forked from OSchip/llvm-project
3537 lines
117 KiB
C++
3537 lines
117 KiB
C++
|
|
//===-- AsmWriter.cpp - Printing LLVM as an assembly file -----------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This library implements the functionality defined in llvm/IR/Writer.h
|
|
//
|
|
// Note that these routines must be extremely tolerant of various errors in the
|
|
// LLVM code, because it can be used for debugging transformations.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SetVector.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/IR/AssemblyAnnotationWriter.h"
|
|
#include "llvm/IR/CFG.h"
|
|
#include "llvm/IR/CallingConv.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugInfo.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRPrintingPasses.h"
|
|
#include "llvm/IR/InlineAsm.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/IR/ModuleSlotTracker.h"
|
|
#include "llvm/IR/Operator.h"
|
|
#include "llvm/IR/Statepoint.h"
|
|
#include "llvm/IR/TypeFinder.h"
|
|
#include "llvm/IR/UseListOrder.h"
|
|
#include "llvm/IR/ValueSymbolTable.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/Dwarf.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/Format.h"
|
|
#include "llvm/Support/FormattedStream.h"
|
|
#include "llvm/Support/MathExtras.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <algorithm>
|
|
#include <cctype>
|
|
using namespace llvm;
|
|
|
|
// Make virtual table appear in this compilation unit.
|
|
AssemblyAnnotationWriter::~AssemblyAnnotationWriter() {}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper Functions
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
namespace {
|
|
struct OrderMap {
|
|
DenseMap<const Value *, std::pair<unsigned, bool>> IDs;
|
|
|
|
unsigned size() const { return IDs.size(); }
|
|
std::pair<unsigned, bool> &operator[](const Value *V) { return IDs[V]; }
|
|
std::pair<unsigned, bool> lookup(const Value *V) const {
|
|
return IDs.lookup(V);
|
|
}
|
|
void index(const Value *V) {
|
|
// Explicitly sequence get-size and insert-value operations to avoid UB.
|
|
unsigned ID = IDs.size() + 1;
|
|
IDs[V].first = ID;
|
|
}
|
|
};
|
|
}
|
|
|
|
static void orderValue(const Value *V, OrderMap &OM) {
|
|
if (OM.lookup(V).first)
|
|
return;
|
|
|
|
if (const Constant *C = dyn_cast<Constant>(V))
|
|
if (C->getNumOperands() && !isa<GlobalValue>(C))
|
|
for (const Value *Op : C->operands())
|
|
if (!isa<BasicBlock>(Op) && !isa<GlobalValue>(Op))
|
|
orderValue(Op, OM);
|
|
|
|
// Note: we cannot cache this lookup above, since inserting into the map
|
|
// changes the map's size, and thus affects the other IDs.
|
|
OM.index(V);
|
|
}
|
|
|
|
static OrderMap orderModule(const Module *M) {
|
|
// This needs to match the order used by ValueEnumerator::ValueEnumerator()
|
|
// and ValueEnumerator::incorporateFunction().
|
|
OrderMap OM;
|
|
|
|
for (const GlobalVariable &G : M->globals()) {
|
|
if (G.hasInitializer())
|
|
if (!isa<GlobalValue>(G.getInitializer()))
|
|
orderValue(G.getInitializer(), OM);
|
|
orderValue(&G, OM);
|
|
}
|
|
for (const GlobalAlias &A : M->aliases()) {
|
|
if (!isa<GlobalValue>(A.getAliasee()))
|
|
orderValue(A.getAliasee(), OM);
|
|
orderValue(&A, OM);
|
|
}
|
|
for (const GlobalIFunc &I : M->ifuncs()) {
|
|
if (!isa<GlobalValue>(I.getResolver()))
|
|
orderValue(I.getResolver(), OM);
|
|
orderValue(&I, OM);
|
|
}
|
|
for (const Function &F : *M) {
|
|
for (const Use &U : F.operands())
|
|
if (!isa<GlobalValue>(U.get()))
|
|
orderValue(U.get(), OM);
|
|
|
|
orderValue(&F, OM);
|
|
|
|
if (F.isDeclaration())
|
|
continue;
|
|
|
|
for (const Argument &A : F.args())
|
|
orderValue(&A, OM);
|
|
for (const BasicBlock &BB : F) {
|
|
orderValue(&BB, OM);
|
|
for (const Instruction &I : BB) {
|
|
for (const Value *Op : I.operands())
|
|
if ((isa<Constant>(*Op) && !isa<GlobalValue>(*Op)) ||
|
|
isa<InlineAsm>(*Op))
|
|
orderValue(Op, OM);
|
|
orderValue(&I, OM);
|
|
}
|
|
}
|
|
}
|
|
return OM;
|
|
}
|
|
|
|
static void predictValueUseListOrderImpl(const Value *V, const Function *F,
|
|
unsigned ID, const OrderMap &OM,
|
|
UseListOrderStack &Stack) {
|
|
// Predict use-list order for this one.
|
|
typedef std::pair<const Use *, unsigned> Entry;
|
|
SmallVector<Entry, 64> List;
|
|
for (const Use &U : V->uses())
|
|
// Check if this user will be serialized.
|
|
if (OM.lookup(U.getUser()).first)
|
|
List.push_back(std::make_pair(&U, List.size()));
|
|
|
|
if (List.size() < 2)
|
|
// We may have lost some users.
|
|
return;
|
|
|
|
bool GetsReversed =
|
|
!isa<GlobalVariable>(V) && !isa<Function>(V) && !isa<BasicBlock>(V);
|
|
if (auto *BA = dyn_cast<BlockAddress>(V))
|
|
ID = OM.lookup(BA->getBasicBlock()).first;
|
|
std::sort(List.begin(), List.end(), [&](const Entry &L, const Entry &R) {
|
|
const Use *LU = L.first;
|
|
const Use *RU = R.first;
|
|
if (LU == RU)
|
|
return false;
|
|
|
|
auto LID = OM.lookup(LU->getUser()).first;
|
|
auto RID = OM.lookup(RU->getUser()).first;
|
|
|
|
// If ID is 4, then expect: 7 6 5 1 2 3.
|
|
if (LID < RID) {
|
|
if (GetsReversed)
|
|
if (RID <= ID)
|
|
return true;
|
|
return false;
|
|
}
|
|
if (RID < LID) {
|
|
if (GetsReversed)
|
|
if (LID <= ID)
|
|
return false;
|
|
return true;
|
|
}
|
|
|
|
// LID and RID are equal, so we have different operands of the same user.
|
|
// Assume operands are added in order for all instructions.
|
|
if (GetsReversed)
|
|
if (LID <= ID)
|
|
return LU->getOperandNo() < RU->getOperandNo();
|
|
return LU->getOperandNo() > RU->getOperandNo();
|
|
});
|
|
|
|
if (std::is_sorted(
|
|
List.begin(), List.end(),
|
|
[](const Entry &L, const Entry &R) { return L.second < R.second; }))
|
|
// Order is already correct.
|
|
return;
|
|
|
|
// Store the shuffle.
|
|
Stack.emplace_back(V, F, List.size());
|
|
assert(List.size() == Stack.back().Shuffle.size() && "Wrong size");
|
|
for (size_t I = 0, E = List.size(); I != E; ++I)
|
|
Stack.back().Shuffle[I] = List[I].second;
|
|
}
|
|
|
|
static void predictValueUseListOrder(const Value *V, const Function *F,
|
|
OrderMap &OM, UseListOrderStack &Stack) {
|
|
auto &IDPair = OM[V];
|
|
assert(IDPair.first && "Unmapped value");
|
|
if (IDPair.second)
|
|
// Already predicted.
|
|
return;
|
|
|
|
// Do the actual prediction.
|
|
IDPair.second = true;
|
|
if (!V->use_empty() && std::next(V->use_begin()) != V->use_end())
|
|
predictValueUseListOrderImpl(V, F, IDPair.first, OM, Stack);
|
|
|
|
// Recursive descent into constants.
|
|
if (const Constant *C = dyn_cast<Constant>(V))
|
|
if (C->getNumOperands()) // Visit GlobalValues.
|
|
for (const Value *Op : C->operands())
|
|
if (isa<Constant>(Op)) // Visit GlobalValues.
|
|
predictValueUseListOrder(Op, F, OM, Stack);
|
|
}
|
|
|
|
static UseListOrderStack predictUseListOrder(const Module *M) {
|
|
OrderMap OM = orderModule(M);
|
|
|
|
// Use-list orders need to be serialized after all the users have been added
|
|
// to a value, or else the shuffles will be incomplete. Store them per
|
|
// function in a stack.
|
|
//
|
|
// Aside from function order, the order of values doesn't matter much here.
|
|
UseListOrderStack Stack;
|
|
|
|
// We want to visit the functions backward now so we can list function-local
|
|
// constants in the last Function they're used in. Module-level constants
|
|
// have already been visited above.
|
|
for (const Function &F : make_range(M->rbegin(), M->rend())) {
|
|
if (F.isDeclaration())
|
|
continue;
|
|
for (const BasicBlock &BB : F)
|
|
predictValueUseListOrder(&BB, &F, OM, Stack);
|
|
for (const Argument &A : F.args())
|
|
predictValueUseListOrder(&A, &F, OM, Stack);
|
|
for (const BasicBlock &BB : F)
|
|
for (const Instruction &I : BB)
|
|
for (const Value *Op : I.operands())
|
|
if (isa<Constant>(*Op) || isa<InlineAsm>(*Op)) // Visit GlobalValues.
|
|
predictValueUseListOrder(Op, &F, OM, Stack);
|
|
for (const BasicBlock &BB : F)
|
|
for (const Instruction &I : BB)
|
|
predictValueUseListOrder(&I, &F, OM, Stack);
|
|
}
|
|
|
|
// Visit globals last.
|
|
for (const GlobalVariable &G : M->globals())
|
|
predictValueUseListOrder(&G, nullptr, OM, Stack);
|
|
for (const Function &F : *M)
|
|
predictValueUseListOrder(&F, nullptr, OM, Stack);
|
|
for (const GlobalAlias &A : M->aliases())
|
|
predictValueUseListOrder(&A, nullptr, OM, Stack);
|
|
for (const GlobalIFunc &I : M->ifuncs())
|
|
predictValueUseListOrder(&I, nullptr, OM, Stack);
|
|
for (const GlobalVariable &G : M->globals())
|
|
if (G.hasInitializer())
|
|
predictValueUseListOrder(G.getInitializer(), nullptr, OM, Stack);
|
|
for (const GlobalAlias &A : M->aliases())
|
|
predictValueUseListOrder(A.getAliasee(), nullptr, OM, Stack);
|
|
for (const GlobalIFunc &I : M->ifuncs())
|
|
predictValueUseListOrder(I.getResolver(), nullptr, OM, Stack);
|
|
for (const Function &F : *M)
|
|
for (const Use &U : F.operands())
|
|
predictValueUseListOrder(U.get(), nullptr, OM, Stack);
|
|
|
|
return Stack;
|
|
}
|
|
|
|
static const Module *getModuleFromVal(const Value *V) {
|
|
if (const Argument *MA = dyn_cast<Argument>(V))
|
|
return MA->getParent() ? MA->getParent()->getParent() : nullptr;
|
|
|
|
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
|
|
return BB->getParent() ? BB->getParent()->getParent() : nullptr;
|
|
|
|
if (const Instruction *I = dyn_cast<Instruction>(V)) {
|
|
const Function *M = I->getParent() ? I->getParent()->getParent() : nullptr;
|
|
return M ? M->getParent() : nullptr;
|
|
}
|
|
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V))
|
|
return GV->getParent();
|
|
|
|
if (const auto *MAV = dyn_cast<MetadataAsValue>(V)) {
|
|
for (const User *U : MAV->users())
|
|
if (isa<Instruction>(U))
|
|
if (const Module *M = getModuleFromVal(U))
|
|
return M;
|
|
return nullptr;
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
static void PrintCallingConv(unsigned cc, raw_ostream &Out) {
|
|
switch (cc) {
|
|
default: Out << "cc" << cc; break;
|
|
case CallingConv::Fast: Out << "fastcc"; break;
|
|
case CallingConv::Cold: Out << "coldcc"; break;
|
|
case CallingConv::WebKit_JS: Out << "webkit_jscc"; break;
|
|
case CallingConv::AnyReg: Out << "anyregcc"; break;
|
|
case CallingConv::PreserveMost: Out << "preserve_mostcc"; break;
|
|
case CallingConv::PreserveAll: Out << "preserve_allcc"; break;
|
|
case CallingConv::CXX_FAST_TLS: Out << "cxx_fast_tlscc"; break;
|
|
case CallingConv::GHC: Out << "ghccc"; break;
|
|
case CallingConv::X86_StdCall: Out << "x86_stdcallcc"; break;
|
|
case CallingConv::X86_FastCall: Out << "x86_fastcallcc"; break;
|
|
case CallingConv::X86_ThisCall: Out << "x86_thiscallcc"; break;
|
|
case CallingConv::X86_VectorCall:Out << "x86_vectorcallcc"; break;
|
|
case CallingConv::Intel_OCL_BI: Out << "intel_ocl_bicc"; break;
|
|
case CallingConv::ARM_APCS: Out << "arm_apcscc"; break;
|
|
case CallingConv::ARM_AAPCS: Out << "arm_aapcscc"; break;
|
|
case CallingConv::ARM_AAPCS_VFP: Out << "arm_aapcs_vfpcc"; break;
|
|
case CallingConv::MSP430_INTR: Out << "msp430_intrcc"; break;
|
|
case CallingConv::AVR_INTR: Out << "avr_intrcc "; break;
|
|
case CallingConv::AVR_SIGNAL: Out << "avr_signalcc "; break;
|
|
case CallingConv::PTX_Kernel: Out << "ptx_kernel"; break;
|
|
case CallingConv::PTX_Device: Out << "ptx_device"; break;
|
|
case CallingConv::X86_64_SysV: Out << "x86_64_sysvcc"; break;
|
|
case CallingConv::X86_64_Win64: Out << "x86_64_win64cc"; break;
|
|
case CallingConv::SPIR_FUNC: Out << "spir_func"; break;
|
|
case CallingConv::SPIR_KERNEL: Out << "spir_kernel"; break;
|
|
case CallingConv::Swift: Out << "swiftcc"; break;
|
|
case CallingConv::X86_INTR: Out << "x86_intrcc"; break;
|
|
case CallingConv::HHVM: Out << "hhvmcc"; break;
|
|
case CallingConv::HHVM_C: Out << "hhvm_ccc"; break;
|
|
case CallingConv::AMDGPU_VS: Out << "amdgpu_vs"; break;
|
|
case CallingConv::AMDGPU_GS: Out << "amdgpu_gs"; break;
|
|
case CallingConv::AMDGPU_PS: Out << "amdgpu_ps"; break;
|
|
case CallingConv::AMDGPU_CS: Out << "amdgpu_cs"; break;
|
|
case CallingConv::AMDGPU_KERNEL: Out << "amdgpu_kernel"; break;
|
|
}
|
|
}
|
|
|
|
// PrintEscapedString - Print each character of the specified string, escaping
|
|
// it if it is not printable or if it is an escape char.
|
|
static void PrintEscapedString(StringRef Name, raw_ostream &Out) {
|
|
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
|
|
unsigned char C = Name[i];
|
|
if (isprint(C) && C != '\\' && C != '"')
|
|
Out << C;
|
|
else
|
|
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
|
|
}
|
|
}
|
|
|
|
enum PrefixType {
|
|
GlobalPrefix,
|
|
ComdatPrefix,
|
|
LabelPrefix,
|
|
LocalPrefix,
|
|
NoPrefix
|
|
};
|
|
|
|
void llvm::printLLVMNameWithoutPrefix(raw_ostream &OS, StringRef Name) {
|
|
assert(!Name.empty() && "Cannot get empty name!");
|
|
|
|
// Scan the name to see if it needs quotes first.
|
|
bool NeedsQuotes = isdigit(static_cast<unsigned char>(Name[0]));
|
|
if (!NeedsQuotes) {
|
|
for (unsigned i = 0, e = Name.size(); i != e; ++i) {
|
|
// By making this unsigned, the value passed in to isalnum will always be
|
|
// in the range 0-255. This is important when building with MSVC because
|
|
// its implementation will assert. This situation can arise when dealing
|
|
// with UTF-8 multibyte characters.
|
|
unsigned char C = Name[i];
|
|
if (!isalnum(static_cast<unsigned char>(C)) && C != '-' && C != '.' &&
|
|
C != '_') {
|
|
NeedsQuotes = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
// If we didn't need any quotes, just write out the name in one blast.
|
|
if (!NeedsQuotes) {
|
|
OS << Name;
|
|
return;
|
|
}
|
|
|
|
// Okay, we need quotes. Output the quotes and escape any scary characters as
|
|
// needed.
|
|
OS << '"';
|
|
PrintEscapedString(Name, OS);
|
|
OS << '"';
|
|
}
|
|
|
|
/// Turn the specified name into an 'LLVM name', which is either prefixed with %
|
|
/// (if the string only contains simple characters) or is surrounded with ""'s
|
|
/// (if it has special chars in it). Print it out.
|
|
static void PrintLLVMName(raw_ostream &OS, StringRef Name, PrefixType Prefix) {
|
|
switch (Prefix) {
|
|
case NoPrefix:
|
|
break;
|
|
case GlobalPrefix:
|
|
OS << '@';
|
|
break;
|
|
case ComdatPrefix:
|
|
OS << '$';
|
|
break;
|
|
case LabelPrefix:
|
|
break;
|
|
case LocalPrefix:
|
|
OS << '%';
|
|
break;
|
|
}
|
|
printLLVMNameWithoutPrefix(OS, Name);
|
|
}
|
|
|
|
/// Turn the specified name into an 'LLVM name', which is either prefixed with %
|
|
/// (if the string only contains simple characters) or is surrounded with ""'s
|
|
/// (if it has special chars in it). Print it out.
