llvm-project/llvm/lib/Target/SystemZ/SystemZCallingConv.td

315 lines
15 KiB
TableGen

//=- SystemZCallingConv.td - Calling conventions for SystemZ -*- tablegen -*-=//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
// This describes the calling conventions for the SystemZ ABI.
//===----------------------------------------------------------------------===//
class CCIfExtend<CCAction A>
: CCIf<"ArgFlags.isSExt() || ArgFlags.isZExt()", A>;
class CCIfSubtarget<string F, CCAction A>
: CCIf<!strconcat("static_cast<const SystemZSubtarget&>"
"(State.getMachineFunction().getSubtarget()).", F),
A>;
// Match if this specific argument is a fixed (i.e. named) argument.
class CCIfFixed<CCAction A>
: CCIf<"static_cast<SystemZCCState *>(&State)->IsFixed(ValNo)", A>;
// Match if this specific argument is not a fixed (i.e. vararg) argument.
class CCIfNotFixed<CCAction A>
: CCIf<"!(static_cast<SystemZCCState *>(&State)->IsFixed(ValNo))", A>;
// Match if this specific argument was widened from a short vector type.
class CCIfShortVector<CCAction A>
: CCIf<"static_cast<SystemZCCState *>(&State)->IsShortVector(ValNo)", A>;
//===----------------------------------------------------------------------===//
// z/Linux return value calling convention
//===----------------------------------------------------------------------===//
def RetCC_SystemZ_ELF : CallingConv<[
// Promote i32 to i64 if it has an explicit extension type.
CCIfType<[i32], CCIfExtend<CCPromoteToType<i64>>>,
// A SwiftError is returned in R9.
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R9D]>>>,
// ABI-compliant code returns 64-bit integers in R2. Make the other
// call-clobbered argument registers available for code that doesn't
// care about the ABI. (R6 is an argument register too, but is
// call-saved and therefore not suitable for return values.)
CCIfType<[i32], CCAssignToReg<[R2L, R3L, R4L, R5L]>>,
CCIfType<[i64], CCAssignToReg<[R2D, R3D, R4D, R5D]>>,
// ABI-complaint code returns float and double in F0. Make the
// other floating-point argument registers available for code that
// doesn't care about the ABI. All floating-point argument registers
// are call-clobbered, so we can use all of them here.
CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>,
CCIfType<[f64], CCAssignToReg<[F0D, F2D, F4D, F6D]>>,
// Similarly for vectors, with V24 being the ABI-compliant choice.
// Sub-128 vectors are returned in the same way, but they're widened
// to one of these types during type legalization.
CCIfSubtarget<"hasVector()",
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[V24, V26, V28, V30, V25, V27, V29, V31]>>>
]>;
//===----------------------------------------------------------------------===//
// z/Linux argument calling conventions for GHC
//===----------------------------------------------------------------------===//
def CC_SystemZ_GHC : CallingConv<[
// Pass in STG registers: Base, Sp, Hp, R1, R2, R3, R4, R5, R6, R7, R8, SpLim
CCIfType<[i64], CCAssignToReg<[R7D, R8D, R10D, R11D, R12D, R13D,
R6D, R2D, R3D, R4D, R5D, R9D]>>,
// Pass in STG registers: F1, ..., F6
CCIfType<[f32], CCAssignToReg<[F8S, F9S, F10S, F11S, F0S, F1S]>>,
// Pass in STG registers: D1, ..., D6
CCIfType<[f64], CCAssignToReg<[F12D, F13D, F14D, F15D, F2D, F3D]>>,
// Pass in STG registers: XMM1, ..., XMM6
CCIfSubtarget<"hasVector()",
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfFixed<CCAssignToReg<[V16, V17, V18, V19, V20, V21]>>>>,
// Fail otherwise
CCCustom<"CC_SystemZ_GHC_Error">
]>;
//===----------------------------------------------------------------------===//
// z/Linux argument calling conventions
//===----------------------------------------------------------------------===//
def CC_SystemZ_ELF : CallingConv<[
CCIfCC<"CallingConv::GHC", CCDelegateTo<CC_SystemZ_GHC>>,
// Promote i32 to i64 if it has an explicit extension type.
// The convention is that true integer arguments that are smaller
// than 64 bits should be marked as extended, but structures that
// are smaller than 64 bits shouldn't.
CCIfType<[i32], CCIfExtend<CCPromoteToType<i64>>>,
// A SwiftSelf is passed in callee-saved R10.
CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R10D]>>>,
// A SwiftError is passed in callee-saved R9.
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R9D]>>>,
// Force long double values to the stack and pass i64 pointers to them.
CCIfType<[f128], CCPassIndirect<i64>>,
// Same for i128 values. These are already split into two i64 here,
// so we have to use a custom handler.
CCIfType<[i64], CCCustom<"CC_SystemZ_I128Indirect">>,
// The first 5 integer arguments are passed in R2-R6. Note that R6
// is call-saved.
