {
|
|
auto &MFI = MF.getFrameInfo();
|
|
auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
|
|
|
|
bool HasFixed = MFI.getNumFixedObjects();
|
|
bool HasPrealloc = const_cast<MachineFrameInfo&>(MFI)
|
|
.getLocalFrameObjectCount();
|
|
bool HasExtraAlign = HRI.needsStackRealignment(MF);
|
|
bool HasAlloca = MFI.hasVarSizedObjects();
|
|
|
|
// Insert ALLOCFRAME if we need to or at -O0 for the debugger. Think
|
|
// that this shouldn't be required, but doing so now because gcc does and
|
|
// gdb can't break at the start of the function without it. Will remove if
|
|
// this turns out to be a gdb bug.
|
|
//
|
|
if (MF.getTarget().getOptLevel() == CodeGenOpt::None)
|
|
return true;
|
|
|
|
// By default we want to use SP (since it's always there). FP requires
|
|
// some setup (i.e. ALLOCFRAME).
|
|
// Fixed and preallocated objects need FP if the distance from them to
|
|
// the SP is unknown (as is with alloca or aligna).
|
|
if ((HasFixed || HasPrealloc) && (HasAlloca || HasExtraAlign))
|
|
return true;
|
|
|
|
if (MFI.getStackSize() > 0) {
|
|
if (EnableStackOVFSanitizer || UseAllocframe)
|
|
return true;
|
|
}
|
|
|
|
if (MFI.hasCalls() ||
|
|
MF.getInfo<HexagonMachineFunctionInfo>()->hasClobberLR())
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
enum SpillKind {
|
|
SK_ToMem,
|
|
SK_FromMem,
|
|
SK_FromMemTailcall
|
|
};
|
|
|
|
static const char *getSpillFunctionFor(unsigned MaxReg, SpillKind SpillType,
|
|
bool Stkchk = false) {
|
|
const char * V4SpillToMemoryFunctions[] = {
|
|
"__save_r16_through_r17",
|
|
"__save_r16_through_r19",
|
|
"__save_r16_through_r21",
|
|
"__save_r16_through_r23",
|
|
"__save_r16_through_r25",
|
|
"__save_r16_through_r27" };
|
|
|
|
const char * V4SpillToMemoryStkchkFunctions[] = {
|
|
"__save_r16_through_r17_stkchk",
|
|
"__save_r16_through_r19_stkchk",
|
|
"__save_r16_through_r21_stkchk",
|
|
"__save_r16_through_r23_stkchk",
|
|
"__save_r16_through_r25_stkchk",
|
|
"__save_r16_through_r27_stkchk" };
|
|
|
|
const char * V4SpillFromMemoryFunctions[] = {
|
|
"__restore_r16_through_r17_and_deallocframe",
|
|
"__restore_r16_through_r19_and_deallocframe",
|
|
"__restore_r16_through_r21_and_deallocframe",
|
|
"__restore_r16_through_r23_and_deallocframe",
|
|
"__restore_r16_through_r25_and_deallocframe",
|
|
"__restore_r16_through_r27_and_deallocframe" };
|
|
|
|
const char * V4SpillFromMemoryTailcallFunctions[] = {
|
|
"__restore_r16_through_r17_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r19_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r21_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r23_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r25_and_deallocframe_before_tailcall",
|
|
"__restore_r16_through_r27_and_deallocframe_before_tailcall"
|
|
};
|
|
|
|
const char **SpillFunc = nullptr;
|
|
|
|
switch(SpillType) {
|
|
case SK_ToMem:
|
|
SpillFunc = Stkchk ? V4SpillToMemoryStkchkFunctions
|
|
: V4SpillToMemoryFunctions;
|
|
break;
|
|
case SK_FromMem:
|
|
SpillFunc = V4SpillFromMemoryFunctions;
|
|
break;
|
|
case SK_FromMemTailcall:
|
|
SpillFunc = V4SpillFromMemoryTailcallFunctions;
|
|
break;
|
|
}
|
|
assert(SpillFunc && "Unknown spill kind");
|
|
|
|
// Spill all callee-saved registers up to the highest register used.
|
|
switch (MaxReg) {
|
|
case Hexagon::R17:
|
|
return SpillFunc[0];
|
|
case Hexagon::R19:
|
|
return SpillFunc[1];
|
|
case Hexagon::R21:
|
|
return SpillFunc[2];
|
|
case Hexagon::R23:
|
|
return SpillFunc[3];
|
|
case Hexagon::R25:
|
|
return SpillFunc[4];
|
|
case Hexagon::R27:
|
|
return SpillFunc[5];
|
|
default:
|
|
llvm_unreachable("Unhandled maximum callee save register");
|
|
}
|
|
return nullptr;
|
|
}
|
|
|
|
int HexagonFrameLowering::getFrameIndexReference(const MachineFunction &MF,
|
|
int FI, unsigned &FrameReg) const {
|
|
auto &MFI = MF.getFrameInfo();
|
|
auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
|
|
|
|
int Offset = MFI.getObjectOffset(FI);
|
|
bool HasAlloca = MFI.hasVarSizedObjects();
|
|
bool HasExtraAlign = HRI.needsStackRealignment(MF);
|
|
bool NoOpt = MF.getTarget().getOptLevel() == CodeGenOpt::None;
|
|
|
|
unsigned SP = HRI.getStackRegister(), FP = HRI.getFrameRegister();
|
|
auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
|
|
unsigned AP = HMFI.getStackAlignBasePhysReg();
|
|
unsigned FrameSize = MFI.getStackSize();
|
|
|
|
bool UseFP = false, UseAP = false; // Default: use SP (except at -O0).
|
|
// Use FP at -O0, except when there are objects with extra alignment.
|
|
// That additional alignment requirement may cause a pad to be inserted,
|
|
// which will make it impossible to use FP to access objects located
|
|
// past the pad.
|
|
if (NoOpt && !HasExtraAlign)
|
|
UseFP = true;
|
|
if (MFI.isFixedObjectIndex(FI) || MFI.isObjectPreAllocated(FI)) {
|
|
// Fixed and preallocated objects will be located before any padding
|
|
// so FP must be used to access them.
|
|
UseFP |= (HasAlloca || HasExtraAlign);
|
|
} else {
|
|
if (HasAlloca) {
|
|
if (HasExtraAlign)
|
|
UseAP = true;
|
|
else
|
|
UseFP = true;
|
|
}
|
|
}
|
|
|
|
// If FP was picked, then there had better be FP.
|
|
bool HasFP = hasFP(MF);
|
|
assert((HasFP || !UseFP) && "This function must have frame pointer");
|
|
|
|
// Having FP implies allocframe. Allocframe will store extra 8 bytes:
|
|
// FP/LR. If the base register is used to access an object across these
|
|
// 8 bytes, then the offset will need to be adjusted by 8.
|
|
//
|
|
// After allocframe:
|
|
// HexagonISelLowering adds 8 to ---+
|
|
// the offsets of all stack-based |
|
|
// arguments (*) |
|
|
// |
|
|
// getObjectOffset < 0 0 8 getObjectOffset >= 8
|
|
// ------------------------+-----+------------------------> increasing
|
|
// <local objects> |FP/LR| <input arguments> addresses
|
|
// -----------------+------+-----+------------------------>
|
|
// | |
|
|
// SP/AP point --+ +-- FP points here (**)
|
|
// somewhere on
|
|
// this side of FP/LR
|
|
//
|
|
// (*) See LowerFormalArguments. The FP/LR is assumed to be present.
|
|
// (**) *FP == old-FP. FP+0..7 are the bytes of FP/LR.
|
|
|
|
// The lowering assumes that FP/LR is present, and so the offsets of
|
|
// the formal arguments start at 8. If FP/LR is not there we need to
|
|
// reduce the offset by 8.
|
|
if (Offset > 0 && !HasFP)
|
|
Offset -= 8;
|
|
|
|
if (UseFP)
|
|
FrameReg = FP;
|
|
else if (UseAP)
|
|
FrameReg = AP;
|
|
else
|
|
FrameReg = SP;
|
|
|
|
// Calculate the actual offset in the instruction. If there is no FP
|
|
// (in other words, no allocframe), then SP will not be adjusted (i.e.
|
|
// there will be no SP -= FrameSize), so the frame size should not be
|
|
// added to the calculated offset.