|
|
static void PrintLLVMName(raw_ostream &OS, const Value *V) {
|
|
PrintLLVMName(OS, V->getName(),
|
|
isa<GlobalValue>(V) ? GlobalPrefix : LocalPrefix);
|
|
}
|
|
|
|
|
|
namespace {
|
|
class TypePrinting {
|
|
TypePrinting(const TypePrinting &) = delete;
|
|
void operator=(const TypePrinting&) = delete;
|
|
public:
|
|
|
|
/// NamedTypes - The named types that are used by the current module.
|
|
TypeFinder NamedTypes;
|
|
|
|
/// NumberedTypes - The numbered types, along with their value.
|
|
DenseMap<StructType*, unsigned> NumberedTypes;
|
|
|
|
TypePrinting() = default;
|
|
|
|
void incorporateTypes(const Module &M);
|
|
|
|
void print(Type *Ty, raw_ostream &OS);
|
|
|
|
void printStructBody(StructType *Ty, raw_ostream &OS);
|
|
};
|
|
} // namespace
|
|
|
|
void TypePrinting::incorporateTypes(const Module &M) {
|
|
NamedTypes.run(M, false);
|
|
|
|
// The list of struct types we got back includes all the struct types, split
|
|
// the unnamed ones out to a numbering and remove the anonymous structs.
|
|
unsigned NextNumber = 0;
|
|
|
|
std::vector<StructType*>::iterator NextToUse = NamedTypes.begin(), I, E;
|
|
for (I = NamedTypes.begin(), E = NamedTypes.end(); I != E; ++I) {
|
|
StructType *STy = *I;
|
|
|
|
// Ignore anonymous types.
|
|
if (STy->isLiteral())
|
|
continue;
|
|
|
|
if (STy->getName().empty())
|
|
NumberedTypes[STy] = NextNumber++;
|
|
else
|
|
*NextToUse++ = STy;
|
|
}
|
|
|
|
NamedTypes.erase(NextToUse, NamedTypes.end());
|
|
}
|
|
|
|
|
|
/// CalcTypeName - Write the specified type to the specified raw_ostream, making
|
|
/// use of type names or up references to shorten the type name where possible.
|
|
void TypePrinting::print(Type *Ty, raw_ostream &OS) {
|
|
switch (Ty->getTypeID()) {
|
|
case Type::VoidTyID: OS << "void"; return;
|
|
case Type::HalfTyID: OS << "half"; return;
|
|
case Type::FloatTyID: OS << "float"; return;
|
|
case Type::DoubleTyID: OS << "double"; return;
|
|
case Type::X86_FP80TyID: OS << "x86_fp80"; return;
|
|
case Type::FP128TyID: OS << "fp128"; return;
|
|
case Type::PPC_FP128TyID: OS << "ppc_fp128"; return;
|
|
case Type::LabelTyID: OS << "label"; return;
|
|
case Type::MetadataTyID: OS << "metadata"; return;
|
|
case Type::X86_MMXTyID: OS << "x86_mmx"; return;
|
|
case Type::TokenTyID: OS << "token"; return;
|
|
case Type::IntegerTyID:
|
|
OS << 'i' << cast<IntegerType>(Ty)->getBitWidth();
|
|
return;
|
|
|
|
case Type::FunctionTyID: {
|
|
FunctionType *FTy = cast<FunctionType>(Ty);
|
|
print(FTy->getReturnType(), OS);
|
|
OS << " (";
|
|
for (FunctionType::param_iterator I = FTy->param_begin(),
|
|
E = FTy->param_end(); I != E; ++I) {
|
|
if (I != FTy->param_begin())
|
|
OS << ", ";
|
|
print(*I, OS);
|
|
}
|
|
if (FTy->isVarArg()) {
|
|
if (FTy->getNumParams()) OS << ", ";
|
|
OS << "...";
|
|
}
|
|
OS << ')';
|
|
return;
|
|
}
|
|
case Type::StructTyID: {
|
|
StructType *STy = cast<StructType>(Ty);
|
|
|
|
if (STy->isLiteral())
|
|
return printStructBody(STy, OS);
|
|
|
|
if (!STy->getName().empty())
|
|
return PrintLLVMName(OS, STy->getName(), LocalPrefix);
|
|
|
|
DenseMap<StructType*, unsigned>::iterator I = NumberedTypes.find(STy);
|
|
if (I != NumberedTypes.end())
|
|
OS << '%' << I->second;
|
|
else // Not enumerated, print the hex address.
|
|
OS << "%\"type " << STy << '\"';
|
|
return;
|
|
}
|
|
case Type::PointerTyID: {
|
|
PointerType *PTy = cast<PointerType>(Ty);
|
|
print(PTy->getElementType(), OS);
|
|
if (unsigned AddressSpace = PTy->getAddressSpace())
|
|
OS << " addrspace(" << AddressSpace << ')';
|
|
OS << '*';
|
|
return;
|
|
}
|
|
case Type::ArrayTyID: {
|
|
ArrayType *ATy = cast<ArrayType>(Ty);
|
|
OS << '[' << ATy->getNumElements() << " x ";
|
|
print(ATy->getElementType(), OS);
|
|
OS << ']';
|
|
return;
|
|
}
|
|
case Type::VectorTyID: {
|
|
VectorType *PTy = cast<VectorType>(Ty);
|
|
OS << "<" << PTy->getNumElements() << " x ";
|
|
print(PTy->getElementType(), OS);
|
|
OS << '>';
|
|
return;
|
|
}
|
|
}
|
|
llvm_unreachable("Invalid TypeID");
|
|
}
|
|
|
|
void TypePrinting::printStructBody(StructType *STy, raw_ostream &OS) {
|
|
if (STy->isOpaque()) {
|
|
OS << "opaque";
|
|
return;
|
|
}
|
|
|
|
if (STy->isPacked())
|
|
OS << '<';
|
|
|
|
if (STy->getNumElements() == 0) {
|
|
OS << "{}";
|
|
} else {
|
|
StructType::element_iterator I = STy->element_begin();
|
|
OS << "{ ";
|
|
print(*I++, OS);
|
|
for (StructType::element_iterator E = STy->element_end(); I != E; ++I) {
|
|
OS << ", ";
|
|
print(*I, OS);
|
|
}
|
|
|
|
OS << " }";
|
|
}
|
|
if (STy->isPacked())
|
|
OS << '>';
|
|
}
|
|
|
|
namespace llvm {
|
|
//===----------------------------------------------------------------------===//
|
|
// SlotTracker Class: Enumerate slot numbers for unnamed values
|
|
//===----------------------------------------------------------------------===//
|
|
/// This class provides computation of slot numbers for LLVM Assembly writing.
|
|
///
|
|
class SlotTracker {
|
|
public:
|
|
/// ValueMap - A mapping of Values to slot numbers.
|
|
typedef DenseMap<const Value*, unsigned> ValueMap;
|
|
|
|
private:
|
|
/// TheModule - The module for which we are holding slot numbers.
|
|
const Module* TheModule;
|
|
|
|
/// TheFunction - The function for which we are holding slot numbers.
|
|
const Function* TheFunction;
|
|
bool FunctionProcessed;
|
|
bool ShouldInitializeAllMetadata;
|
|
|
|
/// mMap - The slot map for the module level data.
|
|
ValueMap mMap;
|
|
unsigned mNext;
|
|
|
|
/// fMap - The slot map for the function level data.
|
|
ValueMap fMap;
|
|
unsigned fNext;
|
|
|
|
/// mdnMap - Map for MDNodes.
|
|
DenseMap<const MDNode*, unsigned> mdnMap;
|
|
unsigned mdnNext;
|
|
|
|
/// asMap - The slot map for attribute sets.
|
|
DenseMap<AttributeSet, unsigned> asMap;
|
|
unsigned asNext;
|
|
public:
|
|
/// Construct from a module.
|
|
///
|
|
/// If \c ShouldInitializeAllMetadata, initializes all metadata in all
|
|
/// functions, giving correct numbering for metadata referenced only from
|
|
/// within a function (even if no functions have been initialized).
|
|
explicit SlotTracker(const Module *M,
|
|
bool ShouldInitializeAllMetadata = false);
|
|
/// Construct from a function, starting out in incorp state.
|
|
///
|
|
/// If \c ShouldInitializeAllMetadata, initializes all metadata in all
|
|
/// functions, giving correct numbering for metadata referenced only from
|
|
/// within a function (even if no functions have been initialized).
|
|
explicit SlotTracker(const Function *F,
|
|
bool ShouldInitializeAllMetadata = false);
|
|
|
|
/// Return the slot number of the specified value in it's type
|
|
/// plane. If something is not in the SlotTracker, return -1.
|
|
int getLocalSlot(const Value *V);
|
|
int getGlobalSlot(const GlobalValue *V);
|
|
int getMetadataSlot(const MDNode *N);
|
|
int getAttributeGroupSlot(AttributeSet AS);
|
|
|
|
/// If you'd like to deal with a function instead of just a module, use
|
|
/// this method to get its data into the SlotTracker.
|
|
void incorporateFunction(const Function *F) {
|
|
TheFunction = F;
|
|
FunctionProcessed = false;
|
|
}
|
|
|
|
const Function *getFunction() const { return TheFunction; }
|
|
|
|
/// After calling incorporateFunction, use this method to remove the
|
|
/// most recently incorporated function from the SlotTracker. This
|
|
/// will reset the state of the machine back to just the module contents.
|
|
void purgeFunction();
|
|
|
|
/// MDNode map iterators.
|
|
typedef DenseMap<const MDNode*, unsigned>::iterator mdn_iterator;
|
|
mdn_iterator mdn_begin() { return mdnMap.begin(); }
|
|
mdn_iterator mdn_end() { return mdnMap.end(); }
|
|
unsigned mdn_size() const { return mdnMap.size(); }
|
|
bool mdn_empty() const { return mdnMap.empty(); }
|
|
|
|
/// AttributeSet map iterators.
|
|
typedef DenseMap<AttributeSet, unsigned>::iterator as_iterator;
|
|
as_iterator as_begin() { return asMap.begin(); }
|
|
as_iterator as_end() { return asMap.end(); }
|
|
unsigned as_size() const { return asMap.size(); }
|
|
bool as_empty() const { return asMap.empty(); }
|
|
|
|
/// This function does the actual initialization.
|
|
inline void initialize();
|
|
|
|
// Implementation Details
|
|
private:
|
|
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
|
|
void CreateModuleSlot(const GlobalValue *V);
|
|
|
|
/// CreateMetadataSlot - Insert the specified MDNode* into the slot table.
|
|
void CreateMetadataSlot(const MDNode *N);
|
|
|
|
/// CreateFunctionSlot - Insert the specified Value* into the slot table.
|
|
void CreateFunctionSlot(const Value *V);
|
|
|
|
/// \brief Insert the specified AttributeSet into the slot table.
|
|
void CreateAttributeSetSlot(AttributeSet AS);
|
|
|
|
/// Add all of the module level global variables (and their initializers)
|
|
/// and function declarations, but not the contents of those functions.
|
|
void processModule();
|
|
|
|
/// Add all of the functions arguments, basic blocks, and instructions.
|
|
void processFunction();
|
|
|
|
/// Add the metadata directly attached to a GlobalObject.
|
|
void processGlobalObjectMetadata(const GlobalObject &GO);
|
|
|
|
/// Add all of the metadata from a function.
|
|
void processFunctionMetadata(const Function &F);
|
|
|
|
/// Add all of the metadata from an instruction.
|
|
void processInstructionMetadata(const Instruction &I);
|
|
|
|
SlotTracker(const SlotTracker &) = delete;
|
|
void operator=(const SlotTracker &) = delete;
|
|
};
|
|
} // namespace llvm
|
|
|
|
ModuleSlotTracker::ModuleSlotTracker(SlotTracker &Machine, const Module *M,
|
|
const Function *F)
|
|
: M(M), F(F), Machine(&Machine) {}
|
|
|
|
ModuleSlotTracker::ModuleSlotTracker(const Module *M,
|
|
bool ShouldInitializeAllMetadata)
|
|
: ShouldCreateStorage(M),
|
|
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), M(M) {}
|
|
|
|
ModuleSlotTracker::~ModuleSlotTracker() {}
|
|
|
|
SlotTracker *ModuleSlotTracker::getMachine() {
|
|
if (!ShouldCreateStorage)
|
|
return Machine;
|
|
|
|
ShouldCreateStorage = false;
|
|
MachineStorage =
|
|
llvm::make_unique<SlotTracker>(M, ShouldInitializeAllMetadata);
|
|
Machine = MachineStorage.get();
|
|
return Machine;
|
|
}
|
|
|
|
void ModuleSlotTracker::incorporateFunction(const Function &F) {
|
|
// Using getMachine() may lazily create the slot tracker.
|
|
if (!getMachine())
|
|
return;
|
|
|
|
// Nothing to do if this is the right function already.
|
|
if (this->F == &F)
|
|
return;
|
|
if (this->F)
|
|
Machine->purgeFunction();
|
|
Machine->incorporateFunction(&F);
|
|
this->F = &F;
|
|
}
|
|
|
|
int ModuleSlotTracker::getLocalSlot(const Value *V) {
|
|
assert(F && "No function incorporated");
|
|
return Machine->getLocalSlot(V);
|
|
}
|
|
|
|
static SlotTracker *createSlotTracker(const Value *V) {
|
|
if (const Argument *FA = dyn_cast<Argument>(V))
|
|
return new SlotTracker(FA->getParent());
|
|
|
|
if (const Instruction *I = dyn_cast<Instruction>(V))
|
|
if (I->getParent())
|
|
return new SlotTracker(I->getParent()->getParent());
|
|
|
|
if (const BasicBlock *BB = dyn_cast<BasicBlock>(V))
|
|
return new SlotTracker(BB->getParent());
|
|
|
|
if (const GlobalVariable *GV = dyn_cast<GlobalVariable>(V))
|
|
return new SlotTracker(GV->getParent());
|
|
|
|
if (const GlobalAlias *GA = dyn_cast<GlobalAlias>(V))
|
|
return new SlotTracker(GA->getParent());
|
|
|
|
if (const GlobalIFunc *GIF = dyn_cast<GlobalIFunc>(V))
|
|
return new SlotTracker(GIF->getParent());
|
|
|
|
if (const Function *Func = dyn_cast<Function>(V))
|
|
return new SlotTracker(Func);
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
#if 0
|
|
#define ST_DEBUG(X) dbgs() << X
|
|
#else
|
|
#define ST_DEBUG(X)
|
|
#endif
|
|
|
|
// Module level constructor. Causes the contents of the Module (sans functions)
|
|
// to be added to the slot table.
|
|
SlotTracker::SlotTracker(const Module *M, bool ShouldInitializeAllMetadata)
|
|
: TheModule(M), TheFunction(nullptr), FunctionProcessed(false),
|
|
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
|
|
fNext(0), mdnNext(0), asNext(0) {}
|
|
|
|
// Function level constructor. Causes the contents of the Module and the one
|
|
// function provided to be added to the slot table.
|
|
SlotTracker::SlotTracker(const Function *F, bool ShouldInitializeAllMetadata)
|
|
: TheModule(F ? F->getParent() : nullptr), TheFunction(F),
|
|
FunctionProcessed(false),
|
|
ShouldInitializeAllMetadata(ShouldInitializeAllMetadata), mNext(0),
|
|
fNext(0), mdnNext(0), asNext(0) {}
|
|
|
|
inline void SlotTracker::initialize() {
|
|
if (TheModule) {
|
|
processModule();
|
|
TheModule = nullptr; ///< Prevent re-processing next time we're called.
|
|
}
|
|
|
|
if (TheFunction && !FunctionProcessed)
|
|
processFunction();
|
|
}
|
|
|
|
// Iterate through all the global variables, functions, and global
|
|
// variable initializers and create slots for them.
|
|
void SlotTracker::processModule() {
|
|
ST_DEBUG("begin processModule!\n");
|
|
|
|
// Add all of the unnamed global variables to the value table.
|
|
for (const GlobalVariable &Var : TheModule->globals()) {
|
|
if (!Var.hasName())
|
|
CreateModuleSlot(&Var);
|
|
processGlobalObjectMetadata(Var);
|
|
}
|
|
|
|
for (const GlobalAlias &A : TheModule->aliases()) {
|
|
if (!A.hasName())
|
|
CreateModuleSlot(&A);
|
|
}
|
|
|
|
for (const GlobalIFunc &I : TheModule->ifuncs()) {
|
|
if (!I.hasName())
|
|
CreateModuleSlot(&I);
|
|
}
|
|
|
|
// Add metadata used by named metadata.
|
|
for (const NamedMDNode &NMD : TheModule->named_metadata()) {
|
|
for (unsigned i = 0, e = NMD.getNumOperands(); i != e; ++i)
|
|
CreateMetadataSlot(NMD.getOperand(i));
|
|
}
|
|
|
|
for (const Function &F : *TheModule) {
|
|
if (!F.hasName())
|
|
// Add all the unnamed functions to the table.
|
|
CreateModuleSlot(&F);
|
|
|
|
if (ShouldInitializeAllMetadata)
|
|
processFunctionMetadata(F);
|
|
|
|
// Add all the function attributes to the table.
|
|
// FIXME: Add attributes of other objects?
|
|
AttributeSet FnAttrs = F.getAttributes().getFnAttributes();
|
|
if (FnAttrs.hasAttributes(AttributeSet::FunctionIndex))
|
|
CreateAttributeSetSlot(FnAttrs);
|
|
}
|
|
|
|
ST_DEBUG("end processModule!\n");
|
|
}
|
|
|
|
// Process the arguments, basic blocks, and instructions of a function.
|
|
void SlotTracker::processFunction() {
|
|
ST_DEBUG("begin processFunction!\n");
|
|
fNext = 0;
|
|
|
|
// Process function metadata if it wasn't hit at the module-level.
|
|
if (!ShouldInitializeAllMetadata)
|
|
processFunctionMetadata(*TheFunction);
|
|
|
|
// Add all the function arguments with no names.