CCIfType<[i32], CCAssignToReg<[R2L, R3L, R4L, R5L, R6L]>>,
CCIfType<[i64], CCAssignToReg<[R2D, R3D, R4D, R5D, R6D]>>,
// The first 4 float and double arguments are passed in even registers F0-F6.
CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>,
CCIfType<[f64], CCAssignToReg<[F0D, F2D, F4D, F6D]>>,
// The first 8 named vector arguments are passed in V24-V31. Sub-128 vectors
// are passed in the same way, but they're widened to one of these types
// during type legalization.
CCIfSubtarget<"hasVector()",
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfFixed<CCAssignToReg<[V24, V26, V28, V30,
V25, V27, V29, V31]>>>>,
// However, sub-128 vectors which need to go on the stack occupy just a
// single 8-byte-aligned 8-byte stack slot. Pass as i64.
CCIfSubtarget<"hasVector()",
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfShortVector<CCBitConvertToType<i64>>>>,
// Other vector arguments are passed in 8-byte-aligned 16-byte stack slots.
CCIfSubtarget<"hasVector()",
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToStack<16, 8>>>,
// Other arguments are passed in 8-byte-aligned 8-byte stack slots.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>
]>;
//===----------------------------------------------------------------------===//
// z/Linux callee-saved registers
//===----------------------------------------------------------------------===//
def CSR_SystemZ_ELF : CalleeSavedRegs<(add (sequence "R%dD", 6, 15),
(sequence "F%dD", 8, 15))>;
// R9 is used to return SwiftError; remove it from CSR.
def CSR_SystemZ_SwiftError : CalleeSavedRegs<(sub CSR_SystemZ_ELF, R9D)>;
// "All registers" as used by the AnyReg calling convention.
// Note that registers 0 and 1 are still defined as intra-call scratch
// registers that may be clobbered e.g. by PLT stubs.
def CSR_SystemZ_AllRegs : CalleeSavedRegs<(add (sequence "R%dD", 2, 15),
(sequence "F%dD", 0, 15))>;
def CSR_SystemZ_AllRegs_Vector : CalleeSavedRegs<(add (sequence "R%dD", 2, 15),
(sequence "V%d", 0, 31))>;
def CSR_SystemZ_NoRegs : CalleeSavedRegs<(add)>;
//===----------------------------------------------------------------------===//
// z/OS XPLINK64 callee-saved registers
//===----------------------------------------------------------------------===//
// %R7D is volatile by the spec, but it must be saved in the prologue by
// any non-leaf function and restored in the epilogue for use by the
// return instruction so it functions exactly like a callee-saved register.
def CSR_SystemZ_XPLINK64 : CalleeSavedRegs<(add (sequence "R%dD", 7, 15),
(sequence "R%dD", 4, 4),
(sequence "F%dD", 15, 8))>;
def CSR_SystemZ_XPLINK64_Vector : CalleeSavedRegs<(add CSR_SystemZ_XPLINK64,
(sequence "V%d", 23, 16))>;
//===----------------------------------------------------------------------===//
// z/OS XPLINK64 return value calling convention
//===----------------------------------------------------------------------===//
def RetCC_SystemZ_XPLINK64 : CallingConv<[
// XPLINK64 ABI compliant code widens integral types smaller than i64
// to i64.
CCIfType<[i32], CCPromoteToType<i64>>,
// Structs of size 1-24 bytes are returned in R1D, R2D, and R3D.
CCIfType<[i64], CCIfInReg<CCAssignToReg<[R1D, R2D, R3D]>>>,
// An i64 is returned in R3D. R2D and R1D provided for ABI non-compliant
// code.
CCIfType<[i64], CCAssignToReg<[R3D, R2D, R1D]>>,
// ABI compliant code returns floating point values in FPR0, FPR2, FPR4
// and FPR6, using as many registers as required.
// All floating point return-value registers are call-clobbered.
CCIfType<[f32], CCAssignToReg<[F0S, F2S, F4S, F6S]>>,
CCIfType<[f64], CCAssignToReg<[F0D, F2D, F4D, F6D]>>,
// ABI compliant code returns f128 in F0D and F2D, hence F0Q.
// F4D and F6D, hence F4Q are used for complex long double types.
CCIfType<[f128], CCAssignToReg<[F0Q,F4Q]>>,
// ABI compliant code returns vectors in VR24 but other registers
// are provided for code that does not care about the ABI.
CCIfSubtarget<"hasVector()",
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToReg<[V24, V25, V26, V27, V28, V29, V30, V31]>>>
]>;
//===----------------------------------------------------------------------===//
// z/OS XPLINK64 argument calling conventions
//===----------------------------------------------------------------------===//
// XPLink uses a logical argument list consisting of contiguous register-size
// words (8 bytes in 64-Bit mode) where some arguments are passed in registers
// and some in storage.
// Even though 3 GPRs, 4 FPRs, and 8 VRs may be used,
// space must be reserved for all the args on stack.