|
|
int RealOffset = Offset;
|
|
if (!UseFP && !UseAP && HasFP)
|
|
RealOffset = FrameSize+Offset;
|
|
return RealOffset;
|
|
}
|
|
|
|
bool HexagonFrameLowering::insertCSRSpillsInBlock(MachineBasicBlock &MBB,
|
|
const CSIVect &CSI, const HexagonRegisterInfo &HRI,
|
|
bool &PrologueStubs) const {
|
|
if (CSI.empty())
|
|
return true;
|
|
|
|
MachineBasicBlock::iterator MI = MBB.begin();
|
|
PrologueStubs = false;
|
|
MachineFunction &MF = *MBB.getParent();
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &HII = *HST.getInstrInfo();
|
|
|
|
if (useSpillFunction(MF, CSI)) {
|
|
PrologueStubs = true;
|
|
unsigned MaxReg = getMaxCalleeSavedReg(CSI, HRI);
|
|
bool StkOvrFlowEnabled = EnableStackOVFSanitizer;
|
|
const char *SpillFun = getSpillFunctionFor(MaxReg, SK_ToMem,
|
|
StkOvrFlowEnabled);
|
|
auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
|
|
bool IsPIC = HTM.isPositionIndependent();
|
|
bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
|
|
|
|
// Call spill function.
|
|
DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc() : DebugLoc();
|
|
unsigned SpillOpc;
|
|
if (StkOvrFlowEnabled) {
|
|
if (LongCalls)
|
|
SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT_PIC
|
|
: Hexagon::SAVE_REGISTERS_CALL_V4STK_EXT;
|
|
else
|
|
SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4STK_PIC
|
|
: Hexagon::SAVE_REGISTERS_CALL_V4STK;
|
|
} else {
|
|
if (LongCalls)
|
|
SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_EXT_PIC
|
|
: Hexagon::SAVE_REGISTERS_CALL_V4_EXT;
|
|
else
|
|
SpillOpc = IsPIC ? Hexagon::SAVE_REGISTERS_CALL_V4_PIC
|
|
: Hexagon::SAVE_REGISTERS_CALL_V4;
|
|
}
|
|
|
|
MachineInstr *SaveRegsCall =
|
|
BuildMI(MBB, MI, DL, HII.get(SpillOpc))
|
|
.addExternalSymbol(SpillFun);
|
|
|
|
// Add callee-saved registers as use.
|
|
addCalleeSaveRegistersAsImpOperand(SaveRegsCall, CSI, false, true);
|
|
// Add live in registers.
|
|
for (unsigned I = 0; I < CSI.size(); ++I)
|
|
MBB.addLiveIn(CSI[I].getReg());
|
|
return true;
|
|
}
|
|
|
|
for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
// Add live in registers. We treat eh_return callee saved register r0 - r3
|
|
// specially. They are not really callee saved registers as they are not
|
|
// supposed to be killed.
|
|
bool IsKill = !HRI.isEHReturnCalleeSaveReg(Reg);
|
|
int FI = CSI[i].getFrameIdx();
|
|
const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
|
|
HII.storeRegToStackSlot(MBB, MI, Reg, IsKill, FI, RC, &HRI);
|
|
if (IsKill)
|
|
MBB.addLiveIn(Reg);
|
|
}
|
|
return true;
|
|
}
|
|
|
|
bool HexagonFrameLowering::insertCSRRestoresInBlock(MachineBasicBlock &MBB,
|
|
const CSIVect &CSI, const HexagonRegisterInfo &HRI) const {
|
|
if (CSI.empty())
|
|
return false;
|
|
|
|
MachineBasicBlock::iterator MI = MBB.getFirstTerminator();
|
|
MachineFunction &MF = *MBB.getParent();
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &HII = *HST.getInstrInfo();
|
|
|
|
if (useRestoreFunction(MF, CSI)) {
|
|
bool HasTC = hasTailCall(MBB) || !hasReturn(MBB);
|
|
unsigned MaxR = getMaxCalleeSavedReg(CSI, HRI);
|
|
SpillKind Kind = HasTC ? SK_FromMemTailcall : SK_FromMem;
|
|
const char *RestoreFn = getSpillFunctionFor(MaxR, Kind);
|
|
auto &HTM = static_cast<const HexagonTargetMachine&>(MF.getTarget());
|
|
bool IsPIC = HTM.isPositionIndependent();
|
|
bool LongCalls = HST.useLongCalls() || EnableSaveRestoreLong;
|
|
|
|
// Call spill function.
|
|
DebugLoc DL = MI != MBB.end() ? MI->getDebugLoc()
|
|
: MBB.getLastNonDebugInstr()->getDebugLoc();
|
|
MachineInstr *DeallocCall = nullptr;
|
|
|
|
if (HasTC) {
|
|
unsigned RetOpc;
|
|
if (LongCalls)
|
|
RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT_PIC
|
|
: Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_EXT;
|
|
else
|
|
RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4_PIC
|
|
: Hexagon::RESTORE_DEALLOC_BEFORE_TAILCALL_V4;
|
|
DeallocCall = BuildMI(MBB, MI, DL, HII.get(RetOpc))
|
|
.addExternalSymbol(RestoreFn);
|
|
} else {
|
|
// The block has a return.
|
|
MachineBasicBlock::iterator It = MBB.getFirstTerminator();
|
|
assert(It->isReturn() && std::next(It) == MBB.end());
|
|
unsigned RetOpc;
|
|
if (LongCalls)
|
|
RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT_PIC
|
|
: Hexagon::RESTORE_DEALLOC_RET_JMP_V4_EXT;
|
|
else
|
|
RetOpc = IsPIC ? Hexagon::RESTORE_DEALLOC_RET_JMP_V4_PIC
|
|
: Hexagon::RESTORE_DEALLOC_RET_JMP_V4;
|
|
DeallocCall = BuildMI(MBB, It, DL, HII.get(RetOpc))
|
|
.addExternalSymbol(RestoreFn);
|
|
// Transfer the function live-out registers.
|
|
DeallocCall->copyImplicitOps(MF, *It);
|
|
}
|
|
addCalleeSaveRegistersAsImpOperand(DeallocCall, CSI, true, false);
|
|
return true;
|
|
}
|
|
|
|
for (unsigned i = 0; i < CSI.size(); ++i) {
|
|
unsigned Reg = CSI[i].getReg();
|
|
const TargetRegisterClass *RC = HRI.getMinimalPhysRegClass(Reg);
|
|
int FI = CSI[i].getFrameIdx();
|
|
HII.loadRegFromStackSlot(MBB, MI, Reg, FI, RC, &HRI);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
MachineBasicBlock::iterator HexagonFrameLowering::eliminateCallFramePseudoInstr(
|
|
MachineFunction &MF, MachineBasicBlock &MBB,
|
|
MachineBasicBlock::iterator I) const {
|
|
MachineInstr &MI = *I;
|
|
unsigned Opc = MI.getOpcode();
|
|
(void)Opc; // Silence compiler warning.
|
|
assert((Opc == Hexagon::ADJCALLSTACKDOWN || Opc == Hexagon::ADJCALLSTACKUP) &&
|
|
"Cannot handle this call frame pseudo instruction");
|
|
return MBB.erase(I);
|
|
}
|
|
|
|
void HexagonFrameLowering::processFunctionBeforeFrameFinalized(
|
|
MachineFunction &MF, RegScavenger *RS) const {
|
|
// If this function has uses aligned stack and also has variable sized stack
|
|
// objects, then we need to map all spill slots to fixed positions, so that
|
|
// they can be accessed through FP. Otherwise they would have to be accessed
|
|
// via AP, which may not be available at the particular place in the program.
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
bool HasAlloca = MFI.hasVarSizedObjects();
|
|
bool NeedsAlign = (MFI.getMaxAlignment() > getStackAlignment());
|
|
|
|
if (!HasAlloca || !NeedsAlign)
|
|
return;
|
|
|
|
unsigned LFS = MFI.getLocalFrameSize();
|
|
for (int i = 0, e = MFI.getObjectIndexEnd(); i != e; ++i) {
|
|
if (!MFI.isSpillSlotObjectIndex(i) || MFI.isDeadObjectIndex(i))
|
|
continue;
|
|
unsigned S = MFI.getObjectSize(i);
|
|
// Reduce the alignment to at most 8. This will require unaligned vector
|
|
// stores if they happen here.
|
|
unsigned A = std::max(MFI.getObjectAlignment(i), 8U);
|
|
MFI.setObjectAlignment(i, 8);
|
|
LFS = alignTo(LFS+S, A);
|
|
MFI.mapLocalFrameObject(i, -LFS);
|
|
}
|
|
|
|
MFI.setLocalFrameSize(LFS);
|
|
unsigned A = MFI.getLocalFrameMaxAlign();
|
|
assert(A <= 8 && "Unexpected local frame alignment");
|
|
if (A == 0)
|
|
MFI.setLocalFrameMaxAlign(8);
|
|
MFI.setUseLocalStackAllocationBlock(true);
|
|
|
|
// Set the physical aligned-stack base address register.