|
|
for(Function::const_arg_iterator AI = TheFunction->arg_begin(),
|
|
AE = TheFunction->arg_end(); AI != AE; ++AI)
|
|
if (!AI->hasName())
|
|
CreateFunctionSlot(&*AI);
|
|
|
|
ST_DEBUG("Inserting Instructions:\n");
|
|
|
|
// Add all of the basic blocks and instructions with no names.
|
|
for (auto &BB : *TheFunction) {
|
|
if (!BB.hasName())
|
|
CreateFunctionSlot(&BB);
|
|
|
|
for (auto &I : BB) {
|
|
if (!I.getType()->isVoidTy() && !I.hasName())
|
|
CreateFunctionSlot(&I);
|
|
|
|
// We allow direct calls to any llvm.foo function here, because the
|
|
// target may not be linked into the optimizer.
|
|
if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
// Add all the call attributes to the table.
|
|
AttributeSet Attrs = CI->getAttributes().getFnAttributes();
|
|
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
|
|
CreateAttributeSetSlot(Attrs);
|
|
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
|
|
// Add all the call attributes to the table.
|
|
AttributeSet Attrs = II->getAttributes().getFnAttributes();
|
|
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
|
|
CreateAttributeSetSlot(Attrs);
|
|
}
|
|
}
|
|
}
|
|
|
|
FunctionProcessed = true;
|
|
|
|
ST_DEBUG("end processFunction!\n");
|
|
}
|
|
|
|
void SlotTracker::processGlobalObjectMetadata(const GlobalObject &GO) {
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
GO.getAllMetadata(MDs);
|
|
for (auto &MD : MDs)
|
|
CreateMetadataSlot(MD.second);
|
|
}
|
|
|
|
void SlotTracker::processFunctionMetadata(const Function &F) {
|
|
processGlobalObjectMetadata(F);
|
|
for (auto &BB : F) {
|
|
for (auto &I : BB)
|
|
processInstructionMetadata(I);
|
|
}
|
|
}
|
|
|
|
void SlotTracker::processInstructionMetadata(const Instruction &I) {
|
|
// Process metadata used directly by intrinsics.
|
|
if (const CallInst *CI = dyn_cast<CallInst>(&I))
|
|
if (Function *F = CI->getCalledFunction())
|
|
if (F->isIntrinsic())
|
|
for (auto &Op : I.operands())
|
|
if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
|
|
if (MDNode *N = dyn_cast<MDNode>(V->getMetadata()))
|
|
CreateMetadataSlot(N);
|
|
|
|
// Process metadata attached to this instruction.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
I.getAllMetadata(MDs);
|
|
for (auto &MD : MDs)
|
|
CreateMetadataSlot(MD.second);
|
|
}
|
|
|
|
/// Clean up after incorporating a function. This is the only way to get out of
|
|
/// the function incorporation state that affects get*Slot/Create*Slot. Function
|
|
/// incorporation state is indicated by TheFunction != 0.
|
|
void SlotTracker::purgeFunction() {
|
|
ST_DEBUG("begin purgeFunction!\n");
|
|
fMap.clear(); // Simply discard the function level map
|
|
TheFunction = nullptr;
|
|
FunctionProcessed = false;
|
|
ST_DEBUG("end purgeFunction!\n");
|
|
}
|
|
|
|
/// getGlobalSlot - Get the slot number of a global value.
|
|
int SlotTracker::getGlobalSlot(const GlobalValue *V) {
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initialize();
|
|
|
|
// Find the value in the module map
|
|
ValueMap::iterator MI = mMap.find(V);
|
|
return MI == mMap.end() ? -1 : (int)MI->second;
|
|
}
|
|
|
|
/// getMetadataSlot - Get the slot number of a MDNode.
|
|
int SlotTracker::getMetadataSlot(const MDNode *N) {
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initialize();
|
|
|
|
// Find the MDNode in the module map
|
|
mdn_iterator MI = mdnMap.find(N);
|
|
return MI == mdnMap.end() ? -1 : (int)MI->second;
|
|
}
|
|
|
|
|
|
/// getLocalSlot - Get the slot number for a value that is local to a function.
|
|
int SlotTracker::getLocalSlot(const Value *V) {
|
|
assert(!isa<Constant>(V) && "Can't get a constant or global slot with this!");
|
|
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initialize();
|
|
|
|
ValueMap::iterator FI = fMap.find(V);
|
|
return FI == fMap.end() ? -1 : (int)FI->second;
|
|
}
|
|
|
|
int SlotTracker::getAttributeGroupSlot(AttributeSet AS) {
|
|
// Check for uninitialized state and do lazy initialization.
|
|
initialize();
|
|
|
|
// Find the AttributeSet in the module map.
|
|
as_iterator AI = asMap.find(AS);
|
|
return AI == asMap.end() ? -1 : (int)AI->second;
|
|
}
|
|
|
|
/// CreateModuleSlot - Insert the specified GlobalValue* into the slot table.
|
|
void SlotTracker::CreateModuleSlot(const GlobalValue *V) {
|
|
assert(V && "Can't insert a null Value into SlotTracker!");
|
|
assert(!V->getType()->isVoidTy() && "Doesn't need a slot!");
|
|
assert(!V->hasName() && "Doesn't need a slot!");
|
|
|
|
unsigned DestSlot = mNext++;
|
|
mMap[V] = DestSlot;
|
|
|
|
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
|
|
DestSlot << " [");
|
|
// G = Global, F = Function, A = Alias, I = IFunc, o = other
|
|
ST_DEBUG((isa<GlobalVariable>(V) ? 'G' :
|
|
(isa<Function>(V) ? 'F' :
|
|
(isa<GlobalAlias>(V) ? 'A' :
|
|
(isa<GlobalIFunc>(V) ? 'I' : 'o')))) << "]\n");
|
|
}
|
|
|
|
/// CreateSlot - Create a new slot for the specified value if it has no name.
|
|
void SlotTracker::CreateFunctionSlot(const Value *V) {
|
|
assert(!V->getType()->isVoidTy() && !V->hasName() && "Doesn't need a slot!");
|
|
|
|
unsigned DestSlot = fNext++;
|
|
fMap[V] = DestSlot;
|
|
|
|
// G = Global, F = Function, o = other
|
|
ST_DEBUG(" Inserting value [" << V->getType() << "] = " << V << " slot=" <<
|
|
DestSlot << " [o]\n");
|
|
}
|
|
|
|
/// CreateModuleSlot - Insert the specified MDNode* into the slot table.
|
|
void SlotTracker::CreateMetadataSlot(const MDNode *N) {
|
|
assert(N && "Can't insert a null Value into SlotTracker!");
|
|
|
|
unsigned DestSlot = mdnNext;
|
|
if (!mdnMap.insert(std::make_pair(N, DestSlot)).second)
|
|
return;
|
|
++mdnNext;
|
|
|
|
// Recursively add any MDNodes referenced by operands.
|
|
for (unsigned i = 0, e = N->getNumOperands(); i != e; ++i)
|
|
if (const MDNode *Op = dyn_cast_or_null<MDNode>(N->getOperand(i)))
|
|
CreateMetadataSlot(Op);
|
|
}
|
|
|
|
void SlotTracker::CreateAttributeSetSlot(AttributeSet AS) {
|
|
assert(AS.hasAttributes(AttributeSet::FunctionIndex) &&
|
|
"Doesn't need a slot!");
|
|
|
|
as_iterator I = asMap.find(AS);
|
|
if (I != asMap.end())
|
|
return;
|
|
|
|
unsigned DestSlot = asNext++;
|
|
asMap[AS] = DestSlot;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// AsmWriter Implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context);
|
|
|
|
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context,
|
|
bool FromValue = false);
|
|
|
|
static void writeAtomicRMWOperation(raw_ostream &Out,
|
|
AtomicRMWInst::BinOp Op) {
|
|
switch (Op) {
|
|
default: Out << " <unknown operation " << Op << ">"; break;
|
|
case AtomicRMWInst::Xchg: Out << " xchg"; break;
|
|
case AtomicRMWInst::Add: Out << " add"; break;
|
|
case AtomicRMWInst::Sub: Out << " sub"; break;
|
|
case AtomicRMWInst::And: Out << " and"; break;
|
|
case AtomicRMWInst::Nand: Out << " nand"; break;
|
|
case AtomicRMWInst::Or: Out << " or"; break;
|
|
case AtomicRMWInst::Xor: Out << " xor"; break;
|
|
case AtomicRMWInst::Max: Out << " max"; break;
|
|
case AtomicRMWInst::Min: Out << " min"; break;
|
|
case AtomicRMWInst::UMax: Out << " umax"; break;
|
|
case AtomicRMWInst::UMin: Out << " umin"; break;
|
|
}
|
|
}
|
|
|
|
static void WriteOptimizationInfo(raw_ostream &Out, const User *U) {
|
|
if (const FPMathOperator *FPO = dyn_cast<const FPMathOperator>(U)) {
|
|
// Unsafe algebra implies all the others, no need to write them all out
|
|
if (FPO->hasUnsafeAlgebra())
|
|
Out << " fast";
|
|
else {
|
|
if (FPO->hasNoNaNs())
|
|
Out << " nnan";
|
|
if (FPO->hasNoInfs())
|
|
Out << " ninf";
|
|
if (FPO->hasNoSignedZeros())
|
|
Out << " nsz";
|
|
if (FPO->hasAllowReciprocal())
|
|
Out << " arcp";
|
|
}
|
|
}
|
|
|
|
if (const OverflowingBinaryOperator *OBO =
|
|
dyn_cast<OverflowingBinaryOperator>(U)) {
|
|
if (OBO->hasNoUnsignedWrap())
|
|
Out << " nuw";
|
|
if (OBO->hasNoSignedWrap())
|
|
Out << " nsw";
|
|
} else if (const PossiblyExactOperator *Div =
|
|
dyn_cast<PossiblyExactOperator>(U)) {
|
|
if (Div->isExact())
|
|
Out << " exact";
|
|
} else if (const GEPOperator *GEP = dyn_cast<GEPOperator>(U)) {
|
|
if (GEP->isInBounds())
|
|
Out << " inbounds";
|
|
}
|
|
}
|
|
|
|
static void WriteConstantInternal(raw_ostream &Out, const Constant *CV,
|
|
TypePrinting &TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
if (const ConstantInt *CI = dyn_cast<ConstantInt>(CV)) {
|
|
if (CI->getType()->isIntegerTy(1)) {
|
|
Out << (CI->getZExtValue() ? "true" : "false");
|
|
return;
|
|
}
|
|
Out << CI->getValue();
|
|
return;
|
|
}
|
|
|
|
if (const ConstantFP *CFP = dyn_cast<ConstantFP>(CV)) {
|
|
if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEsingle ||
|
|
&CFP->getValueAPF().getSemantics() == &APFloat::IEEEdouble) {
|
|
// We would like to output the FP constant value in exponential notation,
|
|
// but we cannot do this if doing so will lose precision. Check here to
|
|
// make sure that we only output it in exponential format if we can parse
|
|
// the value back and get the same value.
|
|
//
|
|
bool ignored;
|
|
bool isDouble = &CFP->getValueAPF().getSemantics()==&APFloat::IEEEdouble;
|
|
bool isInf = CFP->getValueAPF().isInfinity();
|
|
bool isNaN = CFP->getValueAPF().isNaN();
|
|
if (!isInf && !isNaN) {
|
|
double Val = isDouble ? CFP->getValueAPF().convertToDouble() :
|
|
CFP->getValueAPF().convertToFloat();
|
|
SmallString<128> StrVal;
|
|
raw_svector_ostream(StrVal) << Val;
|
|
|
|
// Check to make sure that the stringized number is not some string like
|
|
// "Inf" or NaN, that atof will accept, but the lexer will not. Check
|
|
// that the string matches the "[-+]?[0-9]" regex.
|
|
//
|
|
if ((StrVal[0] >= '0' && StrVal[0] <= '9') ||
|
|
((StrVal[0] == '-' || StrVal[0] == '+') &&
|
|
(StrVal[1] >= '0' && StrVal[1] <= '9'))) {
|
|
// Reparse stringized version!
|
|
if (APFloat(APFloat::IEEEdouble, StrVal).convertToDouble() == Val) {
|
|
Out << StrVal;
|
|
return;
|
|
}
|
|
}
|
|
}
|
|
// Otherwise we could not reparse it to exactly the same value, so we must
|
|
// output the string in hexadecimal format! Note that loading and storing
|
|
// floating point types changes the bits of NaNs on some hosts, notably
|
|
// x86, so we must not use these types.
|
|
static_assert(sizeof(double) == sizeof(uint64_t),
|
|
"assuming that double is 64 bits!");
|
|
APFloat apf = CFP->getValueAPF();
|
|
// Floats are represented in ASCII IR as double, convert.
|
|
if (!isDouble)
|
|
apf.convert(APFloat::IEEEdouble, APFloat::rmNearestTiesToEven,
|
|
&ignored);
|
|
Out << format_hex(apf.bitcastToAPInt().getZExtValue(), 0, /*Upper=*/true);
|
|
return;
|
|
}
|
|
|
|
// Either half, or some form of long double.
|
|
// These appear as a magic letter identifying the type, then a
|
|
// fixed number of hex digits.
|
|
Out << "0x";
|
|
APInt API = CFP->getValueAPF().bitcastToAPInt();
|
|
if (&CFP->getValueAPF().getSemantics() == &APFloat::x87DoubleExtended) {
|
|
Out << 'K';
|
|
Out << format_hex_no_prefix(API.getHiBits(16).getZExtValue(), 4,
|
|
/*Upper=*/true);
|
|
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
|
|
/*Upper=*/true);
|
|
return;
|
|
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEquad) {
|
|
Out << 'L';
|
|
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
|
|
/*Upper=*/true);
|
|
Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
|
|
/*Upper=*/true);
|
|
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::PPCDoubleDouble) {
|
|
Out << 'M';
|
|
Out << format_hex_no_prefix(API.getLoBits(64).getZExtValue(), 16,
|
|
/*Upper=*/true);
|
|
Out << format_hex_no_prefix(API.getHiBits(64).getZExtValue(), 16,
|
|
/*Upper=*/true);
|
|
} else if (&CFP->getValueAPF().getSemantics() == &APFloat::IEEEhalf) {
|
|
Out << 'H';
|
|
Out << format_hex_no_prefix(API.getZExtValue(), 4,
|
|
/*Upper=*/true);
|
|
} else
|
|
llvm_unreachable("Unsupported floating point type");
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantAggregateZero>(CV)) {
|
|
Out << "zeroinitializer";
|
|
return;
|
|
}
|
|
|
|
if (const BlockAddress *BA = dyn_cast<BlockAddress>(CV)) {
|
|
Out << "blockaddress(";
|
|
WriteAsOperandInternal(Out, BA->getFunction(), &TypePrinter, Machine,
|
|
Context);
|
|
Out << ", ";
|
|
WriteAsOperandInternal(Out, BA->getBasicBlock(), &TypePrinter, Machine,
|
|
Context);
|
|
Out << ")";
|
|
return;
|
|
}
|
|
|
|
if (const ConstantArray *CA = dyn_cast<ConstantArray>(CV)) {
|
|
Type *ETy = CA->getType()->getElementType();
|
|
Out << '[';
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CA->getOperand(0),
|
|
&TypePrinter, Machine,
|
|
Context);
|
|
for (unsigned i = 1, e = CA->getNumOperands(); i != e; ++i) {
|
|
Out << ", ";
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CA->getOperand(i), &TypePrinter, Machine,
|
|
Context);
|
|
}
|
|
Out << ']';
|
|
return;
|
|
}
|
|
|
|
if (const ConstantDataArray *CA = dyn_cast<ConstantDataArray>(CV)) {
|
|
// As a special case, print the array as a string if it is an array of
|
|
// i8 with ConstantInt values.