|
|
unsigned AP = 0;
|
|
if (const MachineInstr *AI = getAlignaInstr(MF))
|
|
AP = AI->getOperand(0).getReg();
|
|
auto &HMFI = *MF.getInfo<HexagonMachineFunctionInfo>();
|
|
HMFI.setStackAlignBasePhysReg(AP);
|
|
}
|
|
|
|
/// Returns true if there are no caller-saved registers available in class RC.
|
|
static bool needToReserveScavengingSpillSlots(MachineFunction &MF,
|
|
const HexagonRegisterInfo &HRI, const TargetRegisterClass *RC) {
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
|
|
auto IsUsed = [&HRI,&MRI] (unsigned Reg) -> bool {
|
|
for (MCRegAliasIterator AI(Reg, &HRI, true); AI.isValid(); ++AI)
|
|
if (MRI.isPhysRegUsed(*AI))
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
// Check for an unused caller-saved register. Callee-saved registers
|
|
// have become pristine by now.
|
|
for (const MCPhysReg *P = HRI.getCallerSavedRegs(&MF, RC); *P; ++P)
|
|
if (!IsUsed(*P))
|
|
return false;
|
|
|
|
// All caller-saved registers are used.
|
|
return true;
|
|
}
|
|
|
|
#ifndef NDEBUG
|
|
static void dump_registers(BitVector &Regs, const TargetRegisterInfo &TRI) {
|
|
dbgs() << '{';
|
|
for (int x = Regs.find_first(); x >= 0; x = Regs.find_next(x)) {
|
|
unsigned R = x;
|
|
dbgs() << ' ' << PrintReg(R, &TRI);
|
|
}
|
|
dbgs() << " }";
|
|
}
|
|
#endif
|
|
|
|
bool HexagonFrameLowering::assignCalleeSavedSpillSlots(MachineFunction &MF,
|
|
const TargetRegisterInfo *TRI, std::vector<CalleeSavedInfo> &CSI) const {
|
|
DEBUG(dbgs() << __func__ << " on "
|
|
<< MF.getFunction()->getName() << '\n');
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
BitVector SRegs(Hexagon::NUM_TARGET_REGS);
|
|
|
|
// Generate a set of unique, callee-saved registers (SRegs), where each
|
|
// register in the set is maximal in terms of sub-/super-register relation,
|
|
// i.e. for each R in SRegs, no proper super-register of R is also in SRegs.
|
|
|
|
// (1) For each callee-saved register, add that register and all of its
|
|
// sub-registers to SRegs.
|
|
DEBUG(dbgs() << "Initial CS registers: {");
|
|
for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
|
|
unsigned R = CSI[i].getReg();
|
|
DEBUG(dbgs() << ' ' << PrintReg(R, TRI));
|
|
for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
|
|
SRegs[*SR] = true;
|
|
}
|
|
DEBUG(dbgs() << " }\n");
|
|
DEBUG(dbgs() << "SRegs.1: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
|
|
|
|
// (2) For each reserved register, remove that register and all of its
|
|
// sub- and super-registers from SRegs.
|
|
BitVector Reserved = TRI->getReservedRegs(MF);
|
|
for (int x = Reserved.find_first(); x >= 0; x = Reserved.find_next(x)) {
|
|
unsigned R = x;
|
|
for (MCSuperRegIterator SR(R, TRI, true); SR.isValid(); ++SR)
|
|
SRegs[*SR] = false;
|
|
}
|
|
DEBUG(dbgs() << "Res: "; dump_registers(Reserved, *TRI); dbgs() << "\n");
|
|
DEBUG(dbgs() << "SRegs.2: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
|
|
|
|
// (3) Collect all registers that have at least one sub-register in SRegs,
|
|
// and also have no sub-registers that are reserved. These will be the can-
|
|
// didates for saving as a whole instead of their individual sub-registers.
|
|
// (Saving R17:16 instead of R16 is fine, but only if R17 was not reserved.)
|
|
BitVector TmpSup(Hexagon::NUM_TARGET_REGS);
|
|
for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
|
|
unsigned R = x;
|
|
for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR)
|
|
TmpSup[*SR] = true;
|
|
}
|
|
for (int x = TmpSup.find_first(); x >= 0; x = TmpSup.find_next(x)) {
|
|
unsigned R = x;
|
|
for (MCSubRegIterator SR(R, TRI, true); SR.isValid(); ++SR) {
|
|
if (!Reserved[*SR])
|
|
continue;
|
|
TmpSup[R] = false;
|
|
break;
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "TmpSup: "; dump_registers(TmpSup, *TRI); dbgs() << "\n");
|
|
|
|
// (4) Include all super-registers found in (3) into SRegs.
|
|
SRegs |= TmpSup;
|
|
DEBUG(dbgs() << "SRegs.4: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
|
|
|
|
// (5) For each register R in SRegs, if any super-register of R is in SRegs,
|
|
// remove R from SRegs.
|
|
for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
|
|
unsigned R = x;
|
|
for (MCSuperRegIterator SR(R, TRI); SR.isValid(); ++SR) {
|
|
if (!SRegs[*SR])
|
|
continue;
|
|
SRegs[R] = false;
|
|
break;
|
|
}
|
|
}
|
|
DEBUG(dbgs() << "SRegs.5: "; dump_registers(SRegs, *TRI); dbgs() << "\n");
|
|
|
|
// Now, for each register that has a fixed stack slot, create the stack
|
|
// object for it.
|
|
CSI.clear();
|
|
|
|
typedef TargetFrameLowering::SpillSlot SpillSlot;
|
|
unsigned NumFixed;
|
|
int MinOffset = 0; // CS offsets are negative.
|
|
const SpillSlot *FixedSlots = getCalleeSavedSpillSlots(NumFixed);
|
|
for (const SpillSlot *S = FixedSlots; S != FixedSlots+NumFixed; ++S) {
|
|
if (!SRegs[S->Reg])
|
|
continue;
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(S->Reg);
|
|
int FI = MFI.CreateFixedSpillStackObject(TRI->getSpillSize(*RC), S->Offset);
|
|
MinOffset = std::min(MinOffset, S->Offset);
|
|
CSI.push_back(CalleeSavedInfo(S->Reg, FI));
|
|
SRegs[S->Reg] = false;
|
|
}
|
|
|
|
// There can be some registers that don't have fixed slots. For example,
|
|
// we need to store R0-R3 in functions with exception handling. For each
|
|
// such register, create a non-fixed stack object.
|
|
for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
|
|
unsigned R = x;
|
|
const TargetRegisterClass *RC = TRI->getMinimalPhysRegClass(R);
|
|
unsigned Size = TRI->getSpillSize(*RC);
|
|
int Off = MinOffset - Size;
|
|
unsigned Align = std::min(TRI->getSpillAlignment(*RC), getStackAlignment());
|
|
assert(isPowerOf2_32(Align));
|
|
Off &= -Align;
|
|
int FI = MFI.CreateFixedSpillStackObject(Size, Off);
|
|
MinOffset = std::min(MinOffset, Off);
|
|
CSI.push_back(CalleeSavedInfo(R, FI));
|
|
SRegs[R] = false;
|
|
}
|
|
|
|
DEBUG({
|
|
dbgs() << "CS information: {";
|
|
for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
|
|
int FI = CSI[i].getFrameIdx();
|
|
int Off = MFI.getObjectOffset(FI);
|
|
dbgs() << ' ' << PrintReg(CSI[i].getReg(), TRI) << ":fi#" << FI << ":sp";
|
|
if (Off >= 0)
|
|
dbgs() << '+';
|
|
dbgs() << Off;
|
|
}
|
|
dbgs() << " }\n";
|
|
});
|
|
|
|
#ifndef NDEBUG
|
|
// Verify that all registers were handled.
|
|
bool MissedReg = false;
|
|
for (int x = SRegs.find_first(); x >= 0; x = SRegs.find_next(x)) {
|
|
unsigned R = x;
|
|
dbgs() << PrintReg(R, TRI) << ' ';
|
|
MissedReg = true;
|
|
}
|
|
if (MissedReg)
|
|
llvm_unreachable("...there are unhandled callee-saved registers!");
|
|
#endif
|
|
|
|
return true;
|
|
}
|
|
|
|
bool HexagonFrameLowering::expandCopy(MachineBasicBlock &B,
|
|
MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
|
|
const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
|
|
MachineInstr *MI = &*It;
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned DstR = MI->getOperand(0).getReg();
|
|
unsigned SrcR = MI->getOperand(1).getReg();
|
|
if (!Hexagon::ModRegsRegClass.contains(DstR) ||
|
|
!Hexagon::ModRegsRegClass.contains(SrcR))
|
|
return false;
|
|
|
|
unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
|
|
BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), TmpR).add(MI->getOperand(1));
|
|
BuildMI(B, It, DL, HII.get(TargetOpcode::COPY), DstR)
|
|
.addReg(TmpR, RegState::Kill);
|
|
|
|
NewRegs.push_back(TmpR);
|
|
B.erase(It);
|
|
return true;
|
|
}
|
|
|
|
bool HexagonFrameLowering::expandStoreInt(MachineBasicBlock &B,
|
|
MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
|
|
const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
|
|
MachineInstr *MI = &*It;
|
|
if (!MI->getOperand(0).isFI())
|
|
return false;
|
|
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned Opc = MI->getOpcode();
|
|
unsigned SrcR = MI->getOperand(2).getReg();
|
|
bool IsKill = MI->getOperand(2).isKill();
|
|
int FI = MI->getOperand(0).getIndex();
|
|
|
|
// TmpR = C2_tfrpr SrcR if SrcR is a predicate register
|
|
// TmpR = A2_tfrcrr SrcR if SrcR is a modifier register
|
|
unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
|
|
unsigned TfrOpc = (Opc == Hexagon::STriw_pred) ? Hexagon::C2_tfrpr
|
|
: Hexagon::A2_tfrcrr;
|
|
BuildMI(B, It, DL, HII.get(TfrOpc), TmpR)
|
|
.addReg(SrcR, getKillRegState(IsKill));
|
|
|
|
// S2_storeri_io FI, 0, TmpR
|
|
BuildMI(B, It, DL, HII.get(Hexagon::S2_storeri_io))
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addReg(TmpR, RegState::Kill)
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
|
|
NewRegs.push_back(TmpR);
|
|
B.erase(It);
|
|
return true;
|
|
}
|
|
|
|
bool HexagonFrameLowering::expandLoadInt(MachineBasicBlock &B,
|
|
MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
|
|
const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
|
|
MachineInstr *MI = &*It;
|
|
if (!MI->getOperand(1).isFI())
|
|
return false;
|
|
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned Opc = MI->getOpcode();
|
|
unsigned DstR = MI->getOperand(0).getReg();
|
|
int FI = MI->getOperand(1).getIndex();
|
|
|
|
// TmpR = L2_loadri_io FI, 0
|
|
unsigned TmpR = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
|
|
BuildMI(B, It, DL, HII.get(Hexagon::L2_loadri_io), TmpR)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
|
|
// DstR = C2_tfrrp TmpR if DstR is a predicate register
|
|
// DstR = A2_tfrrcr TmpR if DstR is a modifier register
|
|
unsigned TfrOpc = (Opc == Hexagon::LDriw_pred) ? Hexagon::C2_tfrrp
|
|
: Hexagon::A2_tfrrcr;
|
|
BuildMI(B, It, DL, HII.get(TfrOpc), DstR)
|
|
.addReg(TmpR, RegState::Kill);
|
|
|
|
NewRegs.push_back(TmpR);
|
|
B.erase(It);
|
|
return true;
|
|
}
|
|
|
|
bool HexagonFrameLowering::expandStoreVecPred(MachineBasicBlock &B,
|
|
MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
|
|
const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
|
|
auto &HST = B.getParent()->getSubtarget<HexagonSubtarget>();
|
|
MachineInstr *MI = &*It;
|
|
if (!MI->getOperand(0).isFI())
|
|
return false;
|
|
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned SrcR = MI->getOperand(2).getReg();
|
|
bool IsKill = MI->getOperand(2).isKill();
|
|
int FI = MI->getOperand(0).getIndex();
|
|
|
|
bool Is128B = HST.useHVXDblOps();
|
|
auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
|
|
: &Hexagon::VectorRegs128BRegClass;
|
|
|
|
// Insert transfer to general vector register.
|
|
// TmpR0 = A2_tfrsi 0x01010101
|
|
// TmpR1 = V6_vandqrt Qx, TmpR0
|
|
// store FI, 0, TmpR1
|
|
unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
|
|
unsigned TmpR1 = MRI.createVirtualRegister(RC);
|
|
|
|
BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
|
|
.addImm(0x01010101);
|
|
|
|
unsigned VandOpc = !Is128B ? Hexagon::V6_vandqrt : Hexagon::V6_vandqrt_128B;
|
|
BuildMI(B, It, DL, HII.get(VandOpc), TmpR1)
|
|
.addReg(SrcR, getKillRegState(IsKill))
|
|
.addReg(TmpR0, RegState::Kill);
|
|
|
|
auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
|
|
HII.storeRegToStackSlot(B, It, TmpR1, true, FI, RC, HRI);
|
|
expandStoreVec(B, std::prev(It), MRI, HII, NewRegs);
|
|
|
|
NewRegs.push_back(TmpR0);
|
|
NewRegs.push_back(TmpR1);
|
|
B.erase(It);
|
|
return true;
|
|
}
|
|
|
|
bool HexagonFrameLowering::expandLoadVecPred(MachineBasicBlock &B,
|
|
MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
|
|
const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
|
|
auto &HST = B.getParent()->getSubtarget<HexagonSubtarget>();
|
|
MachineInstr *MI = &*It;
|
|
if (!MI->getOperand(1).isFI())
|
|
return false;
|
|
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned DstR = MI->getOperand(0).getReg();
|
|
int FI = MI->getOperand(1).getIndex();
|
|
|
|
bool Is128B = HST.useHVXDblOps();
|
|
auto *RC = !Is128B ? &Hexagon::VectorRegsRegClass
|
|
: &Hexagon::VectorRegs128BRegClass;
|
|
|
|
// TmpR0 = A2_tfrsi 0x01010101
|
|
// TmpR1 = load FI, 0
|
|
// DstR = V6_vandvrt TmpR1, TmpR0
|
|
unsigned TmpR0 = MRI.createVirtualRegister(&Hexagon::IntRegsRegClass);
|
|
unsigned TmpR1 = MRI.createVirtualRegister(RC);
|
|
|
|
BuildMI(B, It, DL, HII.get(Hexagon::A2_tfrsi), TmpR0)
|
|
.addImm(0x01010101);
|
|
auto *HRI = B.getParent()->getSubtarget<HexagonSubtarget>().getRegisterInfo();
|
|
HII.loadRegFromStackSlot(B, It, TmpR1, FI, RC, HRI);
|
|
expandLoadVec(B, std::prev(It), MRI, HII, NewRegs);
|
|
|
|
unsigned VandOpc = !Is128B ? Hexagon::V6_vandvrt : Hexagon::V6_vandvrt_128B;
|
|
BuildMI(B, It, DL, HII.get(VandOpc), DstR)
|
|
.addReg(TmpR1, RegState::Kill)
|
|
.addReg(TmpR0, RegState::Kill);
|
|
|
|
NewRegs.push_back(TmpR0);
|
|
NewRegs.push_back(TmpR1);
|
|
B.erase(It);
|
|
return true;
|
|
}
|
|
|
|
bool HexagonFrameLowering::expandStoreVec2(MachineBasicBlock &B,
|
|
MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
|
|
const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
|
|
MachineFunction &MF = *B.getParent();
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &MFI = MF.getFrameInfo();
|
|
auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
|
|
MachineInstr *MI = &*It;
|
|
if (!MI->getOperand(0).isFI())
|
|
return false;
|
|
|
|
// It is possible that the double vector being stored is only partially
|
|
// defined. From the point of view of the liveness tracking, it is ok to
|
|
// store it as a whole, but if we break it up we may end up storing a
|
|
// register that is entirely undefined.
|
|
LivePhysRegs LPR(&HRI);
|
|
LPR.addLiveIns(B);
|
|
SmallVector<std::pair<unsigned, const MachineOperand*>,2> Clobbers;
|
|
for (auto R = B.begin(); R != It; ++R) {
|
|
Clobbers.clear();
|
|
LPR.stepForward(*R, Clobbers);
|
|
// Dead defs are recorded in Clobbers, but are not automatically removed
|
|
// from the live set.
|
|
for (auto &C : Clobbers)
|
|
if (C.second->isReg() && C.second->isDead())
|
|
LPR.removeReg(C.first);
|
|
}
|
|
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned SrcR = MI->getOperand(2).getReg();
|
|
unsigned SrcLo = HRI.getSubReg(SrcR, Hexagon::vsub_lo);
|
|
unsigned SrcHi = HRI.getSubReg(SrcR, Hexagon::vsub_hi);
|
|
bool IsKill = MI->getOperand(2).isKill();
|
|
int FI = MI->getOperand(0).getIndex();
|
|
|
|
bool Is128B = HST.useHVXDblOps();
|
|
const auto &RC = !Is128B ? Hexagon::VectorRegsRegClass
|
|
: Hexagon::VectorRegs128BRegClass;
|
|
unsigned Size = HRI.getSpillSize(RC);
|
|
unsigned NeedAlign = HRI.getSpillAlignment(RC);
|
|
unsigned HasAlign = MFI.getObjectAlignment(FI);
|
|
unsigned StoreOpc;
|
|
|
|
// Store low part.