|
|
if (CA->isString()) {
|
|
Out << "c\"";
|
|
PrintEscapedString(CA->getAsString(), Out);
|
|
Out << '"';
|
|
return;
|
|
}
|
|
|
|
Type *ETy = CA->getType()->getElementType();
|
|
Out << '[';
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CA->getElementAsConstant(0),
|
|
&TypePrinter, Machine,
|
|
Context);
|
|
for (unsigned i = 1, e = CA->getNumElements(); i != e; ++i) {
|
|
Out << ", ";
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CA->getElementAsConstant(i), &TypePrinter,
|
|
Machine, Context);
|
|
}
|
|
Out << ']';
|
|
return;
|
|
}
|
|
|
|
|
|
if (const ConstantStruct *CS = dyn_cast<ConstantStruct>(CV)) {
|
|
if (CS->getType()->isPacked())
|
|
Out << '<';
|
|
Out << '{';
|
|
unsigned N = CS->getNumOperands();
|
|
if (N) {
|
|
Out << ' ';
|
|
TypePrinter.print(CS->getOperand(0)->getType(), Out);
|
|
Out << ' ';
|
|
|
|
WriteAsOperandInternal(Out, CS->getOperand(0), &TypePrinter, Machine,
|
|
Context);
|
|
|
|
for (unsigned i = 1; i < N; i++) {
|
|
Out << ", ";
|
|
TypePrinter.print(CS->getOperand(i)->getType(), Out);
|
|
Out << ' ';
|
|
|
|
WriteAsOperandInternal(Out, CS->getOperand(i), &TypePrinter, Machine,
|
|
Context);
|
|
}
|
|
Out << ' ';
|
|
}
|
|
|
|
Out << '}';
|
|
if (CS->getType()->isPacked())
|
|
Out << '>';
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantVector>(CV) || isa<ConstantDataVector>(CV)) {
|
|
Type *ETy = CV->getType()->getVectorElementType();
|
|
Out << '<';
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CV->getAggregateElement(0U), &TypePrinter,
|
|
Machine, Context);
|
|
for (unsigned i = 1, e = CV->getType()->getVectorNumElements(); i != e;++i){
|
|
Out << ", ";
|
|
TypePrinter.print(ETy, Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, CV->getAggregateElement(i), &TypePrinter,
|
|
Machine, Context);
|
|
}
|
|
Out << '>';
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantPointerNull>(CV)) {
|
|
Out << "null";
|
|
return;
|
|
}
|
|
|
|
if (isa<ConstantTokenNone>(CV)) {
|
|
Out << "none";
|
|
return;
|
|
}
|
|
|
|
if (isa<UndefValue>(CV)) {
|
|
Out << "undef";
|
|
return;
|
|
}
|
|
|
|
if (const ConstantExpr *CE = dyn_cast<ConstantExpr>(CV)) {
|
|
Out << CE->getOpcodeName();
|
|
WriteOptimizationInfo(Out, CE);
|
|
if (CE->isCompare())
|
|
Out << ' ' << CmpInst::getPredicateName(
|
|
static_cast<CmpInst::Predicate>(CE->getPredicate()));
|
|
Out << " (";
|
|
|
|
if (const GEPOperator *GEP = dyn_cast<GEPOperator>(CE)) {
|
|
TypePrinter.print(GEP->getSourceElementType(), Out);
|
|
Out << ", ";
|
|
}
|
|
|
|
for (User::const_op_iterator OI=CE->op_begin(); OI != CE->op_end(); ++OI) {
|
|
TypePrinter.print((*OI)->getType(), Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, *OI, &TypePrinter, Machine, Context);
|
|
if (OI+1 != CE->op_end())
|
|
Out << ", ";
|
|
}
|
|
|
|
if (CE->hasIndices()) {
|
|
ArrayRef<unsigned> Indices = CE->getIndices();
|
|
for (unsigned i = 0, e = Indices.size(); i != e; ++i)
|
|
Out << ", " << Indices[i];
|
|
}
|
|
|
|
if (CE->isCast()) {
|
|
Out << " to ";
|
|
TypePrinter.print(CE->getType(), Out);
|
|
}
|
|
|
|
Out << ')';
|
|
return;
|
|
}
|
|
|
|
Out << "<placeholder or erroneous Constant>";
|
|
}
|
|
|
|
static void writeMDTuple(raw_ostream &Out, const MDTuple *Node,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!{";
|
|
for (unsigned mi = 0, me = Node->getNumOperands(); mi != me; ++mi) {
|
|
const Metadata *MD = Node->getOperand(mi);
|
|
if (!MD)
|
|
Out << "null";
|
|
else if (auto *MDV = dyn_cast<ValueAsMetadata>(MD)) {
|
|
Value *V = MDV->getValue();
|
|
TypePrinter->print(V->getType(), Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, V, TypePrinter, Machine, Context);
|
|
} else {
|
|
WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
|
|
}
|
|
if (mi + 1 != me)
|
|
Out << ", ";
|
|
}
|
|
|
|
Out << "}";
|
|
}
|
|
|
|
namespace {
|
|
struct FieldSeparator {
|
|
bool Skip;
|
|
const char *Sep;
|
|
FieldSeparator(const char *Sep = ", ") : Skip(true), Sep(Sep) {}
|
|
};
|
|
raw_ostream &operator<<(raw_ostream &OS, FieldSeparator &FS) {
|
|
if (FS.Skip) {
|
|
FS.Skip = false;
|
|
return OS;
|
|
}
|
|
return OS << FS.Sep;
|
|
}
|
|
struct MDFieldPrinter {
|
|
raw_ostream &Out;
|
|
FieldSeparator FS;
|
|
TypePrinting *TypePrinter;
|
|
SlotTracker *Machine;
|
|
const Module *Context;
|
|
|
|
explicit MDFieldPrinter(raw_ostream &Out)
|
|
: Out(Out), TypePrinter(nullptr), Machine(nullptr), Context(nullptr) {}
|
|
MDFieldPrinter(raw_ostream &Out, TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context)
|
|
: Out(Out), TypePrinter(TypePrinter), Machine(Machine), Context(Context) {
|
|
}
|
|
void printTag(const DINode *N);
|
|
void printMacinfoType(const DIMacroNode *N);
|
|
void printString(StringRef Name, StringRef Value,
|
|
bool ShouldSkipEmpty = true);
|
|
void printMetadata(StringRef Name, const Metadata *MD,
|
|
bool ShouldSkipNull = true);
|
|
template <class IntTy>
|
|
void printInt(StringRef Name, IntTy Int, bool ShouldSkipZero = true);
|
|
void printBool(StringRef Name, bool Value, Optional<bool> Default = None);
|
|
void printDIFlags(StringRef Name, unsigned Flags);
|
|
template <class IntTy, class Stringifier>
|
|
void printDwarfEnum(StringRef Name, IntTy Value, Stringifier toString,
|
|
bool ShouldSkipZero = true);
|
|
void printEmissionKind(StringRef Name, DICompileUnit::DebugEmissionKind EK);
|
|
};
|
|
} // end namespace
|
|
|
|
void MDFieldPrinter::printTag(const DINode *N) {
|
|
Out << FS << "tag: ";
|
|
if (const char *Tag = dwarf::TagString(N->getTag()))
|
|
Out << Tag;
|
|
else
|
|
Out << N->getTag();
|
|
}
|
|
|
|
void MDFieldPrinter::printMacinfoType(const DIMacroNode *N) {
|
|
Out << FS << "type: ";
|
|
if (const char *Type = dwarf::MacinfoString(N->getMacinfoType()))
|
|
Out << Type;
|
|
else
|
|
Out << N->getMacinfoType();
|
|
}
|
|
|
|
void MDFieldPrinter::printString(StringRef Name, StringRef Value,
|
|
bool ShouldSkipEmpty) {
|
|
if (ShouldSkipEmpty && Value.empty())
|
|
return;
|
|
|
|
Out << FS << Name << ": \"";
|
|
PrintEscapedString(Value, Out);
|
|
Out << "\"";
|
|
}
|
|
|
|
static void writeMetadataAsOperand(raw_ostream &Out, const Metadata *MD,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
if (!MD) {
|
|
Out << "null";
|
|
return;
|
|
}
|
|
WriteAsOperandInternal(Out, MD, TypePrinter, Machine, Context);
|
|
}
|
|
|
|
void MDFieldPrinter::printMetadata(StringRef Name, const Metadata *MD,
|
|
bool ShouldSkipNull) {
|
|
if (ShouldSkipNull && !MD)
|
|
return;
|
|
|
|
Out << FS << Name << ": ";
|
|
writeMetadataAsOperand(Out, MD, TypePrinter, Machine, Context);
|
|
}
|
|
|
|
template <class IntTy>
|
|
void MDFieldPrinter::printInt(StringRef Name, IntTy Int, bool ShouldSkipZero) {
|
|
if (ShouldSkipZero && !Int)
|
|
return;
|
|
|
|
Out << FS << Name << ": " << Int;
|
|
}
|
|
|
|
void MDFieldPrinter::printBool(StringRef Name, bool Value,
|
|
Optional<bool> Default) {
|
|
if (Default && Value == *Default)
|
|
return;
|
|
Out << FS << Name << ": " << (Value ? "true" : "false");
|
|
}
|
|
|
|
void MDFieldPrinter::printDIFlags(StringRef Name, unsigned Flags) {
|
|
if (!Flags)
|
|
return;
|
|
|
|
Out << FS << Name << ": ";
|
|
|
|
SmallVector<unsigned, 8> SplitFlags;
|
|
unsigned Extra = DINode::splitFlags(Flags, SplitFlags);
|
|
|
|
FieldSeparator FlagsFS(" | ");
|
|
for (unsigned F : SplitFlags) {
|
|
const char *StringF = DINode::getFlagString(F);
|
|
assert(StringF && "Expected valid flag");
|
|
Out << FlagsFS << StringF;
|
|
}
|
|
if (Extra || SplitFlags.empty())
|
|
Out << FlagsFS << Extra;
|
|
}
|
|
|
|
void MDFieldPrinter::printEmissionKind(StringRef Name,
|
|
DICompileUnit::DebugEmissionKind EK) {
|
|
Out << FS << Name << ": " << DICompileUnit::EmissionKindString(EK);
|
|
}
|
|
|
|
|
|
template <class IntTy, class Stringifier>
|
|
void MDFieldPrinter::printDwarfEnum(StringRef Name, IntTy Value,
|
|
Stringifier toString, bool ShouldSkipZero) {
|
|
if (!Value)
|
|
return;
|
|
|
|
Out << FS << Name << ": ";
|
|
if (const char *S = toString(Value))
|
|
Out << S;
|
|
else
|
|
Out << Value;
|
|
}
|
|
|
|
static void writeGenericDINode(raw_ostream &Out, const GenericDINode *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!GenericDINode(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printTag(N);
|
|
Printer.printString("header", N->getHeader());
|
|
if (N->getNumDwarfOperands()) {
|
|
Out << Printer.FS << "operands: {";
|
|
FieldSeparator IFS;
|
|
for (auto &I : N->dwarf_operands()) {
|
|
Out << IFS;
|
|
writeMetadataAsOperand(Out, I, TypePrinter, Machine, Context);
|
|
}
|
|
Out << "}";
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDILocation(raw_ostream &Out, const DILocation *DL,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DILocation(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
// Always output the line, since 0 is a relevant and important value for it.
|
|
Printer.printInt("line", DL->getLine(), /* ShouldSkipZero */ false);
|
|
Printer.printInt("column", DL->getColumn());
|
|
Printer.printMetadata("scope", DL->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("inlinedAt", DL->getRawInlinedAt());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDISubrange(raw_ostream &Out, const DISubrange *N,
|
|
TypePrinting *, SlotTracker *, const Module *) {
|
|
Out << "!DISubrange(";
|
|
MDFieldPrinter Printer(Out);
|
|
Printer.printInt("count", N->getCount(), /* ShouldSkipZero */ false);
|
|
Printer.printInt("lowerBound", N->getLowerBound());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIEnumerator(raw_ostream &Out, const DIEnumerator *N,
|
|
TypePrinting *, SlotTracker *, const Module *) {
|
|
Out << "!DIEnumerator(";
|
|
MDFieldPrinter Printer(Out);
|
|
Printer.printString("name", N->getName(), /* ShouldSkipEmpty */ false);
|
|
Printer.printInt("value", N->getValue(), /* ShouldSkipZero */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIBasicType(raw_ostream &Out, const DIBasicType *N,
|
|
TypePrinting *, SlotTracker *, const Module *) {
|
|
Out << "!DIBasicType(";
|
|
MDFieldPrinter Printer(Out);
|
|
if (N->getTag() != dwarf::DW_TAG_base_type)
|
|
Printer.printTag(N);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printInt("size", N->getSizeInBits());
|
|
Printer.printInt("align", N->getAlignInBits());
|
|
Printer.printDwarfEnum("encoding", N->getEncoding(),
|
|
dwarf::AttributeEncodingString);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIDerivedType(raw_ostream &Out, const DIDerivedType *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIDerivedType(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printTag(N);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("scope", N->getRawScope());
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printMetadata("baseType", N->getRawBaseType(),
|
|
/* ShouldSkipNull */ false);
|
|
Printer.printInt("size", N->getSizeInBits());
|
|
Printer.printInt("align", N->getAlignInBits());
|
|
Printer.printInt("offset", N->getOffsetInBits());
|
|
Printer.printDIFlags("flags", N->getFlags());
|
|
Printer.printMetadata("extraData", N->getRawExtraData());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDICompositeType(raw_ostream &Out, const DICompositeType *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context) {
|
|
Out << "!DICompositeType(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printTag(N);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("scope", N->getRawScope());
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printMetadata("baseType", N->getRawBaseType());
|
|
Printer.printInt("size", N->getSizeInBits());
|
|
Printer.printInt("align", N->getAlignInBits());
|
|
Printer.printInt("offset", N->getOffsetInBits());
|
|
Printer.printDIFlags("flags", N->getFlags());
|
|
Printer.printMetadata("elements", N->getRawElements());
|
|
Printer.printDwarfEnum("runtimeLang", N->getRuntimeLang(),
|
|
dwarf::LanguageString);
|
|
Printer.printMetadata("vtableHolder", N->getRawVTableHolder());
|
|
Printer.printMetadata("templateParams", N->getRawTemplateParams());
|
|
Printer.printString("identifier", N->getIdentifier());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDISubroutineType(raw_ostream &Out, const DISubroutineType *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context) {
|
|
Out << "!DISubroutineType(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printDIFlags("flags", N->getFlags());
|
|
Printer.printDwarfEnum("cc", N->getCC(), dwarf::ConventionString);
|
|
Printer.printMetadata("types", N->getRawTypeArray(),
|
|
/* ShouldSkipNull */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIFile(raw_ostream &Out, const DIFile *N, TypePrinting *,
|
|
SlotTracker *, const Module *) {
|
|
Out << "!DIFile(";
|
|
MDFieldPrinter Printer(Out);
|
|
Printer.printString("filename", N->getFilename(),
|
|
/* ShouldSkipEmpty */ false);
|
|
Printer.printString("directory", N->getDirectory(),
|
|
/* ShouldSkipEmpty */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDICompileUnit(raw_ostream &Out, const DICompileUnit *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DICompileUnit(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printDwarfEnum("language", N->getSourceLanguage(),
|
|
dwarf::LanguageString, /* ShouldSkipZero */ false);
|
|
Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
|
|
Printer.printString("producer", N->getProducer());
|
|
Printer.printBool("isOptimized", N->isOptimized());
|
|
Printer.printString("flags", N->getFlags());
|
|
Printer.printInt("runtimeVersion", N->getRuntimeVersion(),
|
|
/* ShouldSkipZero */ false);
|
|
Printer.printString("splitDebugFilename", N->getSplitDebugFilename());
|
|
Printer.printEmissionKind("emissionKind", N->getEmissionKind());
|
|
Printer.printMetadata("enums", N->getRawEnumTypes());
|
|
Printer.printMetadata("retainedTypes", N->getRawRetainedTypes());
|
|
Printer.printMetadata("globals", N->getRawGlobalVariables());
|
|
Printer.printMetadata("imports", N->getRawImportedEntities());
|
|
Printer.printMetadata("macros", N->getRawMacros());
|
|
Printer.printInt("dwoId", N->getDWOId());
|
|
Printer.printBool("splitDebugInlining", N->getSplitDebugInlining(), true);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDISubprogram(raw_ostream &Out, const DISubprogram *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DISubprogram(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printString("linkageName", N->getLinkageName());
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printMetadata("type", N->getRawType());
|
|
Printer.printBool("isLocal", N->isLocalToUnit());
|
|
Printer.printBool("isDefinition", N->isDefinition());
|
|
Printer.printInt("scopeLine", N->getScopeLine());
|
|
Printer.printMetadata("containingType", N->getRawContainingType());
|
|
Printer.printDwarfEnum("virtuality", N->getVirtuality(),
|
|
dwarf::VirtualityString);
|
|
if (N->getVirtuality() != dwarf::DW_VIRTUALITY_none ||
|
|
N->getVirtualIndex() != 0)
|
|
Printer.printInt("virtualIndex", N->getVirtualIndex(), false);
|
|
Printer.printInt("thisAdjustment", N->getThisAdjustment());
|
|
Printer.printDIFlags("flags", N->getFlags());
|
|
Printer.printBool("isOptimized", N->isOptimized());
|
|
Printer.printMetadata("unit", N->getRawUnit());
|
|
Printer.printMetadata("templateParams", N->getRawTemplateParams());
|
|
Printer.printMetadata("declaration", N->getRawDeclaration());
|
|
Printer.printMetadata("variables", N->getRawVariables());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDILexicalBlock(raw_ostream &Out, const DILexicalBlock *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DILexicalBlock(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printInt("column", N->getColumn());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDILexicalBlockFile(raw_ostream &Out,
|
|
const DILexicalBlockFile *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DILexicalBlockFile(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("discriminator", N->getDiscriminator(),
|
|
/* ShouldSkipZero */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDINamespace(raw_ostream &Out, const DINamespace *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DINamespace(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIMacro(raw_ostream &Out, const DIMacro *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIMacro(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printMacinfoType(N);
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printString("name", N->getName());
|
|
Printer.printString("value", N->getValue());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIMacroFile(raw_ostream &Out, const DIMacroFile *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIMacroFile(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printMetadata("file", N->getRawFile(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("nodes", N->getRawElements());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIModule(raw_ostream &Out, const DIModule *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIModule(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printString("configMacros", N->getConfigurationMacros());
|
|
Printer.printString("includePath", N->getIncludePath());
|
|
Printer.printString("isysroot", N->getISysRoot());
|
|
Out << ")";
|
|
}
|
|
|
|
|
|
static void writeDITemplateTypeParameter(raw_ostream &Out,
|
|
const DITemplateTypeParameter *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DITemplateTypeParameter(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("type", N->getRawType(), /* ShouldSkipNull */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDITemplateValueParameter(raw_ostream &Out,
|
|
const DITemplateValueParameter *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DITemplateValueParameter(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
if (N->getTag() != dwarf::DW_TAG_template_value_parameter)
|
|
Printer.printTag(N);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("type", N->getRawType());
|
|
Printer.printMetadata("value", N->getValue(), /* ShouldSkipNull */ false);
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIGlobalVariable(raw_ostream &Out, const DIGlobalVariable *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context) {
|
|
Out << "!DIGlobalVariable(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printString("linkageName", N->getLinkageName());
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printMetadata("type", N->getRawType());
|
|
Printer.printBool("isLocal", N->isLocalToUnit());
|
|
Printer.printBool("isDefinition", N->isDefinition());
|
|
Printer.printMetadata("variable", N->getRawVariable());
|
|
Printer.printMetadata("declaration", N->getRawStaticDataMemberDeclaration());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDILocalVariable(raw_ostream &Out, const DILocalVariable *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context) {
|
|
Out << "!DILocalVariable(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printInt("arg", N->getArg());
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printMetadata("type", N->getRawType());
|
|
Printer.printDIFlags("flags", N->getFlags());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIExpression(raw_ostream &Out, const DIExpression *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIExpression(";
|
|
FieldSeparator FS;
|
|
if (N->isValid()) {
|
|
for (auto I = N->expr_op_begin(), E = N->expr_op_end(); I != E; ++I) {
|
|
const char *OpStr = dwarf::OperationEncodingString(I->getOp());
|
|
assert(OpStr && "Expected valid opcode");
|
|
|
|
Out << FS << OpStr;
|
|
for (unsigned A = 0, AE = I->getNumArgs(); A != AE; ++A)
|
|
Out << FS << I->getArg(A);
|
|
}
|
|
} else {
|
|
for (const auto &I : N->getElements())
|
|
Out << FS << I;
|
|
}
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIObjCProperty(raw_ostream &Out, const DIObjCProperty *N,
|
|
TypePrinting *TypePrinter, SlotTracker *Machine,
|
|
const Module *Context) {
|
|
Out << "!DIObjCProperty(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("file", N->getRawFile());
|
|
Printer.printInt("line", N->getLine());
|
|
Printer.printString("setter", N->getSetterName());
|
|
Printer.printString("getter", N->getGetterName());
|
|
Printer.printInt("attributes", N->getAttributes());
|
|
Printer.printMetadata("type", N->getRawType());
|
|
Out << ")";
|
|
}
|
|
|
|
static void writeDIImportedEntity(raw_ostream &Out, const DIImportedEntity *N,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context) {
|
|
Out << "!DIImportedEntity(";
|
|
MDFieldPrinter Printer(Out, TypePrinter, Machine, Context);
|
|
Printer.printTag(N);
|
|
Printer.printString("name", N->getName());
|
|
Printer.printMetadata("scope", N->getRawScope(), /* ShouldSkipNull */ false);
|
|
Printer.printMetadata("entity", N->getRawEntity());
|
|
Printer.printInt("line", N->getLine());
|
|
Out << ")";
|
|
}
|
|
|
|
|
|
static void WriteMDNodeBodyInternal(raw_ostream &Out, const MDNode *Node,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
if (Node->isDistinct())
|
|
Out << "distinct ";
|
|
else if (Node->isTemporary())
|
|
Out << "<temporary!> "; // Handle broken code.