|
|
if (LPR.contains(SrcLo)) {
|
|
if (NeedAlign <= HasAlign)
|
|
StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32b_ai_128B;
|
|
else
|
|
StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B;
|
|
|
|
BuildMI(B, It, DL, HII.get(StoreOpc))
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addReg(SrcLo, getKillRegState(IsKill))
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
}
|
|
|
|
// Store high part.
|
|
if (LPR.contains(SrcHi)) {
|
|
if (NeedAlign <= MinAlign(HasAlign, Size))
|
|
StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32b_ai_128B;
|
|
else
|
|
StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B;
|
|
|
|
BuildMI(B, It, DL, HII.get(StoreOpc))
|
|
.addFrameIndex(FI)
|
|
.addImm(Size)
|
|
.addReg(SrcHi, getKillRegState(IsKill))
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
}
|
|
|
|
B.erase(It);
|
|
return true;
|
|
}
|
|
|
|
bool HexagonFrameLowering::expandLoadVec2(MachineBasicBlock &B,
|
|
MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
|
|
const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
|
|
MachineFunction &MF = *B.getParent();
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &MFI = MF.getFrameInfo();
|
|
auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
|
|
MachineInstr *MI = &*It;
|
|
if (!MI->getOperand(1).isFI())
|
|
return false;
|
|
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned DstR = MI->getOperand(0).getReg();
|
|
unsigned DstHi = HRI.getSubReg(DstR, Hexagon::vsub_hi);
|
|
unsigned DstLo = HRI.getSubReg(DstR, Hexagon::vsub_lo);
|
|
int FI = MI->getOperand(1).getIndex();
|
|
|
|
bool Is128B = HST.useHVXDblOps();
|
|
const auto &RC = !Is128B ? Hexagon::VectorRegsRegClass
|
|
: Hexagon::VectorRegs128BRegClass;
|
|
unsigned Size = HRI.getSpillSize(RC);
|
|
unsigned NeedAlign = HRI.getSpillAlignment(RC);
|
|
unsigned HasAlign = MFI.getObjectAlignment(FI);
|
|
unsigned LoadOpc;
|
|
|
|
// Load low part.
|
|
if (NeedAlign <= HasAlign)
|
|
LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32b_ai_128B;
|
|
else
|
|
LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B;
|
|
|
|
BuildMI(B, It, DL, HII.get(LoadOpc), DstLo)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
|
|
// Load high part.
|
|
if (NeedAlign <= MinAlign(HasAlign, Size))
|
|
LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32b_ai_128B;
|
|
else
|
|
LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B;
|
|
|
|
BuildMI(B, It, DL, HII.get(LoadOpc), DstHi)
|
|
.addFrameIndex(FI)
|
|
.addImm(Size)
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
|
|
B.erase(It);
|
|
return true;
|
|
}
|
|
|
|
bool HexagonFrameLowering::expandStoreVec(MachineBasicBlock &B,
|
|
MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
|
|
const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
|
|
MachineFunction &MF = *B.getParent();
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &MFI = MF.getFrameInfo();
|
|
MachineInstr *MI = &*It;
|
|
if (!MI->getOperand(0).isFI())
|
|
return false;
|
|
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned SrcR = MI->getOperand(2).getReg();
|
|
bool IsKill = MI->getOperand(2).isKill();
|
|
int FI = MI->getOperand(0).getIndex();
|
|
|
|
bool Is128B = HST.useHVXDblOps();
|
|
const auto &RC = !Is128B ? Hexagon::VectorRegsRegClass
|
|
: Hexagon::VectorRegs128BRegClass;
|
|
unsigned NeedAlign = HRI.getSpillAlignment(RC);
|
|
unsigned HasAlign = MFI.getObjectAlignment(FI);
|
|
unsigned StoreOpc;
|
|
|
|
if (NeedAlign <= HasAlign)
|
|
StoreOpc = !Is128B ? Hexagon::V6_vS32b_ai : Hexagon::V6_vS32b_ai_128B;
|
|
else
|
|
StoreOpc = !Is128B ? Hexagon::V6_vS32Ub_ai : Hexagon::V6_vS32Ub_ai_128B;
|
|
|
|
BuildMI(B, It, DL, HII.get(StoreOpc))
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.addReg(SrcR, getKillRegState(IsKill))
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
|
|
B.erase(It);
|
|
return true;
|
|
}
|
|
|
|
bool HexagonFrameLowering::expandLoadVec(MachineBasicBlock &B,
|
|
MachineBasicBlock::iterator It, MachineRegisterInfo &MRI,
|
|
const HexagonInstrInfo &HII, SmallVectorImpl<unsigned> &NewRegs) const {
|
|
MachineFunction &MF = *B.getParent();
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &MFI = MF.getFrameInfo();
|
|
MachineInstr *MI = &*It;
|
|
if (!MI->getOperand(1).isFI())
|
|
return false;
|
|
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
unsigned DstR = MI->getOperand(0).getReg();
|
|
int FI = MI->getOperand(1).getIndex();
|
|
|
|
bool Is128B = HST.useHVXDblOps();
|
|
const auto &RC = !Is128B ? Hexagon::VectorRegsRegClass
|
|
: Hexagon::VectorRegs128BRegClass;
|
|
unsigned NeedAlign = HRI.getSpillAlignment(RC);
|
|
unsigned HasAlign = MFI.getObjectAlignment(FI);
|
|
unsigned LoadOpc;
|
|
|
|
if (NeedAlign <= HasAlign)
|
|
LoadOpc = !Is128B ? Hexagon::V6_vL32b_ai : Hexagon::V6_vL32b_ai_128B;
|
|
else
|
|
LoadOpc = !Is128B ? Hexagon::V6_vL32Ub_ai : Hexagon::V6_vL32Ub_ai_128B;
|
|
|
|
BuildMI(B, It, DL, HII.get(LoadOpc), DstR)
|
|
.addFrameIndex(FI)
|
|
.addImm(0)
|
|
.setMemRefs(MI->memoperands_begin(), MI->memoperands_end());
|
|
|
|
B.erase(It);
|
|
return true;
|
|
}
|
|
|
|
bool HexagonFrameLowering::expandSpillMacros(MachineFunction &MF,
|
|
SmallVectorImpl<unsigned> &NewRegs) const {
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &HII = *HST.getInstrInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
bool Changed = false;
|
|
|
|
for (auto &B : MF) {
|
|
// Traverse the basic block.
|
|
MachineBasicBlock::iterator NextI;
|
|
for (auto I = B.begin(), E = B.end(); I != E; I = NextI) {
|
|
MachineInstr *MI = &*I;
|
|
NextI = std::next(I);
|
|
unsigned Opc = MI->getOpcode();
|
|
|
|
switch (Opc) {
|
|
case TargetOpcode::COPY:
|
|
Changed |= expandCopy(B, I, MRI, HII, NewRegs);
|
|
break;
|
|
case Hexagon::STriw_pred:
|
|
case Hexagon::STriw_mod:
|
|
Changed |= expandStoreInt(B, I, MRI, HII, NewRegs);
|
|
break;
|
|
case Hexagon::LDriw_pred:
|
|
case Hexagon::LDriw_mod:
|
|
Changed |= expandLoadInt(B, I, MRI, HII, NewRegs);
|
|
break;
|
|
case Hexagon::PS_vstorerq_ai:
|
|
case Hexagon::PS_vstorerq_ai_128B:
|
|
Changed |= expandStoreVecPred(B, I, MRI, HII, NewRegs);
|
|
break;
|
|
case Hexagon::PS_vloadrq_ai:
|
|
case Hexagon::PS_vloadrq_ai_128B:
|
|
Changed |= expandLoadVecPred(B, I, MRI, HII, NewRegs);
|
|
break;
|
|
case Hexagon::PS_vloadrw_ai:
|
|
case Hexagon::PS_vloadrwu_ai:
|
|
case Hexagon::PS_vloadrw_ai_128B:
|
|
case Hexagon::PS_vloadrwu_ai_128B:
|
|
Changed |= expandLoadVec2(B, I, MRI, HII, NewRegs);
|
|
break;
|
|
case Hexagon::PS_vstorerw_ai:
|
|
case Hexagon::PS_vstorerwu_ai:
|
|
case Hexagon::PS_vstorerw_ai_128B:
|
|
case Hexagon::PS_vstorerwu_ai_128B:
|
|
Changed |= expandStoreVec2(B, I, MRI, HII, NewRegs);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
void HexagonFrameLowering::determineCalleeSaves(MachineFunction &MF,
|
|
BitVector &SavedRegs,
|
|
RegScavenger *RS) const {
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
|
|
SavedRegs.resize(HRI.getNumRegs());
|
|
|
|
// If we have a function containing __builtin_eh_return we want to spill and
|
|
// restore all callee saved registers. Pretend that they are used.
|
|
if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
|
|
for (const MCPhysReg *R = HRI.getCalleeSavedRegs(&MF); *R; ++R)
|
|
SavedRegs.set(*R);
|
|
|
|
// Replace predicate register pseudo spill code.
|
|
SmallVector<unsigned,8> NewRegs;
|
|
expandSpillMacros(MF, NewRegs);
|
|
if (OptimizeSpillSlots && !isOptNone(MF))
|
|
optimizeSpillSlots(MF, NewRegs);
|
|
|
|
// We need to reserve a a spill slot if scavenging could potentially require
|
|
// spilling a scavenged register.
|
|
if (!NewRegs.empty() || mayOverflowFrameOffset(MF)) {
|
|
MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
SetVector<const TargetRegisterClass*> SpillRCs;
|
|
// Reserve an int register in any case, because it could be used to hold
|
|
// the stack offset in case it does not fit into a spill instruction.
|
|
SpillRCs.insert(&Hexagon::IntRegsRegClass);
|
|
|
|
for (unsigned VR : NewRegs)
|
|
SpillRCs.insert(MRI.getRegClass(VR));
|
|
|
|
for (auto *RC : SpillRCs) {
|
|
if (!needToReserveScavengingSpillSlots(MF, HRI, RC))
|
|
continue;
|
|
unsigned Num = RC == &Hexagon::IntRegsRegClass ? NumberScavengerSlots : 1;
|
|
unsigned S = HRI.getSpillSize(*RC), A = HRI.getSpillAlignment(*RC);
|
|
for (unsigned i = 0; i < Num; i++) {
|
|
int NewFI = MFI.CreateSpillStackObject(S, A);
|
|
RS->addScavengingFrameIndex(NewFI);
|
|
}
|
|
}
|
|
}
|
|
|
|
TargetFrameLowering::determineCalleeSaves(MF, SavedRegs, RS);
|
|
}
|
|
|
|
unsigned HexagonFrameLowering::findPhysReg(MachineFunction &MF,
|
|
HexagonBlockRanges::IndexRange &FIR,
|
|
HexagonBlockRanges::InstrIndexMap &IndexMap,
|
|
HexagonBlockRanges::RegToRangeMap &DeadMap,
|
|
const TargetRegisterClass *RC) const {
|
|
auto &HRI = *MF.getSubtarget<HexagonSubtarget>().getRegisterInfo();
|
|
auto &MRI = MF.getRegInfo();
|
|
|
|
auto isDead = [&FIR,&DeadMap] (unsigned Reg) -> bool {
|
|
auto F = DeadMap.find({Reg,0});
|
|
if (F == DeadMap.end())
|
|
return false;
|
|
for (auto &DR : F->second)
|
|
if (DR.contains(FIR))
|
|
return true;
|
|
return false;
|
|
};
|
|
|
|
for (unsigned Reg : RC->getRawAllocationOrder(MF)) {
|
|
bool Dead = true;
|
|
for (auto R : HexagonBlockRanges::expandToSubRegs({Reg,0}, MRI, HRI)) {
|
|
if (isDead(R.Reg))
|
|
continue;
|
|
Dead = false;
|
|
break;
|
|
}
|
|
if (Dead)
|
|
return Reg;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
void HexagonFrameLowering::optimizeSpillSlots(MachineFunction &MF,
|
|
SmallVectorImpl<unsigned> &VRegs) const {
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
auto &HII = *HST.getInstrInfo();
|
|
auto &HRI = *HST.getRegisterInfo();
|
|
auto &MRI = MF.getRegInfo();
|
|
HexagonBlockRanges HBR(MF);
|
|
|
|
typedef std::map<MachineBasicBlock*,HexagonBlockRanges::InstrIndexMap>
|
|
BlockIndexMap;
|
|
typedef std::map<MachineBasicBlock*,HexagonBlockRanges::RangeList>
|
|
BlockRangeMap;
|
|
typedef HexagonBlockRanges::IndexType IndexType;
|
|
|
|
struct SlotInfo {
|
|
BlockRangeMap Map;
|
|
unsigned Size = 0;
|
|
const TargetRegisterClass *RC = nullptr;
|
|
|
|
SlotInfo() = default;
|
|
};
|
|
|
|
BlockIndexMap BlockIndexes;
|
|
SmallSet<int,4> BadFIs;
|
|
std::map<int,SlotInfo> FIRangeMap;
|
|
|
|
// Accumulate register classes: get a common class for a pre-existing
|
|
// class HaveRC and a new class NewRC. Return nullptr if a common class
|
|
// cannot be found, otherwise return the resulting class. If HaveRC is
|
|
// nullptr, assume that it is still unset.
|
|
auto getCommonRC =
|
|
[](const TargetRegisterClass *HaveRC,
|
|
const TargetRegisterClass *NewRC) -> const TargetRegisterClass * {
|
|
if (HaveRC == nullptr || HaveRC == NewRC)
|
|
return NewRC;
|
|
// Different classes, both non-null. Pick the more general one.
|
|
if (HaveRC->hasSubClassEq(NewRC))
|
|
return HaveRC;
|
|
if (NewRC->hasSubClassEq(HaveRC))
|
|
return NewRC;
|
|
return nullptr;
|
|
};
|
|
|
|
// Scan all blocks in the function. Check all occurrences of frame indexes,
|
|
// and collect relevant information.
|
|
for (auto &B : MF) {
|
|
std::map<int,IndexType> LastStore, LastLoad;
|
|
// Emplace appears not to be supported in gcc 4.7.2-4.
|
|
//auto P = BlockIndexes.emplace(&B, HexagonBlockRanges::InstrIndexMap(B));
|
|
auto P = BlockIndexes.insert(
|
|
std::make_pair(&B, HexagonBlockRanges::InstrIndexMap(B)));
|
|
auto &IndexMap = P.first->second;
|
|
DEBUG(dbgs() << "Index map for BB#" << B.getNumber() << "\n"
|
|
<< IndexMap << '\n');
|
|
|
|
for (auto &In : B) {
|
|
int LFI, SFI;
|
|
bool Load = HII.isLoadFromStackSlot(In, LFI) && !HII.isPredicated(In);
|
|
bool Store = HII.isStoreToStackSlot(In, SFI) && !HII.isPredicated(In);
|
|
if (Load && Store) {
|
|
// If it's both a load and a store, then we won't handle it.
|
|
BadFIs.insert(LFI);
|
|
BadFIs.insert(SFI);
|
|
continue;
|
|
}
|
|
// Check for register classes of the register used as the source for
|
|
// the store, and the register used as the destination for the load.
|
|
// Also, only accept base+imm_offset addressing modes. Other addressing
|
|
// modes can have side-effects (post-increments, etc.). For stack
|
|
// slots they are very unlikely, so there is not much loss due to
|
|
// this restriction.
|
|
if (Load || Store) {
|
|
int TFI = Load ? LFI : SFI;
|
|
unsigned AM = HII.getAddrMode(In);
|
|
SlotInfo &SI = FIRangeMap[TFI];
|
|
bool Bad = (AM != HexagonII::BaseImmOffset);
|
|
if (!Bad) {
|
|
// If the addressing mode is ok, check the register class.
|
|
unsigned OpNum = Load ? 0 : 2;
|
|
auto *RC = HII.getRegClass(In.getDesc(), OpNum, &HRI, MF);
|
|
RC = getCommonRC(SI.RC, RC);
|
|
if (RC == nullptr)
|
|
Bad = true;
|
|
else
|
|
SI.RC = RC;
|
|
}
|
|
if (!Bad) {
|
|
// Check sizes.
|
|
unsigned S = (1U << (HII.getMemAccessSize(In) - 1));
|
|
if (SI.Size != 0 && SI.Size != S)
|
|
Bad = true;
|
|
else
|
|
SI.Size = S;
|
|
}
|
|
if (!Bad) {
|
|
for (auto *Mo : In.memoperands()) {
|
|
if (!Mo->isVolatile())
|
|
continue;
|
|
Bad = true;
|
|
break;
|
|
}
|
|
}
|
|
if (Bad)
|
|
BadFIs.insert(TFI);
|
|
}
|
|
|
|
// Locate uses of frame indices.