|
|
|
|
switch (Node->getMetadataID()) {
|
|
default:
|
|
llvm_unreachable("Expected uniquable MDNode");
|
|
#define HANDLE_MDNODE_LEAF(CLASS) \
|
|
case Metadata::CLASS##Kind: \
|
|
write##CLASS(Out, cast<CLASS>(Node), TypePrinter, Machine, Context); \
|
|
break;
|
|
#include "llvm/IR/Metadata.def"
|
|
}
|
|
}
|
|
|
|
// Full implementation of printing a Value as an operand with support for
|
|
// TypePrinting, etc.
|
|
static void WriteAsOperandInternal(raw_ostream &Out, const Value *V,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine,
|
|
const Module *Context) {
|
|
if (V->hasName()) {
|
|
PrintLLVMName(Out, V);
|
|
return;
|
|
}
|
|
|
|
const Constant *CV = dyn_cast<Constant>(V);
|
|
if (CV && !isa<GlobalValue>(CV)) {
|
|
assert(TypePrinter && "Constants require TypePrinting!");
|
|
WriteConstantInternal(Out, CV, *TypePrinter, Machine, Context);
|
|
return;
|
|
}
|
|
|
|
if (const InlineAsm *IA = dyn_cast<InlineAsm>(V)) {
|
|
Out << "asm ";
|
|
if (IA->hasSideEffects())
|
|
Out << "sideeffect ";
|
|
if (IA->isAlignStack())
|
|
Out << "alignstack ";
|
|
// We don't emit the AD_ATT dialect as it's the assumed default.
|
|
if (IA->getDialect() == InlineAsm::AD_Intel)
|
|
Out << "inteldialect ";
|
|
Out << '"';
|
|
PrintEscapedString(IA->getAsmString(), Out);
|
|
Out << "\", \"";
|
|
PrintEscapedString(IA->getConstraintString(), Out);
|
|
Out << '"';
|
|
return;
|
|
}
|
|
|
|
if (auto *MD = dyn_cast<MetadataAsValue>(V)) {
|
|
WriteAsOperandInternal(Out, MD->getMetadata(), TypePrinter, Machine,
|
|
Context, /* FromValue */ true);
|
|
return;
|
|
}
|
|
|
|
char Prefix = '%';
|
|
int Slot;
|
|
// If we have a SlotTracker, use it.
|
|
if (Machine) {
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
Slot = Machine->getGlobalSlot(GV);
|
|
Prefix = '@';
|
|
} else {
|
|
Slot = Machine->getLocalSlot(V);
|
|
|
|
// If the local value didn't succeed, then we may be referring to a value
|
|
// from a different function. Translate it, as this can happen when using
|
|
// address of blocks.
|
|
if (Slot == -1)
|
|
if ((Machine = createSlotTracker(V))) {
|
|
Slot = Machine->getLocalSlot(V);
|
|
delete Machine;
|
|
}
|
|
}
|
|
} else if ((Machine = createSlotTracker(V))) {
|
|
// Otherwise, create one to get the # and then destroy it.
|
|
if (const GlobalValue *GV = dyn_cast<GlobalValue>(V)) {
|
|
Slot = Machine->getGlobalSlot(GV);
|
|
Prefix = '@';
|
|
} else {
|
|
Slot = Machine->getLocalSlot(V);
|
|
}
|
|
delete Machine;
|
|
Machine = nullptr;
|
|
} else {
|
|
Slot = -1;
|
|
}
|
|
|
|
if (Slot != -1)
|
|
Out << Prefix << Slot;
|
|
else
|
|
Out << "<badref>";
|
|
}
|
|
|
|
static void WriteAsOperandInternal(raw_ostream &Out, const Metadata *MD,
|
|
TypePrinting *TypePrinter,
|
|
SlotTracker *Machine, const Module *Context,
|
|
bool FromValue) {
|
|
if (const MDNode *N = dyn_cast<MDNode>(MD)) {
|
|
std::unique_ptr<SlotTracker> MachineStorage;
|
|
if (!Machine) {
|
|
MachineStorage = make_unique<SlotTracker>(Context);
|
|
Machine = MachineStorage.get();
|
|
}
|
|
int Slot = Machine->getMetadataSlot(N);
|
|
if (Slot == -1)
|
|
// Give the pointer value instead of "badref", since this comes up all
|
|
// the time when debugging.
|
|
Out << "<" << N << ">";
|
|
else
|
|
Out << '!' << Slot;
|
|
return;
|
|
}
|
|
|
|
if (const MDString *MDS = dyn_cast<MDString>(MD)) {
|
|
Out << "!\"";
|
|
PrintEscapedString(MDS->getString(), Out);
|
|
Out << '"';
|
|
return;
|
|
}
|
|
|
|
auto *V = cast<ValueAsMetadata>(MD);
|
|
assert(TypePrinter && "TypePrinter required for metadata values");
|
|
assert((FromValue || !isa<LocalAsMetadata>(V)) &&
|
|
"Unexpected function-local metadata outside of value argument");
|
|
|
|
TypePrinter->print(V->getValue()->getType(), Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, V->getValue(), TypePrinter, Machine, Context);
|
|
}
|
|
|
|
namespace {
|
|
class AssemblyWriter {
|
|
formatted_raw_ostream &Out;
|
|
const Module *TheModule;
|
|
std::unique_ptr<SlotTracker> SlotTrackerStorage;
|
|
SlotTracker &Machine;
|
|
TypePrinting TypePrinter;
|
|
AssemblyAnnotationWriter *AnnotationWriter;
|
|
SetVector<const Comdat *> Comdats;
|
|
bool IsForDebug;
|
|
bool ShouldPreserveUseListOrder;
|
|
UseListOrderStack UseListOrders;
|
|
SmallVector<StringRef, 8> MDNames;
|
|
|
|
public:
|
|
/// Construct an AssemblyWriter with an external SlotTracker
|
|
AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac, const Module *M,
|
|
AssemblyAnnotationWriter *AAW, bool IsForDebug,
|
|
bool ShouldPreserveUseListOrder = false);
|
|
|
|
void printMDNodeBody(const MDNode *MD);
|
|
void printNamedMDNode(const NamedMDNode *NMD);
|
|
|
|
void printModule(const Module *M);
|
|
|
|
void writeOperand(const Value *Op, bool PrintType);
|
|
void writeParamOperand(const Value *Operand, AttributeSet Attrs,unsigned Idx);
|
|
void writeOperandBundles(ImmutableCallSite CS);
|
|
void writeAtomic(AtomicOrdering Ordering, SynchronizationScope SynchScope);
|
|
void writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
|
|
AtomicOrdering FailureOrdering,
|
|
SynchronizationScope SynchScope);
|
|
|
|
void writeAllMDNodes();
|
|
void writeMDNode(unsigned Slot, const MDNode *Node);
|
|
void writeAllAttributeGroups();
|
|
|
|
void printTypeIdentities();
|
|
void printGlobal(const GlobalVariable *GV);
|
|
void printIndirectSymbol(const GlobalIndirectSymbol *GIS);
|
|
void printComdat(const Comdat *C);
|
|
void printFunction(const Function *F);
|
|
void printArgument(const Argument *FA, AttributeSet Attrs, unsigned Idx);
|
|
void printBasicBlock(const BasicBlock *BB);
|
|
void printInstructionLine(const Instruction &I);
|
|
void printInstruction(const Instruction &I);
|
|
|
|
void printUseListOrder(const UseListOrder &Order);
|
|
void printUseLists(const Function *F);
|
|
|
|
private:
|
|
/// \brief Print out metadata attachments.
|
|
void printMetadataAttachments(
|
|
const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
|
|
StringRef Separator);
|
|
|
|
// printInfoComment - Print a little comment after the instruction indicating
|
|
// which slot it occupies.
|
|
void printInfoComment(const Value &V);
|
|
|
|
// printGCRelocateComment - print comment after call to the gc.relocate
|
|
// intrinsic indicating base and derived pointer names.
|
|
void printGCRelocateComment(const GCRelocateInst &Relocate);
|
|
};
|
|
} // namespace
|
|
|
|
AssemblyWriter::AssemblyWriter(formatted_raw_ostream &o, SlotTracker &Mac,
|
|
const Module *M, AssemblyAnnotationWriter *AAW,
|
|
bool IsForDebug, bool ShouldPreserveUseListOrder)
|
|
: Out(o), TheModule(M), Machine(Mac), AnnotationWriter(AAW),
|
|
IsForDebug(IsForDebug),
|
|
ShouldPreserveUseListOrder(ShouldPreserveUseListOrder) {
|
|
if (!TheModule)
|
|
return;
|
|
TypePrinter.incorporateTypes(*TheModule);
|
|
for (const GlobalObject &GO : TheModule->global_objects())
|
|
if (const Comdat *C = GO.getComdat())
|
|
Comdats.insert(C);
|
|
}
|
|
|
|
void AssemblyWriter::writeOperand(const Value *Operand, bool PrintType) {
|
|
if (!Operand) {
|
|
Out << "<null operand!>";
|
|
return;
|
|
}
|
|
if (PrintType) {
|
|
TypePrinter.print(Operand->getType(), Out);
|
|
Out << ' ';
|
|
}
|
|
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
|
|
}
|
|
|
|
void AssemblyWriter::writeAtomic(AtomicOrdering Ordering,
|
|
SynchronizationScope SynchScope) {
|
|
if (Ordering == AtomicOrdering::NotAtomic)
|
|
return;
|
|
|
|
switch (SynchScope) {
|
|
case SingleThread: Out << " singlethread"; break;
|
|
case CrossThread: break;
|
|
}
|
|
|
|
Out << " " << toIRString(Ordering);
|
|
}
|
|
|
|
void AssemblyWriter::writeAtomicCmpXchg(AtomicOrdering SuccessOrdering,
|
|
AtomicOrdering FailureOrdering,
|
|
SynchronizationScope SynchScope) {
|
|
assert(SuccessOrdering != AtomicOrdering::NotAtomic &&
|
|
FailureOrdering != AtomicOrdering::NotAtomic);
|
|
|
|
switch (SynchScope) {
|
|
case SingleThread: Out << " singlethread"; break;
|
|
case CrossThread: break;
|
|
}
|
|
|
|
Out << " " << toIRString(SuccessOrdering);
|
|
Out << " " << toIRString(FailureOrdering);
|
|
}
|
|
|
|
void AssemblyWriter::writeParamOperand(const Value *Operand,
|
|
AttributeSet Attrs, unsigned Idx) {
|
|
if (!Operand) {
|
|
Out << "<null operand!>";
|
|
return;
|
|
}
|
|
|
|
// Print the type
|
|
TypePrinter.print(Operand->getType(), Out);
|
|
// Print parameter attributes list
|
|
if (Attrs.hasAttributes(Idx))
|
|
Out << ' ' << Attrs.getAsString(Idx);
|
|
Out << ' ';
|
|
// Print the operand
|
|
WriteAsOperandInternal(Out, Operand, &TypePrinter, &Machine, TheModule);
|
|
}
|
|
|
|
void AssemblyWriter::writeOperandBundles(ImmutableCallSite CS) {
|
|
if (!CS.hasOperandBundles())
|
|
return;
|
|
|
|
Out << " [ ";
|
|
|
|
bool FirstBundle = true;
|
|
for (unsigned i = 0, e = CS.getNumOperandBundles(); i != e; ++i) {
|
|
OperandBundleUse BU = CS.getOperandBundleAt(i);
|
|
|
|
if (!FirstBundle)
|
|
Out << ", ";
|
|
FirstBundle = false;
|
|
|
|
Out << '"';
|
|
PrintEscapedString(BU.getTagName(), Out);
|
|
Out << '"';
|
|
|
|
Out << '(';
|
|
|
|
bool FirstInput = true;
|
|
for (const auto &Input : BU.Inputs) {
|
|
if (!FirstInput)
|
|
Out << ", ";
|
|
FirstInput = false;
|
|
|
|
TypePrinter.print(Input->getType(), Out);
|
|
Out << " ";
|
|
WriteAsOperandInternal(Out, Input, &TypePrinter, &Machine, TheModule);
|
|
}
|
|
|
|
Out << ')';
|
|
}
|
|
|
|
Out << " ]";
|
|
}
|
|
|
|
void AssemblyWriter::printModule(const Module *M) {
|
|
Machine.initialize();
|
|
|
|
if (ShouldPreserveUseListOrder)
|
|
UseListOrders = predictUseListOrder(M);
|
|
|
|
if (!M->getModuleIdentifier().empty() &&
|
|
// Don't print the ID if it will start a new line (which would
|
|
// require a comment char before it).
|
|
M->getModuleIdentifier().find('\n') == std::string::npos)
|
|
Out << "; ModuleID = '" << M->getModuleIdentifier() << "'\n";
|
|
|
|
if (!M->getSourceFileName().empty()) {
|
|
Out << "source_filename = \"";
|
|
PrintEscapedString(M->getSourceFileName(), Out);
|
|
Out << "\"\n";
|
|
}
|
|
|
|
const std::string &DL = M->getDataLayoutStr();
|
|
if (!DL.empty())
|
|
Out << "target datalayout = \"" << DL << "\"\n";
|
|
if (!M->getTargetTriple().empty())
|
|
Out << "target triple = \"" << M->getTargetTriple() << "\"\n";
|
|
|
|
if (!M->getModuleInlineAsm().empty()) {
|
|
Out << '\n';
|
|
|
|
// Split the string into lines, to make it easier to read the .ll file.
|
|
StringRef Asm = M->getModuleInlineAsm();
|
|
do {
|
|
StringRef Front;
|
|
std::tie(Front, Asm) = Asm.split('\n');
|
|
|
|
// We found a newline, print the portion of the asm string from the
|
|
// last newline up to this newline.
|
|
Out << "module asm \"";
|
|
PrintEscapedString(Front, Out);
|
|
Out << "\"\n";
|
|
} while (!Asm.empty());
|
|
}
|
|
|
|
printTypeIdentities();
|
|
|
|
// Output all comdats.
|
|
if (!Comdats.empty())
|
|
Out << '\n';
|
|
for (const Comdat *C : Comdats) {
|
|
printComdat(C);
|
|
if (C != Comdats.back())
|
|
Out << '\n';
|
|
}
|
|
|
|
// Output all globals.
|
|
if (!M->global_empty()) Out << '\n';
|
|
for (const GlobalVariable &GV : M->globals()) {
|
|
printGlobal(&GV); Out << '\n';
|
|
}
|
|
|
|
// Output all aliases.
|
|
if (!M->alias_empty()) Out << "\n";
|
|
for (const GlobalAlias &GA : M->aliases())
|
|
printIndirectSymbol(&GA);
|
|
|
|
// Output all ifuncs.
|
|
if (!M->ifunc_empty()) Out << "\n";
|
|
for (const GlobalIFunc &GI : M->ifuncs())
|
|
printIndirectSymbol(&GI);
|
|
|
|
// Output global use-lists.
|
|
printUseLists(nullptr);
|
|
|
|
// Output all of the functions.
|
|
for (const Function &F : *M)
|
|
printFunction(&F);
|
|
assert(UseListOrders.empty() && "All use-lists should have been consumed");
|
|
|
|
// Output all attribute groups.
|
|
if (!Machine.as_empty()) {
|
|
Out << '\n';
|
|
writeAllAttributeGroups();
|
|
}
|
|
|
|
// Output named metadata.
|
|
if (!M->named_metadata_empty()) Out << '\n';
|
|
|
|
for (const NamedMDNode &Node : M->named_metadata())
|
|
printNamedMDNode(&Node);
|
|
|
|
// Output metadata.