|
|
for (unsigned i = 0, n = In.getNumOperands(); i < n; ++i) {
|
|
const MachineOperand &Op = In.getOperand(i);
|
|
if (!Op.isFI())
|
|
continue;
|
|
int FI = Op.getIndex();
|
|
// Make sure that the following operand is an immediate and that
|
|
// it is 0. This is the offset in the stack object.
|
|
if (i+1 >= n || !In.getOperand(i+1).isImm() ||
|
|
In.getOperand(i+1).getImm() != 0)
|
|
BadFIs.insert(FI);
|
|
if (BadFIs.count(FI))
|
|
continue;
|
|
|
|
IndexType Index = IndexMap.getIndex(&In);
|
|
if (Load) {
|
|
if (LastStore[FI] == IndexType::None)
|
|
LastStore[FI] = IndexType::Entry;
|
|
LastLoad[FI] = Index;
|
|
} else if (Store) {
|
|
HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
|
|
if (LastStore[FI] != IndexType::None)
|
|
RL.add(LastStore[FI], LastLoad[FI], false, false);
|
|
else if (LastLoad[FI] != IndexType::None)
|
|
RL.add(IndexType::Entry, LastLoad[FI], false, false);
|
|
LastLoad[FI] = IndexType::None;
|
|
LastStore[FI] = Index;
|
|
} else {
|
|
BadFIs.insert(FI);
|
|
}
|
|
}
|
|
}
|
|
|
|
for (auto &I : LastLoad) {
|
|
IndexType LL = I.second;
|
|
if (LL == IndexType::None)
|
|
continue;
|
|
auto &RL = FIRangeMap[I.first].Map[&B];
|
|
IndexType &LS = LastStore[I.first];
|
|
if (LS != IndexType::None)
|
|
RL.add(LS, LL, false, false);
|
|
else
|
|
RL.add(IndexType::Entry, LL, false, false);
|
|
LS = IndexType::None;
|
|
}
|
|
for (auto &I : LastStore) {
|
|
IndexType LS = I.second;
|
|
if (LS == IndexType::None)
|
|
continue;
|
|
auto &RL = FIRangeMap[I.first].Map[&B];
|
|
RL.add(LS, IndexType::None, false, false);
|
|
}
|
|
}
|
|
|
|
DEBUG({
|
|
for (auto &P : FIRangeMap) {
|
|
dbgs() << "fi#" << P.first;
|
|
if (BadFIs.count(P.first))
|
|
dbgs() << " (bad)";
|
|
dbgs() << " RC: ";
|
|
if (P.second.RC != nullptr)
|
|
dbgs() << HRI.getRegClassName(P.second.RC) << '\n';
|
|
else
|
|
dbgs() << "<null>\n";
|
|
for (auto &R : P.second.Map)
|
|
dbgs() << " BB#" << R.first->getNumber() << " { " << R.second << "}\n";
|
|
}
|
|
});
|
|
|
|
// When a slot is loaded from in a block without being stored to in the
|
|
// same block, it is live-on-entry to this block. To avoid CFG analysis,
|
|
// consider this slot to be live-on-exit from all blocks.
|
|
SmallSet<int,4> LoxFIs;
|
|
|
|
std::map<MachineBasicBlock*,std::vector<int>> BlockFIMap;
|
|
|
|
for (auto &P : FIRangeMap) {
|
|
// P = pair(FI, map: BB->RangeList)
|
|
if (BadFIs.count(P.first))
|
|
continue;
|
|
for (auto &B : MF) {
|
|
auto F = P.second.Map.find(&B);
|
|
// F = pair(BB, RangeList)
|
|
if (F == P.second.Map.end() || F->second.empty())
|
|
continue;
|
|
HexagonBlockRanges::IndexRange &IR = F->second.front();
|
|
if (IR.start() == IndexType::Entry)
|
|
LoxFIs.insert(P.first);
|
|
BlockFIMap[&B].push_back(P.first);
|
|
}
|
|
}
|
|
|
|
DEBUG({
|
|
dbgs() << "Block-to-FI map (* -- live-on-exit):\n";
|
|
for (auto &P : BlockFIMap) {
|
|
auto &FIs = P.second;
|
|
if (FIs.empty())
|
|
continue;
|
|
dbgs() << " BB#" << P.first->getNumber() << ": {";
|
|
for (auto I : FIs) {
|
|
dbgs() << " fi#" << I;
|
|
if (LoxFIs.count(I))
|
|
dbgs() << '*';
|
|
}
|
|
dbgs() << " }\n";
|
|
}
|
|
});
|
|
|
|
#ifndef NDEBUG
|
|
bool HasOptLimit = SpillOptMax.getPosition();
|
|
#endif
|
|
|
|
// eliminate loads, when all loads eliminated, eliminate all stores.
|
|
for (auto &B : MF) {
|
|
auto F = BlockIndexes.find(&B);
|
|
assert(F != BlockIndexes.end());
|
|
HexagonBlockRanges::InstrIndexMap &IM = F->second;
|
|
HexagonBlockRanges::RegToRangeMap LM = HBR.computeLiveMap(IM);
|
|
HexagonBlockRanges::RegToRangeMap DM = HBR.computeDeadMap(IM, LM);
|
|
DEBUG(dbgs() << "BB#" << B.getNumber() << " dead map\n"
|
|
<< HexagonBlockRanges::PrintRangeMap(DM, HRI));
|
|
|
|
for (auto FI : BlockFIMap[&B]) {
|
|
if (BadFIs.count(FI))
|
|
continue;
|
|
DEBUG(dbgs() << "Working on fi#" << FI << '\n');
|
|
HexagonBlockRanges::RangeList &RL = FIRangeMap[FI].Map[&B];
|
|
for (auto &Range : RL) {
|
|
DEBUG(dbgs() << "--Examining range:" << RL << '\n');
|
|
if (!IndexType::isInstr(Range.start()) ||
|
|
!IndexType::isInstr(Range.end()))
|
|
continue;
|
|
MachineInstr &SI = *IM.getInstr(Range.start());
|
|
MachineInstr &EI = *IM.getInstr(Range.end());
|
|
assert(SI.mayStore() && "Unexpected start instruction");
|
|
assert(EI.mayLoad() && "Unexpected end instruction");
|
|
MachineOperand &SrcOp = SI.getOperand(2);
|
|
|
|
HexagonBlockRanges::RegisterRef SrcRR = { SrcOp.getReg(),
|
|
SrcOp.getSubReg() };
|
|
auto *RC = HII.getRegClass(SI.getDesc(), 2, &HRI, MF);
|
|
// The this-> is needed to unconfuse MSVC.
|
|
unsigned FoundR = this->findPhysReg(MF, Range, IM, DM, RC);
|
|
DEBUG(dbgs() << "Replacement reg:" << PrintReg(FoundR, &HRI) << '\n');
|
|
if (FoundR == 0)
|
|
continue;
|
|
#ifndef NDEBUG
|
|
if (HasOptLimit) {
|
|
if (SpillOptCount >= SpillOptMax)
|
|
return;
|
|
SpillOptCount++;
|
|
}
|
|
#endif
|
|
|
|
// Generate the copy-in: "FoundR = COPY SrcR" at the store location.
|
|
MachineBasicBlock::iterator StartIt = SI.getIterator(), NextIt;
|
|
MachineInstr *CopyIn = nullptr;
|
|
if (SrcRR.Reg != FoundR || SrcRR.Sub != 0) {
|
|
const DebugLoc &DL = SI.getDebugLoc();
|
|
CopyIn = BuildMI(B, StartIt, DL, HII.get(TargetOpcode::COPY), FoundR)
|
|
.add(SrcOp);
|
|
}
|
|
|
|
++StartIt;
|
|
// Check if this is a last store and the FI is live-on-exit.
|
|
if (LoxFIs.count(FI) && (&Range == &RL.back())) {
|
|
// Update store's source register.
|
|
if (unsigned SR = SrcOp.getSubReg())
|
|
SrcOp.setReg(HRI.getSubReg(FoundR, SR));
|
|
else
|
|
SrcOp.setReg(FoundR);
|
|
SrcOp.setSubReg(0);
|
|
// We are keeping this register live.