|
|
if (!Machine.mdn_empty()) {
|
|
Out << '\n';
|
|
writeAllMDNodes();
|
|
}
|
|
}
|
|
|
|
static void printMetadataIdentifier(StringRef Name,
|
|
formatted_raw_ostream &Out) {
|
|
if (Name.empty()) {
|
|
Out << "<empty name> ";
|
|
} else {
|
|
if (isalpha(static_cast<unsigned char>(Name[0])) || Name[0] == '-' ||
|
|
Name[0] == '$' || Name[0] == '.' || Name[0] == '_')
|
|
Out << Name[0];
|
|
else
|
|
Out << '\\' << hexdigit(Name[0] >> 4) << hexdigit(Name[0] & 0x0F);
|
|
for (unsigned i = 1, e = Name.size(); i != e; ++i) {
|
|
unsigned char C = Name[i];
|
|
if (isalnum(static_cast<unsigned char>(C)) || C == '-' || C == '$' ||
|
|
C == '.' || C == '_')
|
|
Out << C;
|
|
else
|
|
Out << '\\' << hexdigit(C >> 4) << hexdigit(C & 0x0F);
|
|
}
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::printNamedMDNode(const NamedMDNode *NMD) {
|
|
Out << '!';
|
|
printMetadataIdentifier(NMD->getName(), Out);
|
|
Out << " = !{";
|
|
for (unsigned i = 0, e = NMD->getNumOperands(); i != e; ++i) {
|
|
if (i)
|
|
Out << ", ";
|
|
int Slot = Machine.getMetadataSlot(NMD->getOperand(i));
|
|
if (Slot == -1)
|
|
Out << "<badref>";
|
|
else
|
|
Out << '!' << Slot;
|
|
}
|
|
Out << "}\n";
|
|
}
|
|
|
|
static const char *getLinkagePrintName(GlobalValue::LinkageTypes LT) {
|
|
switch (LT) {
|
|
case GlobalValue::ExternalLinkage:
|
|
return "";
|
|
case GlobalValue::PrivateLinkage:
|
|
return "private ";
|
|
case GlobalValue::InternalLinkage:
|
|
return "internal ";
|
|
case GlobalValue::LinkOnceAnyLinkage:
|
|
return "linkonce ";
|
|
case GlobalValue::LinkOnceODRLinkage:
|
|
return "linkonce_odr ";
|
|
case GlobalValue::WeakAnyLinkage:
|
|
return "weak ";
|
|
case GlobalValue::WeakODRLinkage:
|
|
return "weak_odr ";
|
|
case GlobalValue::CommonLinkage:
|
|
return "common ";
|
|
case GlobalValue::AppendingLinkage:
|
|
return "appending ";
|
|
case GlobalValue::ExternalWeakLinkage:
|
|
return "extern_weak ";
|
|
case GlobalValue::AvailableExternallyLinkage:
|
|
return "available_externally ";
|
|
}
|
|
llvm_unreachable("invalid linkage");
|
|
}
|
|
|
|
static void PrintVisibility(GlobalValue::VisibilityTypes Vis,
|
|
formatted_raw_ostream &Out) {
|
|
switch (Vis) {
|
|
case GlobalValue::DefaultVisibility: break;
|
|
case GlobalValue::HiddenVisibility: Out << "hidden "; break;
|
|
case GlobalValue::ProtectedVisibility: Out << "protected "; break;
|
|
}
|
|
}
|
|
|
|
static void PrintDLLStorageClass(GlobalValue::DLLStorageClassTypes SCT,
|
|
formatted_raw_ostream &Out) {
|
|
switch (SCT) {
|
|
case GlobalValue::DefaultStorageClass: break;
|
|
case GlobalValue::DLLImportStorageClass: Out << "dllimport "; break;
|
|
case GlobalValue::DLLExportStorageClass: Out << "dllexport "; break;
|
|
}
|
|
}
|
|
|
|
static void PrintThreadLocalModel(GlobalVariable::ThreadLocalMode TLM,
|
|
formatted_raw_ostream &Out) {
|
|
switch (TLM) {
|
|
case GlobalVariable::NotThreadLocal:
|
|
break;
|
|
case GlobalVariable::GeneralDynamicTLSModel:
|
|
Out << "thread_local ";
|
|
break;
|
|
case GlobalVariable::LocalDynamicTLSModel:
|
|
Out << "thread_local(localdynamic) ";
|
|
break;
|
|
case GlobalVariable::InitialExecTLSModel:
|
|
Out << "thread_local(initialexec) ";
|
|
break;
|
|
case GlobalVariable::LocalExecTLSModel:
|
|
Out << "thread_local(localexec) ";
|
|
break;
|
|
}
|
|
}
|
|
|
|
static StringRef getUnnamedAddrEncoding(GlobalVariable::UnnamedAddr UA) {
|
|
switch (UA) {
|
|
case GlobalVariable::UnnamedAddr::None:
|
|
return "";
|
|
case GlobalVariable::UnnamedAddr::Local:
|
|
return "local_unnamed_addr";
|
|
case GlobalVariable::UnnamedAddr::Global:
|
|
return "unnamed_addr";
|
|
}
|
|
llvm_unreachable("Unknown UnnamedAddr");
|
|
}
|
|
|
|
static void maybePrintComdat(formatted_raw_ostream &Out,
|
|
const GlobalObject &GO) {
|
|
const Comdat *C = GO.getComdat();
|
|
if (!C)
|
|
return;
|
|
|
|
if (isa<GlobalVariable>(GO))
|
|
Out << ',';
|
|
Out << " comdat";
|
|
|
|
if (GO.getName() == C->getName())
|
|
return;
|
|
|
|
Out << '(';
|
|
PrintLLVMName(Out, C->getName(), ComdatPrefix);
|
|
Out << ')';
|
|
}
|
|
|
|
void AssemblyWriter::printGlobal(const GlobalVariable *GV) {
|
|
if (GV->isMaterializable())
|
|
Out << "; Materializable\n";
|
|
|
|
WriteAsOperandInternal(Out, GV, &TypePrinter, &Machine, GV->getParent());
|
|
Out << " = ";
|
|
|
|
if (!GV->hasInitializer() && GV->hasExternalLinkage())
|
|
Out << "external ";
|
|
|
|
Out << getLinkagePrintName(GV->getLinkage());
|
|
PrintVisibility(GV->getVisibility(), Out);
|
|
PrintDLLStorageClass(GV->getDLLStorageClass(), Out);
|
|
PrintThreadLocalModel(GV->getThreadLocalMode(), Out);
|
|
StringRef UA = getUnnamedAddrEncoding(GV->getUnnamedAddr());
|
|
if (!UA.empty())
|
|
Out << UA << ' ';
|
|
|
|
if (unsigned AddressSpace = GV->getType()->getAddressSpace())
|
|
Out << "addrspace(" << AddressSpace << ") ";
|
|
if (GV->isExternallyInitialized()) Out << "externally_initialized ";
|
|
Out << (GV->isConstant() ? "constant " : "global ");
|
|
TypePrinter.print(GV->getValueType(), Out);
|
|
|
|
if (GV->hasInitializer()) {
|
|
Out << ' ';
|
|
writeOperand(GV->getInitializer(), false);
|
|
}
|
|
|
|
if (GV->hasSection()) {
|
|
Out << ", section \"";
|
|
PrintEscapedString(GV->getSection(), Out);
|
|
Out << '"';
|
|
}
|
|
maybePrintComdat(Out, *GV);
|
|
if (GV->getAlignment())
|
|
Out << ", align " << GV->getAlignment();
|
|
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
GV->getAllMetadata(MDs);
|
|
printMetadataAttachments(MDs, ", ");
|
|
|
|
printInfoComment(*GV);
|
|
}
|
|
|
|
void AssemblyWriter::printIndirectSymbol(const GlobalIndirectSymbol *GIS) {
|
|
if (GIS->isMaterializable())
|
|
Out << "; Materializable\n";
|
|
|
|
WriteAsOperandInternal(Out, GIS, &TypePrinter, &Machine, GIS->getParent());
|
|
Out << " = ";
|
|
|
|
Out << getLinkagePrintName(GIS->getLinkage());
|
|
PrintVisibility(GIS->getVisibility(), Out);
|
|
PrintDLLStorageClass(GIS->getDLLStorageClass(), Out);
|
|
PrintThreadLocalModel(GIS->getThreadLocalMode(), Out);
|
|
StringRef UA = getUnnamedAddrEncoding(GIS->getUnnamedAddr());
|
|
if (!UA.empty())
|
|
Out << UA << ' ';
|
|
|
|
if (isa<GlobalAlias>(GIS))
|
|
Out << "alias ";
|
|
else if (isa<GlobalIFunc>(GIS))
|
|
Out << "ifunc ";
|
|
else
|
|
llvm_unreachable("Not an alias or ifunc!");
|
|
|
|
TypePrinter.print(GIS->getValueType(), Out);
|
|
|
|
Out << ", ";
|
|
|
|
const Constant *IS = GIS->getIndirectSymbol();
|
|
|
|
if (!IS) {
|
|
TypePrinter.print(GIS->getType(), Out);
|
|
Out << " <<NULL ALIASEE>>";
|
|
} else {
|
|
writeOperand(IS, !isa<ConstantExpr>(IS));
|
|
}
|
|
|
|
printInfoComment(*GIS);
|
|
Out << '\n';
|
|
}
|
|
|
|
void AssemblyWriter::printComdat(const Comdat *C) {
|
|
C->print(Out);
|
|
}
|
|
|
|
void AssemblyWriter::printTypeIdentities() {
|
|
if (TypePrinter.NumberedTypes.empty() &&
|
|
TypePrinter.NamedTypes.empty())
|
|
return;
|
|
|
|
Out << '\n';
|
|
|
|
// We know all the numbers that each type is used and we know that it is a
|
|
// dense assignment. Convert the map to an index table.
|
|
std::vector<StructType*> NumberedTypes(TypePrinter.NumberedTypes.size());
|
|
for (DenseMap<StructType*, unsigned>::iterator I =
|
|
TypePrinter.NumberedTypes.begin(), E = TypePrinter.NumberedTypes.end();
|
|
I != E; ++I) {
|
|
assert(I->second < NumberedTypes.size() && "Didn't get a dense numbering?");
|
|
NumberedTypes[I->second] = I->first;
|
|
}
|
|
|
|
// Emit all numbered types.
|
|
for (unsigned i = 0, e = NumberedTypes.size(); i != e; ++i) {
|
|
Out << '%' << i << " = type ";
|
|
|
|
// Make sure we print out at least one level of the type structure, so
|
|
// that we do not get %2 = type %2
|
|
TypePrinter.printStructBody(NumberedTypes[i], Out);
|
|
Out << '\n';
|
|
}
|
|
|
|
for (unsigned i = 0, e = TypePrinter.NamedTypes.size(); i != e; ++i) {
|
|
PrintLLVMName(Out, TypePrinter.NamedTypes[i]->getName(), LocalPrefix);
|
|
Out << " = type ";
|
|
|
|
// Make sure we print out at least one level of the type structure, so
|
|
// that we do not get %FILE = type %FILE
|
|
TypePrinter.printStructBody(TypePrinter.NamedTypes[i], Out);
|
|
Out << '\n';
|
|
}
|
|
}
|
|
|
|
/// printFunction - Print all aspects of a function.
|
|
///
|
|
void AssemblyWriter::printFunction(const Function *F) {
|
|
// Print out the return type and name.
|
|
Out << '\n';
|
|
|
|
if (AnnotationWriter) AnnotationWriter->emitFunctionAnnot(F, Out);
|
|
|
|
if (F->isMaterializable())
|
|
Out << "; Materializable\n";
|
|
|
|
const AttributeSet &Attrs = F->getAttributes();
|
|
if (Attrs.hasAttributes(AttributeSet::FunctionIndex)) {
|
|
AttributeSet AS = Attrs.getFnAttributes();
|
|
std::string AttrStr;
|
|
|
|
unsigned Idx = 0;
|
|
for (unsigned E = AS.getNumSlots(); Idx != E; ++Idx)
|
|
if (AS.getSlotIndex(Idx) == AttributeSet::FunctionIndex)
|
|
break;
|
|
|
|
for (AttributeSet::iterator I = AS.begin(Idx), E = AS.end(Idx);
|
|
I != E; ++I) {
|
|
Attribute Attr = *I;
|
|
if (!Attr.isStringAttribute()) {
|
|
if (!AttrStr.empty()) AttrStr += ' ';
|
|
AttrStr += Attr.getAsString();
|
|
}
|
|
}
|
|
|
|
if (!AttrStr.empty())
|
|
Out << "; Function Attrs: " << AttrStr << '\n';
|
|
}
|
|
|
|
Machine.incorporateFunction(F);
|
|
|
|
if (F->isDeclaration()) {
|
|
Out << "declare";
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
F->getAllMetadata(MDs);
|
|
printMetadataAttachments(MDs, " ");
|
|
Out << ' ';
|
|
} else
|
|
Out << "define ";
|
|
|
|
Out << getLinkagePrintName(F->getLinkage());
|
|
PrintVisibility(F->getVisibility(), Out);
|
|
PrintDLLStorageClass(F->getDLLStorageClass(), Out);
|
|
|
|
// Print the calling convention.
|
|
if (F->getCallingConv() != CallingConv::C) {
|
|
PrintCallingConv(F->getCallingConv(), Out);
|
|
Out << " ";
|
|
}
|
|
|
|
FunctionType *FT = F->getFunctionType();
|
|
if (Attrs.hasAttributes(AttributeSet::ReturnIndex))
|
|
Out << Attrs.getAsString(AttributeSet::ReturnIndex) << ' ';
|
|
TypePrinter.print(F->getReturnType(), Out);
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, F, &TypePrinter, &Machine, F->getParent());
|
|
Out << '(';
|
|
|
|
// Loop over the arguments, printing them...
|
|
if (F->isDeclaration() && !IsForDebug) {
|
|
// We're only interested in the type here - don't print argument names.
|
|
for (unsigned I = 0, E = FT->getNumParams(); I != E; ++I) {
|
|
// Insert commas as we go... the first arg doesn't get a comma
|
|
if (I)
|
|
Out << ", ";
|
|
// Output type...
|
|
TypePrinter.print(FT->getParamType(I), Out);
|
|
|
|
if (Attrs.hasAttributes(I + 1))
|
|
Out << ' ' << Attrs.getAsString(I + 1);
|
|
}
|
|
} else {
|
|
// The arguments are meaningful here, print them in detail.
|
|
unsigned Idx = 1;
|
|
for (const Argument &Arg : F->args()) {
|
|
// Insert commas as we go... the first arg doesn't get a comma
|
|
if (Idx != 1)
|
|
Out << ", ";
|
|
printArgument(&Arg, Attrs, Idx++);
|
|
}
|
|
}
|
|
|
|
// Finish printing arguments...
|
|
if (FT->isVarArg()) {
|
|
if (FT->getNumParams()) Out << ", ";
|
|
Out << "..."; // Output varargs portion of signature!
|
|
}
|
|
Out << ')';
|
|
StringRef UA = getUnnamedAddrEncoding(F->getUnnamedAddr());
|
|
if (!UA.empty())
|
|
Out << ' ' << UA;
|
|
if (Attrs.hasAttributes(AttributeSet::FunctionIndex))
|
|
Out << " #" << Machine.getAttributeGroupSlot(Attrs.getFnAttributes());
|
|
if (F->hasSection()) {
|
|
Out << " section \"";
|
|
PrintEscapedString(F->getSection(), Out);
|
|
Out << '"';
|
|
}
|
|
maybePrintComdat(Out, *F);
|
|
if (F->getAlignment())
|
|
Out << " align " << F->getAlignment();
|
|
if (F->hasGC())
|
|
Out << " gc \"" << F->getGC() << '"';
|
|
if (F->hasPrefixData()) {
|
|
Out << " prefix ";
|
|
writeOperand(F->getPrefixData(), true);
|
|
}
|
|
if (F->hasPrologueData()) {
|
|
Out << " prologue ";
|
|
writeOperand(F->getPrologueData(), true);
|
|
}
|
|
if (F->hasPersonalityFn()) {
|
|
Out << " personality ";
|
|
writeOperand(F->getPersonalityFn(), /*PrintType=*/true);
|
|
}
|
|
|
|
if (F->isDeclaration()) {
|
|
Out << '\n';
|
|
} else {
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> MDs;
|
|
F->getAllMetadata(MDs);
|
|
printMetadataAttachments(MDs, " ");
|
|
|
|
Out << " {";
|
|
// Output all of the function's basic blocks.
|
|
for (const BasicBlock &BB : *F)
|
|
printBasicBlock(&BB);
|
|
|
|
// Output the function's use-lists.
|
|
printUseLists(F);
|
|
|
|
Out << "}\n";
|
|
}
|
|
|
|
Machine.purgeFunction();
|
|
}
|
|
|
|
/// printArgument - This member is called for every argument that is passed into
|
|
/// the function. Simply print it out
|
|
///
|
|
void AssemblyWriter::printArgument(const Argument *Arg,
|
|
AttributeSet Attrs, unsigned Idx) {
|
|
// Output type...
|
|
TypePrinter.print(Arg->getType(), Out);
|
|
|
|
// Output parameter attributes list
|
|
if (Attrs.hasAttributes(Idx))
|
|
Out << ' ' << Attrs.getAsString(Idx);
|
|
|
|
// Output name, if available...
|
|
if (Arg->hasName()) {
|
|
Out << ' ';
|
|
PrintLLVMName(Out, Arg);
|
|
}
|
|
}
|
|
|
|
/// printBasicBlock - This member is called for each basic block in a method.
|
|
///
|
|
void AssemblyWriter::printBasicBlock(const BasicBlock *BB) {
|
|
if (BB->hasName()) { // Print out the label if it exists...
|
|
Out << "\n";
|
|
PrintLLVMName(Out, BB->getName(), LabelPrefix);
|
|
Out << ':';
|
|
} else if (!BB->use_empty()) { // Don't print block # of no uses...
|
|
Out << "\n; <label>:";
|
|
int Slot = Machine.getLocalSlot(BB);
|
|
if (Slot != -1)
|
|
Out << Slot << ":";
|
|
else
|
|
Out << "<badref>";
|
|
}
|
|
|
|
if (!BB->getParent()) {
|
|
Out.PadToColumn(50);
|
|
Out << "; Error: Block without parent!";
|
|
} else if (BB != &BB->getParent()->getEntryBlock()) { // Not the entry block?
|
|
// Output predecessors for the block.
|
|
Out.PadToColumn(50);
|
|
Out << ";";
|
|
const_pred_iterator PI = pred_begin(BB), PE = pred_end(BB);
|
|
|
|
if (PI == PE) {
|
|
Out << " No predecessors!";
|
|
} else {
|
|
Out << " preds = ";
|
|
writeOperand(*PI, false);
|
|
for (++PI; PI != PE; ++PI) {
|
|
Out << ", ";
|
|
writeOperand(*PI, false);
|
|
}
|
|
}
|
|
}
|
|
|
|
Out << "\n";
|
|
|
|
if (AnnotationWriter) AnnotationWriter->emitBasicBlockStartAnnot(BB, Out);
|
|
|
|
// Output all of the instructions in the basic block...
|
|
for (const Instruction &I : *BB) {
|
|
printInstructionLine(I);
|
|
}
|
|
|
|
if (AnnotationWriter) AnnotationWriter->emitBasicBlockEndAnnot(BB, Out);
|
|
}
|
|
|
|
/// printInstructionLine - Print an instruction and a newline character.
|
|
void AssemblyWriter::printInstructionLine(const Instruction &I) {
|
|
printInstruction(I);
|
|
Out << '\n';
|
|
}
|
|
|
|
/// printGCRelocateComment - print comment after call to the gc.relocate
|
|
/// intrinsic indicating base and derived pointer names.
|
|
void AssemblyWriter::printGCRelocateComment(const GCRelocateInst &Relocate) {
|
|
Out << " ; (";
|
|
writeOperand(Relocate.getBasePtr(), false);
|
|
Out << ", ";
|
|
writeOperand(Relocate.getDerivedPtr(), false);
|
|
Out << ")";
|
|
}
|
|
|
|
/// printInfoComment - Print a little comment after the instruction indicating
|
|
/// which slot it occupies.
|
|
///
|
|
void AssemblyWriter::printInfoComment(const Value &V) {
|
|
if (const auto *Relocate = dyn_cast<GCRelocateInst>(&V))
|
|
printGCRelocateComment(*Relocate);
|
|
|
|
if (AnnotationWriter)
|
|
AnnotationWriter->printInfoComment(V, Out);
|
|
}
|
|
|
|
// This member is called for each Instruction in a function..
|
|
void AssemblyWriter::printInstruction(const Instruction &I) {
|
|
if (AnnotationWriter) AnnotationWriter->emitInstructionAnnot(&I, Out);
|
|
|
|
// Print out indentation for an instruction.
|
|
Out << " ";
|
|
|
|
// Print out name if it exists...
|
|
if (I.hasName()) {
|
|
PrintLLVMName(Out, &I);
|
|
Out << " = ";
|
|
} else if (!I.getType()->isVoidTy()) {
|
|
// Print out the def slot taken.
|
|
int SlotNum = Machine.getLocalSlot(&I);
|
|
if (SlotNum == -1)
|
|
Out << "<badref> = ";
|
|
else
|
|
Out << '%' << SlotNum << " = ";
|
|
}
|
|
|
|
if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
if (CI->isMustTailCall())
|
|
Out << "musttail ";
|
|
else if (CI->isTailCall())
|
|
Out << "tail ";
|
|
else if (CI->isNoTailCall())
|
|
Out << "notail ";
|
|
}
|
|
|
|
// Print out the opcode...
|
|
Out << I.getOpcodeName();
|
|
|
|
// If this is an atomic load or store, print out the atomic marker.
|
|
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isAtomic()) ||
|
|
(isa<StoreInst>(I) && cast<StoreInst>(I).isAtomic()))
|
|
Out << " atomic";
|
|
|
|
if (isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isWeak())
|
|
Out << " weak";
|
|
|
|
// If this is a volatile operation, print out the volatile marker.
|
|
if ((isa<LoadInst>(I) && cast<LoadInst>(I).isVolatile()) ||
|
|
(isa<StoreInst>(I) && cast<StoreInst>(I).isVolatile()) ||
|
|
(isa<AtomicCmpXchgInst>(I) && cast<AtomicCmpXchgInst>(I).isVolatile()) ||
|
|
(isa<AtomicRMWInst>(I) && cast<AtomicRMWInst>(I).isVolatile()))
|
|
Out << " volatile";
|
|
|
|
// Print out optimization information.
|
|
WriteOptimizationInfo(Out, &I);
|
|
|
|
// Print out the compare instruction predicates
|
|
if (const CmpInst *CI = dyn_cast<CmpInst>(&I))
|
|
Out << ' ' << CmpInst::getPredicateName(CI->getPredicate());
|
|
|
|
// Print out the atomicrmw operation
|
|
if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I))
|
|
writeAtomicRMWOperation(Out, RMWI->getOperation());
|
|
|
|
// Print out the type of the operands...
|
|
const Value *Operand = I.getNumOperands() ? I.getOperand(0) : nullptr;
|
|
|
|
// Special case conditional branches to swizzle the condition out to the front
|
|
if (isa<BranchInst>(I) && cast<BranchInst>(I).isConditional()) {
|
|
const BranchInst &BI(cast<BranchInst>(I));
|
|
Out << ' ';
|
|
writeOperand(BI.getCondition(), true);
|
|
Out << ", ";
|
|
writeOperand(BI.getSuccessor(0), true);
|
|
Out << ", ";
|
|
writeOperand(BI.getSuccessor(1), true);
|
|
|
|
} else if (isa<SwitchInst>(I)) {
|
|
const SwitchInst& SI(cast<SwitchInst>(I));
|
|
// Special case switch instruction to get formatting nice and correct.
|
|
Out << ' ';
|
|
writeOperand(SI.getCondition(), true);
|
|
Out << ", ";
|
|
writeOperand(SI.getDefaultDest(), true);
|
|
Out << " [";
|
|
for (SwitchInst::ConstCaseIt i = SI.case_begin(), e = SI.case_end();
|
|
i != e; ++i) {
|
|
Out << "\n ";
|
|
writeOperand(i.getCaseValue(), true);
|
|
Out << ", ";
|
|
writeOperand(i.getCaseSuccessor(), true);
|
|
}
|
|
Out << "\n ]";
|
|
} else if (isa<IndirectBrInst>(I)) {
|
|
// Special case indirectbr instruction to get formatting nice and correct.
|
|
Out << ' ';
|
|
writeOperand(Operand, true);
|
|
Out << ", [";
|
|
|
|
for (unsigned i = 1, e = I.getNumOperands(); i != e; ++i) {
|
|
if (i != 1)
|
|
Out << ", ";
|
|
writeOperand(I.getOperand(i), true);
|
|
}
|
|
Out << ']';
|
|
} else if (const PHINode *PN = dyn_cast<PHINode>(&I)) {
|
|
Out << ' ';
|
|
TypePrinter.print(I.getType(), Out);
|
|
Out << ' ';
|
|
|
|
for (unsigned op = 0, Eop = PN->getNumIncomingValues(); op < Eop; ++op) {
|
|
if (op) Out << ", ";
|
|
Out << "[ ";
|
|
writeOperand(PN->getIncomingValue(op), false); Out << ", ";
|
|
writeOperand(PN->getIncomingBlock(op), false); Out << " ]";
|
|
}
|
|
} else if (const ExtractValueInst *EVI = dyn_cast<ExtractValueInst>(&I)) {
|
|
Out << ' ';
|
|
writeOperand(I.getOperand(0), true);
|
|
for (const unsigned *i = EVI->idx_begin(), *e = EVI->idx_end(); i != e; ++i)
|
|
Out << ", " << *i;
|
|
} else if (const InsertValueInst *IVI = dyn_cast<InsertValueInst>(&I)) {
|
|
Out << ' ';
|
|
writeOperand(I.getOperand(0), true); Out << ", ";
|
|
writeOperand(I.getOperand(1), true);
|
|
for (const unsigned *i = IVI->idx_begin(), *e = IVI->idx_end(); i != e; ++i)
|
|
Out << ", " << *i;
|
|
} else if (const LandingPadInst *LPI = dyn_cast<LandingPadInst>(&I)) {
|
|
Out << ' ';
|
|
TypePrinter.print(I.getType(), Out);
|
|
if (LPI->isCleanup() || LPI->getNumClauses() != 0)
|
|
Out << '\n';
|
|
|
|
if (LPI->isCleanup())
|
|
Out << " cleanup";
|
|
|
|
for (unsigned i = 0, e = LPI->getNumClauses(); i != e; ++i) {
|
|
if (i != 0 || LPI->isCleanup()) Out << "\n";
|
|
if (LPI->isCatch(i))
|
|
Out << " catch ";
|
|
else
|
|
Out << " filter ";
|
|
|
|
writeOperand(LPI->getClause(i), true);
|
|
}
|
|
} else if (const auto *CatchSwitch = dyn_cast<CatchSwitchInst>(&I)) {
|
|
Out << " within ";
|
|
writeOperand(CatchSwitch->getParentPad(), /*PrintType=*/false);
|
|
Out << " [";
|
|
unsigned Op = 0;
|
|
for (const BasicBlock *PadBB : CatchSwitch->handlers()) {
|
|
if (Op > 0)
|
|
Out << ", ";
|
|
writeOperand(PadBB, /*PrintType=*/true);
|
|
++Op;
|
|
}
|
|
Out << "] unwind ";
|
|
if (const BasicBlock *UnwindDest = CatchSwitch->getUnwindDest())
|
|
writeOperand(UnwindDest, /*PrintType=*/true);
|
|
else
|
|
Out << "to caller";
|
|
} else if (const auto *FPI = dyn_cast<FuncletPadInst>(&I)) {
|
|
Out << " within ";
|
|
writeOperand(FPI->getParentPad(), /*PrintType=*/false);
|
|
Out << " [";
|
|
for (unsigned Op = 0, NumOps = FPI->getNumArgOperands(); Op < NumOps;
|
|
++Op) {
|
|
if (Op > 0)
|
|
Out << ", ";
|
|
writeOperand(FPI->getArgOperand(Op), /*PrintType=*/true);
|
|
}
|
|
Out << ']';
|
|
} else if (isa<ReturnInst>(I) && !Operand) {
|
|
Out << " void";
|
|
} else if (const auto *CRI = dyn_cast<CatchReturnInst>(&I)) {
|
|
Out << " from ";
|
|
writeOperand(CRI->getOperand(0), /*PrintType=*/false);
|
|
|
|
Out << " to ";
|
|
writeOperand(CRI->getOperand(1), /*PrintType=*/true);
|
|
} else if (const auto *CRI = dyn_cast<CleanupReturnInst>(&I)) {
|
|
Out << " from ";
|
|
writeOperand(CRI->getOperand(0), /*PrintType=*/false);
|
|
|
|
Out << " unwind ";
|
|
if (CRI->hasUnwindDest())
|
|
writeOperand(CRI->getOperand(1), /*PrintType=*/true);
|
|
else
|
|
Out << "to caller";
|
|
} else if (const CallInst *CI = dyn_cast<CallInst>(&I)) {
|
|
// Print the calling convention being used.
|
|
if (CI->getCallingConv() != CallingConv::C) {
|
|
Out << " ";
|
|
PrintCallingConv(CI->getCallingConv(), Out);
|
|
}
|
|
|
|
Operand = CI->getCalledValue();
|
|
FunctionType *FTy = cast<FunctionType>(CI->getFunctionType());
|
|
Type *RetTy = FTy->getReturnType();
|
|
const AttributeSet &PAL = CI->getAttributes();
|
|
|
|
if (PAL.hasAttributes(AttributeSet::ReturnIndex))
|
|
Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
|
|
|
|
// If possible, print out the short form of the call instruction. We can
|
|
// only do this if the first argument is a pointer to a nonvararg function,
|
|
// and if the return type is not a pointer to a function.
|
|
//
|
|
Out << ' ';
|
|
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
|
|
Out << ' ';
|
|
writeOperand(Operand, false);
|
|
Out << '(';
|
|
for (unsigned op = 0, Eop = CI->getNumArgOperands(); op < Eop; ++op) {
|
|
if (op > 0)
|
|
Out << ", ";
|
|
writeParamOperand(CI->getArgOperand(op), PAL, op + 1);
|
|
}
|
|
|
|
// Emit an ellipsis if this is a musttail call in a vararg function. This
|
|
// is only to aid readability, musttail calls forward varargs by default.
|
|
if (CI->isMustTailCall() && CI->getParent() &&
|
|
CI->getParent()->getParent() &&
|
|
CI->getParent()->getParent()->isVarArg())
|
|
Out << ", ...";
|
|
|
|
Out << ')';
|
|
if (PAL.hasAttributes(AttributeSet::FunctionIndex))
|
|
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
|
|
|
|
writeOperandBundles(CI);
|
|
|
|
} else if (const InvokeInst *II = dyn_cast<InvokeInst>(&I)) {
|
|
Operand = II->getCalledValue();
|
|
FunctionType *FTy = cast<FunctionType>(II->getFunctionType());
|
|
Type *RetTy = FTy->getReturnType();
|
|
const AttributeSet &PAL = II->getAttributes();
|
|
|
|
// Print the calling convention being used.
|
|
if (II->getCallingConv() != CallingConv::C) {
|
|
Out << " ";
|
|
PrintCallingConv(II->getCallingConv(), Out);
|
|
}
|
|
|
|
if (PAL.hasAttributes(AttributeSet::ReturnIndex))
|
|
Out << ' ' << PAL.getAsString(AttributeSet::ReturnIndex);
|
|
|
|
// If possible, print out the short form of the invoke instruction. We can
|
|
// only do this if the first argument is a pointer to a nonvararg function,
|
|
// and if the return type is not a pointer to a function.
|
|
//
|
|
Out << ' ';
|
|
TypePrinter.print(FTy->isVarArg() ? FTy : RetTy, Out);
|
|
Out << ' ';
|
|
writeOperand(Operand, false);
|
|
Out << '(';
|
|
for (unsigned op = 0, Eop = II->getNumArgOperands(); op < Eop; ++op) {
|
|
if (op)
|
|
Out << ", ";
|
|
writeParamOperand(II->getArgOperand(op), PAL, op + 1);
|
|
}
|
|
|
|
Out << ')';
|
|
if (PAL.hasAttributes(AttributeSet::FunctionIndex))
|
|
Out << " #" << Machine.getAttributeGroupSlot(PAL.getFnAttributes());
|
|
|
|
writeOperandBundles(II);
|
|
|
|
Out << "\n to ";
|
|
writeOperand(II->getNormalDest(), true);
|
|
Out << " unwind ";
|
|
writeOperand(II->getUnwindDest(), true);
|
|
|
|
} else if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
|
|
Out << ' ';
|
|
if (AI->isUsedWithInAlloca())
|
|
Out << "inalloca ";
|
|
if (AI->isSwiftError())
|
|
Out << "swifterror ";
|
|
TypePrinter.print(AI->getAllocatedType(), Out);
|
|
|
|
// Explicitly write the array size if the code is broken, if it's an array
|
|
// allocation, or if the type is not canonical for scalar allocations. The
|
|
// latter case prevents the type from mutating when round-tripping through
|
|
// assembly.
|
|
if (!AI->getArraySize() || AI->isArrayAllocation() ||
|
|
!AI->getArraySize()->getType()->isIntegerTy(32)) {
|
|
Out << ", ";
|
|
writeOperand(AI->getArraySize(), true);
|
|
}
|
|
if (AI->getAlignment()) {
|
|
Out << ", align " << AI->getAlignment();
|
|
}
|
|
} else if (isa<CastInst>(I)) {
|
|
if (Operand) {
|
|
Out << ' ';
|
|
writeOperand(Operand, true); // Work with broken code
|
|
}
|
|
Out << " to ";
|
|
TypePrinter.print(I.getType(), Out);
|
|
} else if (isa<VAArgInst>(I)) {
|
|
if (Operand) {
|
|
Out << ' ';
|
|
writeOperand(Operand, true); // Work with broken code
|
|
}
|
|
Out << ", ";
|
|
TypePrinter.print(I.getType(), Out);
|
|
} else if (Operand) { // Print the normal way.
|
|
if (const auto *GEP = dyn_cast<GetElementPtrInst>(&I)) {
|
|
Out << ' ';
|
|
TypePrinter.print(GEP->getSourceElementType(), Out);
|
|
Out << ',';
|
|
} else if (const auto *LI = dyn_cast<LoadInst>(&I)) {
|
|
Out << ' ';
|
|
TypePrinter.print(LI->getType(), Out);
|
|
Out << ',';
|
|
}
|
|
|
|
// PrintAllTypes - Instructions who have operands of all the same type
|
|
// omit the type from all but the first operand. If the instruction has
|
|
// different type operands (for example br), then they are all printed.
|
|
bool PrintAllTypes = false;
|
|
Type *TheType = Operand->getType();
|
|
|
|
// Select, Store and ShuffleVector always print all types.
|
|
if (isa<SelectInst>(I) || isa<StoreInst>(I) || isa<ShuffleVectorInst>(I)
|
|
|| isa<ReturnInst>(I)) {
|
|
PrintAllTypes = true;
|
|
} else {
|
|
for (unsigned i = 1, E = I.getNumOperands(); i != E; ++i) {
|
|
Operand = I.getOperand(i);
|
|
// note that Operand shouldn't be null, but the test helps make dump()
|
|
// more tolerant of malformed IR
|
|
if (Operand && Operand->getType() != TheType) {
|
|
PrintAllTypes = true; // We have differing types! Print them all!