|
|
SrcOp.setIsKill(false);
|
|
} else {
|
|
B.erase(&SI);
|
|
IM.replaceInstr(&SI, CopyIn);
|
|
}
|
|
|
|
auto EndIt = std::next(EI.getIterator());
|
|
for (auto It = StartIt; It != EndIt; It = NextIt) {
|
|
MachineInstr &MI = *It;
|
|
NextIt = std::next(It);
|
|
int TFI;
|
|
if (!HII.isLoadFromStackSlot(MI, TFI) || TFI != FI)
|
|
continue;
|
|
unsigned DstR = MI.getOperand(0).getReg();
|
|
assert(MI.getOperand(0).getSubReg() == 0);
|
|
MachineInstr *CopyOut = nullptr;
|
|
if (DstR != FoundR) {
|
|
DebugLoc DL = MI.getDebugLoc();
|
|
unsigned MemSize = (1U << (HII.getMemAccessSize(MI) - 1));
|
|
assert(HII.getAddrMode(MI) == HexagonII::BaseImmOffset);
|
|
unsigned CopyOpc = TargetOpcode::COPY;
|
|
if (HII.isSignExtendingLoad(MI))
|
|
CopyOpc = (MemSize == 1) ? Hexagon::A2_sxtb : Hexagon::A2_sxth;
|
|
else if (HII.isZeroExtendingLoad(MI))
|
|
CopyOpc = (MemSize == 1) ? Hexagon::A2_zxtb : Hexagon::A2_zxth;
|
|
CopyOut = BuildMI(B, It, DL, HII.get(CopyOpc), DstR)
|
|
.addReg(FoundR, getKillRegState(&MI == &EI));
|
|
}
|
|
IM.replaceInstr(&MI, CopyOut);
|
|
B.erase(It);
|
|
}
|
|
|
|
// Update the dead map.
|
|
HexagonBlockRanges::RegisterRef FoundRR = { FoundR, 0 };
|
|
for (auto RR : HexagonBlockRanges::expandToSubRegs(FoundRR, MRI, HRI))
|
|
DM[RR].subtract(Range);
|
|
} // for Range in range list
|
|
}
|
|
}
|
|
}
|
|
|
|
void HexagonFrameLowering::expandAlloca(MachineInstr *AI,
|
|
const HexagonInstrInfo &HII, unsigned SP, unsigned CF) const {
|
|
MachineBasicBlock &MB = *AI->getParent();
|
|
DebugLoc DL = AI->getDebugLoc();
|
|
unsigned A = AI->getOperand(2).getImm();
|
|
|
|
// Have
|
|
// Rd = alloca Rs, #A
|
|
//
|
|
// If Rs and Rd are different registers, use this sequence:
|
|
// Rd = sub(r29, Rs)
|
|
// r29 = sub(r29, Rs)
|
|
// Rd = and(Rd, #-A) ; if necessary
|
|
// r29 = and(r29, #-A) ; if necessary
|
|
// Rd = add(Rd, #CF) ; CF size aligned to at most A
|
|
// otherwise, do
|
|
// Rd = sub(r29, Rs)
|
|
// Rd = and(Rd, #-A) ; if necessary
|
|
// r29 = Rd
|
|
// Rd = add(Rd, #CF) ; CF size aligned to at most A
|
|
|
|
MachineOperand &RdOp = AI->getOperand(0);
|
|
MachineOperand &RsOp = AI->getOperand(1);
|
|
unsigned Rd = RdOp.getReg(), Rs = RsOp.getReg();
|
|
|
|
// Rd = sub(r29, Rs)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), Rd)
|
|
.addReg(SP)
|
|
.addReg(Rs);
|
|
if (Rs != Rd) {
|
|
// r29 = sub(r29, Rs)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_sub), SP)
|
|
.addReg(SP)
|
|
.addReg(Rs);
|
|
}
|
|
if (A > 8) {
|
|
// Rd = and(Rd, #-A)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), Rd)
|
|
.addReg(Rd)
|
|
.addImm(-int64_t(A));
|
|
if (Rs != Rd)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_andir), SP)
|
|
.addReg(SP)
|
|
.addImm(-int64_t(A));
|
|
}
|
|
if (Rs == Rd) {
|
|
// r29 = Rd
|
|
BuildMI(MB, AI, DL, HII.get(TargetOpcode::COPY), SP)
|
|
.addReg(Rd);
|
|
}
|
|
if (CF > 0) {
|
|
// Rd = add(Rd, #CF)
|
|
BuildMI(MB, AI, DL, HII.get(Hexagon::A2_addi), Rd)
|
|
.addReg(Rd)
|
|
.addImm(CF);
|
|
}
|
|
}
|
|
|
|
bool HexagonFrameLowering::needsAligna(const MachineFunction &MF) const {
|
|
const MachineFrameInfo &MFI = MF.getFrameInfo();
|
|
if (!MFI.hasVarSizedObjects())
|
|
return false;
|
|
unsigned MaxA = MFI.getMaxAlignment();
|
|
if (MaxA <= getStackAlignment())
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
const MachineInstr *HexagonFrameLowering::getAlignaInstr(
|
|
const MachineFunction &MF) const {
|
|
for (auto &B : MF)
|
|
for (auto &I : B)
|
|
if (I.getOpcode() == Hexagon::PS_aligna)
|
|
return &I;
|
|
return nullptr;
|
|
}
|
|
|
|
/// Adds all callee-saved registers as implicit uses or defs to the
|
|
/// instruction.
|
|
void HexagonFrameLowering::addCalleeSaveRegistersAsImpOperand(MachineInstr *MI,
|
|
const CSIVect &CSI, bool IsDef, bool IsKill) const {
|
|
// Add the callee-saved registers as implicit uses.
|
|
for (auto &R : CSI)
|
|
MI->addOperand(MachineOperand::CreateReg(R.getReg(), IsDef, true, IsKill));
|
|
}
|
|
|
|
/// Determine whether the callee-saved register saves and restores should
|
|
/// be generated via inline code. If this function returns "true", inline
|
|
/// code will be generated. If this function returns "false", additional
|
|
/// checks are performed, which may still lead to the inline code.
|
|
bool HexagonFrameLowering::shouldInlineCSR(MachineFunction &MF,
|
|
const CSIVect &CSI) const {
|
|
if (MF.getInfo<HexagonMachineFunctionInfo>()->hasEHReturn())
|
|
return true;
|
|
if (!isOptSize(MF) && !isMinSize(MF))
|
|
if (MF.getTarget().getOptLevel() > CodeGenOpt::Default)
|
|
return true;
|
|
|
|
// Check if CSI only has double registers, and if the registers form
|
|
// a contiguous block starting from D8.
|
|
BitVector Regs(Hexagon::NUM_TARGET_REGS);
|
|
for (unsigned i = 0, n = CSI.size(); i < n; ++i) {
|
|
unsigned R = CSI[i].getReg();
|
|
if (!Hexagon::DoubleRegsRegClass.contains(R))
|
|
return true;
|
|
Regs[R] = true;
|
|
}
|
|
int F = Regs.find_first();
|
|
if (F != Hexagon::D8)
|
|
return true;
|
|
while (F >= 0) {
|
|
int N = Regs.find_next(F);
|
|
if (N >= 0 && N != F+1)
|
|
return true;
|
|
F = N;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool HexagonFrameLowering::useSpillFunction(MachineFunction &MF,
|
|
const CSIVect &CSI) const {
|
|
if (shouldInlineCSR(MF, CSI))
|
|
return false;
|
|
unsigned NumCSI = CSI.size();
|
|
if (NumCSI <= 1)
|
|
return false;
|
|
|
|
unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs
|
|
: SpillFuncThreshold;
|
|
return Threshold < NumCSI;
|
|
}
|
|
|
|
bool HexagonFrameLowering::useRestoreFunction(MachineFunction &MF,
|
|
const CSIVect &CSI) const {
|
|
if (shouldInlineCSR(MF, CSI))
|
|
return false;
|
|
// The restore functions do a bit more than just restoring registers.
|
|
// The non-returning versions will go back directly to the caller's
|
|
// caller, others will clean up the stack frame in preparation for
|
|
// a tail call. Using them can still save code size even if only one
|
|
// register is getting restores. Make the decision based on -Oz:
|
|
// using -Os will use inline restore for a single register.
|
|
if (isMinSize(MF))
|
|
return true;
|
|
unsigned NumCSI = CSI.size();
|
|
if (NumCSI <= 1)
|
|
return false;
|
|
|
|
unsigned Threshold = isOptSize(MF) ? SpillFuncThresholdOs-1
|
|
: SpillFuncThreshold;
|
|
return Threshold < NumCSI;
|
|
}
|
|
|
|
bool HexagonFrameLowering::mayOverflowFrameOffset(MachineFunction &MF) const {
|
|
unsigned StackSize = MF.getFrameInfo().estimateStackSize(MF);
|
|
auto &HST = MF.getSubtarget<HexagonSubtarget>();
|
|
// A fairly simplistic guess as to whether a potential load/store to a
|
|
// stack location could require an extra register. It does not account
|
|
// for store-immediate instructions.
|
|
if (HST.useHVXOps())
|
|
return StackSize > 256;
|
|
return false;
|
|
}
|