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
if (!PrintAllTypes) {
|
|
Out << ' ';
|
|
TypePrinter.print(TheType, Out);
|
|
}
|
|
|
|
Out << ' ';
|
|
for (unsigned i = 0, E = I.getNumOperands(); i != E; ++i) {
|
|
if (i) Out << ", ";
|
|
writeOperand(I.getOperand(i), PrintAllTypes);
|
|
}
|
|
}
|
|
|
|
// Print atomic ordering/alignment for memory operations
|
|
if (const LoadInst *LI = dyn_cast<LoadInst>(&I)) {
|
|
if (LI->isAtomic())
|
|
writeAtomic(LI->getOrdering(), LI->getSynchScope());
|
|
if (LI->getAlignment())
|
|
Out << ", align " << LI->getAlignment();
|
|
} else if (const StoreInst *SI = dyn_cast<StoreInst>(&I)) {
|
|
if (SI->isAtomic())
|
|
writeAtomic(SI->getOrdering(), SI->getSynchScope());
|
|
if (SI->getAlignment())
|
|
Out << ", align " << SI->getAlignment();
|
|
} else if (const AtomicCmpXchgInst *CXI = dyn_cast<AtomicCmpXchgInst>(&I)) {
|
|
writeAtomicCmpXchg(CXI->getSuccessOrdering(), CXI->getFailureOrdering(),
|
|
CXI->getSynchScope());
|
|
} else if (const AtomicRMWInst *RMWI = dyn_cast<AtomicRMWInst>(&I)) {
|
|
writeAtomic(RMWI->getOrdering(), RMWI->getSynchScope());
|
|
} else if (const FenceInst *FI = dyn_cast<FenceInst>(&I)) {
|
|
writeAtomic(FI->getOrdering(), FI->getSynchScope());
|
|
}
|
|
|
|
// Print Metadata info.
|
|
SmallVector<std::pair<unsigned, MDNode *>, 4> InstMD;
|
|
I.getAllMetadata(InstMD);
|
|
printMetadataAttachments(InstMD, ", ");
|
|
|
|
// Print a nice comment.
|
|
printInfoComment(I);
|
|
}
|
|
|
|
void AssemblyWriter::printMetadataAttachments(
|
|
const SmallVectorImpl<std::pair<unsigned, MDNode *>> &MDs,
|
|
StringRef Separator) {
|
|
if (MDs.empty())
|
|
return;
|
|
|
|
if (MDNames.empty())
|
|
MDs[0].second->getContext().getMDKindNames(MDNames);
|
|
|
|
for (const auto &I : MDs) {
|
|
unsigned Kind = I.first;
|
|
Out << Separator;
|
|
if (Kind < MDNames.size()) {
|
|
Out << "!";
|
|
printMetadataIdentifier(MDNames[Kind], Out);
|
|
} else
|
|
Out << "!<unknown kind #" << Kind << ">";
|
|
Out << ' ';
|
|
WriteAsOperandInternal(Out, I.second, &TypePrinter, &Machine, TheModule);
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::writeMDNode(unsigned Slot, const MDNode *Node) {
|
|
Out << '!' << Slot << " = ";
|
|
printMDNodeBody(Node);
|
|
Out << "\n";
|
|
}
|
|
|
|
void AssemblyWriter::writeAllMDNodes() {
|
|
SmallVector<const MDNode *, 16> Nodes;
|
|
Nodes.resize(Machine.mdn_size());
|
|
for (SlotTracker::mdn_iterator I = Machine.mdn_begin(), E = Machine.mdn_end();
|
|
I != E; ++I)
|
|
Nodes[I->second] = cast<MDNode>(I->first);
|
|
|
|
for (unsigned i = 0, e = Nodes.size(); i != e; ++i) {
|
|
writeMDNode(i, Nodes[i]);
|
|
}
|
|
}
|
|
|
|
void AssemblyWriter::printMDNodeBody(const MDNode *Node) {
|
|
WriteMDNodeBodyInternal(Out, Node, &TypePrinter, &Machine, TheModule);
|
|
}
|
|
|
|
void AssemblyWriter::writeAllAttributeGroups() {
|
|
std::vector<std::pair<AttributeSet, unsigned> > asVec;
|
|
asVec.resize(Machine.as_size());
|
|
|
|
for (SlotTracker::as_iterator I = Machine.as_begin(), E = Machine.as_end();
|
|
I != E; ++I)
|
|
asVec[I->second] = *I;
|
|
|
|
for (const auto &I : asVec)
|
|
Out << "attributes #" << I.second << " = { "
|
|
<< I.first.getAsString(AttributeSet::FunctionIndex, true) << " }\n";
|
|
}
|
|
|
|
void AssemblyWriter::printUseListOrder(const UseListOrder &Order) {
|
|
bool IsInFunction = Machine.getFunction();
|
|
if (IsInFunction)
|
|
Out << " ";
|
|
|
|
Out << "uselistorder";
|
|
if (const BasicBlock *BB =
|
|
IsInFunction ? nullptr : dyn_cast<BasicBlock>(Order.V)) {
|
|
Out << "_bb ";
|
|
writeOperand(BB->getParent(), false);
|
|
Out << ", ";
|
|
writeOperand(BB, false);
|
|
} else {
|
|
Out << " ";
|
|
writeOperand(Order.V, true);
|
|
}
|
|
Out << ", { ";
|
|
|
|
assert(Order.Shuffle.size() >= 2 && "Shuffle too small");
|
|
Out << Order.Shuffle[0];
|
|
for (unsigned I = 1, E = Order.Shuffle.size(); I != E; ++I)
|
|
Out << ", " << Order.Shuffle[I];
|
|
Out << " }\n";
|
|
}
|
|
|
|
void AssemblyWriter::printUseLists(const Function *F) {
|
|
auto hasMore =
|
|
[&]() { return !UseListOrders.empty() && UseListOrders.back().F == F; };
|
|
if (!hasMore())
|
|
// Nothing to do.
|
|
return;
|
|
|
|
Out << "\n; uselistorder directives\n";
|
|
while (hasMore()) {
|
|
printUseListOrder(UseListOrders.back());
|
|
UseListOrders.pop_back();
|
|
}
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// External Interface declarations
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
void Function::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
|
|
bool ShouldPreserveUseListOrder,
|
|
bool IsForDebug) const {
|
|
SlotTracker SlotTable(this->getParent());
|
|
formatted_raw_ostream OS(ROS);
|
|
AssemblyWriter W(OS, SlotTable, this->getParent(), AAW,
|
|
IsForDebug,
|
|
ShouldPreserveUseListOrder);
|
|
W.printFunction(this);
|
|
}
|
|
|
|
void Module::print(raw_ostream &ROS, AssemblyAnnotationWriter *AAW,
|
|
bool ShouldPreserveUseListOrder, bool IsForDebug) const {
|
|
SlotTracker SlotTable(this);
|
|
formatted_raw_ostream OS(ROS);
|
|
AssemblyWriter W(OS, SlotTable, this, AAW, IsForDebug,
|
|
ShouldPreserveUseListOrder);
|
|
W.printModule(this);
|
|
}
|
|
|
|
void NamedMDNode::print(raw_ostream &ROS, bool IsForDebug) const {
|
|
SlotTracker SlotTable(getParent());
|
|
formatted_raw_ostream OS(ROS);
|
|
AssemblyWriter W(OS, SlotTable, getParent(), nullptr, IsForDebug);
|
|
W.printNamedMDNode(this);
|
|
}
|
|
|
|
void NamedMDNode::print(raw_ostream &ROS, ModuleSlotTracker &MST,
|
|
bool IsForDebug) const {
|
|
Optional<SlotTracker> LocalST;
|
|
SlotTracker *SlotTable;
|
|
if (auto *ST = MST.getMachine())
|
|
SlotTable = ST;
|
|
else {
|
|
LocalST.emplace(getParent());
|
|
SlotTable = &*LocalST;
|
|
}
|
|
|
|
formatted_raw_ostream OS(ROS);
|
|
AssemblyWriter W(OS, *SlotTable, getParent(), nullptr, IsForDebug);
|
|
W.printNamedMDNode(this);
|
|
}
|
|
|
|
void Comdat::print(raw_ostream &ROS, bool /*IsForDebug*/) const {
|
|
PrintLLVMName(ROS, getName(), ComdatPrefix);
|
|
ROS << " = comdat ";
|
|
|
|
switch (getSelectionKind()) {
|
|
case Comdat::Any:
|
|
ROS << "any";
|
|
break;
|
|
case Comdat::ExactMatch:
|
|
ROS << "exactmatch";
|
|
break;
|
|
case Comdat::Largest:
|
|
ROS << "largest";
|
|
break;
|
|
case Comdat::NoDuplicates:
|
|
ROS << "noduplicates";
|
|
break;
|
|
case Comdat::SameSize:
|
|
ROS << "samesize";
|
|
break;
|
|
}
|
|
|
|
ROS << '\n';
|
|
}
|
|
|
|
void Type::print(raw_ostream &OS, bool /*IsForDebug*/, bool NoDetails) const {
|
|
TypePrinting TP;
|
|
TP.print(const_cast<Type*>(this), OS);
|
|
|
|
if (NoDetails)
|
|
return;
|
|
|
|
// If the type is a named struct type, print the body as well.
|
|
if (StructType *STy = dyn_cast<StructType>(const_cast<Type*>(this)))
|
|
if (!STy->isLiteral()) {
|
|
OS << " = type ";
|
|
TP.printStructBody(STy, OS);
|
|
}
|
|
}
|
|
|
|
static bool isReferencingMDNode(const Instruction &I) {
|
|
if (const auto *CI = dyn_cast<CallInst>(&I))
|
|
if (Function *F = CI->getCalledFunction())
|
|
if (F->isIntrinsic())
|
|
for (auto &Op : I.operands())
|
|
if (auto *V = dyn_cast_or_null<MetadataAsValue>(Op))
|
|
if (isa<MDNode>(V->getMetadata()))
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
void Value::print(raw_ostream &ROS, bool IsForDebug) const {
|
|
bool ShouldInitializeAllMetadata = false;
|
|
if (auto *I = dyn_cast<Instruction>(this))
|
|
ShouldInitializeAllMetadata = isReferencingMDNode(*I);
|
|
else if (isa<Function>(this) || isa<MetadataAsValue>(this))
|
|
ShouldInitializeAllMetadata = true;
|
|
|
|
ModuleSlotTracker MST(getModuleFromVal(this), ShouldInitializeAllMetadata);
|
|
print(ROS, MST, IsForDebug);
|
|
}
|
|
|
|
void Value::print(raw_ostream &ROS, ModuleSlotTracker &MST,
|
|
bool IsForDebug) const {
|
|
formatted_raw_ostream OS(ROS);
|
|
SlotTracker EmptySlotTable(static_cast<const Module *>(nullptr));
|
|
SlotTracker &SlotTable =
|
|
MST.getMachine() ? *MST.getMachine() : EmptySlotTable;
|
|
auto incorporateFunction = [&](const Function *F) {
|
|
if (F)
|
|
MST.incorporateFunction(*F);
|
|
};
|
|
|
|
if (const Instruction *I = dyn_cast<Instruction>(this)) {
|
|
incorporateFunction(I->getParent() ? I->getParent()->getParent() : nullptr);
|
|
AssemblyWriter W(OS, SlotTable, getModuleFromVal(I), nullptr, IsForDebug);
|
|
W.printInstruction(*I);
|
|
} else if (const BasicBlock *BB = dyn_cast<BasicBlock>(this)) {
|
|
incorporateFunction(BB->getParent());
|
|
AssemblyWriter W(OS, SlotTable, getModuleFromVal(BB), nullptr, IsForDebug);
|
|
W.printBasicBlock(BB);
|
|
} else if (const GlobalValue *GV = dyn_cast<GlobalValue>(this)) {
|
|
AssemblyWriter W(OS, SlotTable, GV->getParent(), nullptr, IsForDebug);
|
|
if (const GlobalVariable *V = dyn_cast<GlobalVariable>(GV))
|
|
W.printGlobal(V);
|
|
else if (const Function *F = dyn_cast<Function>(GV))
|
|
W.printFunction(F);
|
|
else
|
|
W.printIndirectSymbol(cast<GlobalIndirectSymbol>(GV));
|
|
} else if (const MetadataAsValue *V = dyn_cast<MetadataAsValue>(this)) {
|
|
V->getMetadata()->print(ROS, MST, getModuleFromVal(V));
|
|
} else if (const Constant *C = dyn_cast<Constant>(this)) {
|
|
TypePrinting TypePrinter;
|
|
TypePrinter.print(C->getType(), OS);
|
|
OS << ' ';
|
|
WriteConstantInternal(OS, C, TypePrinter, MST.getMachine(), nullptr);
|
|
} else if (isa<InlineAsm>(this) || isa<Argument>(this)) {
|
|
this->printAsOperand(OS, /* PrintType */ true, MST);
|
|
} else {
|
|
llvm_unreachable("Unknown value to print out!");
|
|
}
|
|
}
|
|
|
|
/// Print without a type, skipping the TypePrinting object.
|
|
///
|
|
/// \return \c true iff printing was successful.
|
|
static bool printWithoutType(const Value &V, raw_ostream &O,
|
|
SlotTracker *Machine, const Module *M) {
|
|
if (V.hasName() || isa<GlobalValue>(V) ||
|
|
(!isa<Constant>(V) && !isa<MetadataAsValue>(V))) {
|
|
WriteAsOperandInternal(O, &V, nullptr, Machine, M);
|
|
return true;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static void printAsOperandImpl(const Value &V, raw_ostream &O, bool PrintType,
|
|
ModuleSlotTracker &MST) {
|
|
TypePrinting TypePrinter;
|
|
if (const Module *M = MST.getModule())
|
|
TypePrinter.incorporateTypes(*M);
|
|
if (PrintType) {
|
|
TypePrinter.print(V.getType(), O);
|
|
O << ' ';
|
|
}
|
|
|
|
WriteAsOperandInternal(O, &V, &TypePrinter, MST.getMachine(),
|
|
MST.getModule());
|
|
}
|
|
|
|
void Value::printAsOperand(raw_ostream &O, bool PrintType,
|
|
const Module *M) const {
|
|
if (!M)
|
|
M = getModuleFromVal(this);
|
|
|
|
if (!PrintType)
|
|
if (printWithoutType(*this, O, nullptr, M))
|
|
return;
|
|
|
|
SlotTracker Machine(
|
|
M, /* ShouldInitializeAllMetadata */ isa<MetadataAsValue>(this));
|
|
ModuleSlotTracker MST(Machine, M);
|
|
printAsOperandImpl(*this, O, PrintType, MST);
|
|
}
|
|
|
|
void Value::printAsOperand(raw_ostream &O, bool PrintType,
|
|
ModuleSlotTracker &MST) const {
|
|
if (!PrintType)
|
|
if (printWithoutType(*this, O, MST.getMachine(), MST.getModule()))
|
|
return;
|
|
|
|
printAsOperandImpl(*this, O, PrintType, MST);
|
|
}
|
|
|
|
static void printMetadataImpl(raw_ostream &ROS, const Metadata &MD,
|
|
ModuleSlotTracker &MST, const Module *M,
|
|
bool OnlyAsOperand) {
|
|
formatted_raw_ostream OS(ROS);
|
|
|
|
TypePrinting TypePrinter;
|
|
if (M)
|
|
TypePrinter.incorporateTypes(*M);
|
|
|
|
WriteAsOperandInternal(OS, &MD, &TypePrinter, MST.getMachine(), M,
|
|
/* FromValue */ true);
|
|
|
|
auto *N = dyn_cast<MDNode>(&MD);
|
|
if (OnlyAsOperand || !N)
|
|
return;
|
|
|
|
OS << " = ";
|
|
WriteMDNodeBodyInternal(OS, N, &TypePrinter, MST.getMachine(), M);
|
|
}
|
|
|
|
void Metadata::printAsOperand(raw_ostream &OS, const Module *M) const {
|
|
ModuleSlotTracker MST(M, isa<MDNode>(this));
|
|
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
|
|
}
|
|
|
|
void Metadata::printAsOperand(raw_ostream &OS, ModuleSlotTracker &MST,
|
|
const Module *M) const {
|
|
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ true);
|
|
}
|
|
|
|
void Metadata::print(raw_ostream &OS, const Module *M,
|
|
bool /*IsForDebug*/) const {
|
|
ModuleSlotTracker MST(M, isa<MDNode>(this));
|
|
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
|
|
}
|
|
|
|
void Metadata::print(raw_ostream &OS, ModuleSlotTracker &MST,
|
|
const Module *M, bool /*IsForDebug*/) const {
|
|
printMetadataImpl(OS, *this, MST, M, /* OnlyAsOperand */ false);
|
|
}
|
|
|
|
// Value::dump - allow easy printing of Values from the debugger.
|
|
LLVM_DUMP_METHOD
|
|
void Value::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
|
|
|
|
// Type::dump - allow easy printing of Types from the debugger.
|
|
LLVM_DUMP_METHOD
|
|
void Type::dump() const { print(dbgs(), /*IsForDebug=*/true); dbgs() << '\n'; }
|
|
|
|
// Module::dump() - Allow printing of Modules from the debugger.
|
|
LLVM_DUMP_METHOD
|
|
void Module::dump() const {
|
|
print(dbgs(), nullptr,
|
|
/*ShouldPreserveUseListOrder=*/false, /*IsForDebug=*/true);
|
|
}
|
|
|
|
// \brief Allow printing of Comdats from the debugger.
|
|
LLVM_DUMP_METHOD
|
|
void Comdat::dump() const { print(dbgs(), /*IsForDebug=*/true); }
|
|
|
|
// NamedMDNode::dump() - Allow printing of NamedMDNodes from the debugger.
|
|
LLVM_DUMP_METHOD
|
|
void NamedMDNode::dump() const { print(dbgs(), /*IsForDebug=*/true); }
|
|
|
|
LLVM_DUMP_METHOD
|
|
void Metadata::dump() const { dump(nullptr); }
|
|
|
|
LLVM_DUMP_METHOD
|
|
void Metadata::dump(const Module *M) const {
|
|
print(dbgs(), M, /*IsForDebug=*/true);
|
|
dbgs() << '\n';
|
|
}
|