// The first three register-sized words of the parameter area are passed in
// GPRs 1-3. FP values and vector-type arguments are instead passed in FPRs
// and VRs respectively, but if a FP value or vector argument occupies one of
// the first three register-sized words of the parameter area, the corresponding
// GPR's value is not used to pass arguments.
//
// The XPLINK64 Calling Convention is fully specified in Chapter 22 of the z/OS
// Language Environment Vendor Interfaces. Appendix B of the same document contains
// examples.
def CC_SystemZ_XPLINK64 : CallingConv<[
// XPLINK64 ABI compliant code widens integral types smaller than i64
// to i64 before placing the parameters either on the stack or in registers.
CCIfType<[i32], CCIfExtend<CCPromoteToType<i64>>>,
// Promote f32 to f64 and bitcast to i64, if it needs to be passed in GPRS.
CCIfType<[f32], CCIfNotFixed<CCPromoteToType<f64>>>,
CCIfType<[f64], CCIfNotFixed<CCBitConvertToType<i64>>>,
// long double, can only be passed in GPR2 and GPR3, if available,
// hence R2Q
CCIfType<[f128], CCIfNotFixed<CCCustom<"CC_XPLINK64_Allocate128BitVararg">>>,
// Non fixed vector arguments are treated in the same way as long
// doubles.
CCIfSubtarget<"hasVector()",
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfNotFixed<CCCustom<"CC_XPLINK64_Allocate128BitVararg">>>>,
// A SwiftSelf is passed in callee-saved R10.
CCIfSwiftSelf<CCIfType<[i64], CCAssignToReg<[R10D]>>>,
// A SwiftError is passed in R0.
CCIfSwiftError<CCIfType<[i64], CCAssignToReg<[R0D]>>>,
// First i128 values. These are already split into two i64 here,
// so we have to use a custom handler and assign into registers, if possible
// We need to deal with this first
CCIfType<[i64], CCCustom<"CC_SystemZ_I128Indirect">>,
// The first 3 integer arguments are passed in registers R1D-R3D.
// The rest will be passed in the user area. The address offset of the user
// area can be found in register R4D.
CCIfType<[i64], CCCustom<"CC_XPLINK64_Shadow_Stack">>,
CCIfType<[i64], CCAssignToReg<[R1D, R2D, R3D]>>,
// The first 8 named vector arguments are passed in V24-V31. Sub-128 vectors
// are passed in the same way, but they're widened to one of these types
// during type legalization.
CCIfSubtarget<"hasVector()",
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfFixed<CCCustom<"CC_XPLINK64_Shadow_Reg">>>>,
CCIfSubtarget<"hasVector()",
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfFixed<CCCustom<"CC_XPLINK64_Shadow_Stack">>>>,
CCIfSubtarget<"hasVector()",
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCIfFixed<CCAssignToReg<[V24, V25, V26, V27,
V28, V29, V30, V31]>>>>,
// The first 4 named float and double arguments are passed in registers FPR0-FPR6.
// The rest will be passed in the user area.
CCIfType<[f32, f64], CCIfFixed<CCCustom<"CC_XPLINK64_Shadow_Reg">>>,
CCIfType<[f32, f64], CCIfFixed<CCCustom<"CC_XPLINK64_Shadow_Stack">>>,
CCIfType<[f32], CCIfFixed<CCAssignToReg<[F0S, F2S, F4S, F6S]>>>,
CCIfType<[f64], CCIfFixed<CCAssignToReg<[F0D, F2D, F4D, F6D]>>>,
// The first 2 long double arguments are passed in register FPR0/FPR2
// and FPR4/FPR6. The rest will be passed in the user area.
CCIfType<[f128], CCIfFixed<CCCustom<"CC_XPLINK64_Shadow_Reg">>>,
CCIfType<[f128], CCIfFixed<CCCustom<"CC_XPLINK64_Shadow_Stack">>>,
CCIfType<[f128], CCIfFixed<CCAssignToReg<[F0Q, F4Q]>>>,
// Other arguments are passed in 8-byte-aligned 8-byte stack slots.
CCIfType<[i32, i64, f32, f64], CCAssignToStack<8, 8>>,
// Other f128 arguments are passed in 8-byte-aligned 16-byte stack slots.
CCIfType<[f128], CCAssignToStack<16, 8>>,
// Vector arguments are passed in 8-byte-alinged 16-byte stack slots too.
CCIfSubtarget<"hasVector()",
CCIfType<[v16i8, v8i16, v4i32, v2i64, v4f32, v2f64],
CCAssignToStack<16, 8>>>
]>;
//===----------------------------------------------------------------------===//
// s390x return value calling convention
//===----------------------------------------------------------------------===//
def RetCC_SystemZ : CallingConv<[
// zOS XPLINK64
CCIfSubtarget<"isTargetXPLINK64()", CCDelegateTo<RetCC_SystemZ_XPLINK64>>,
// ELF Linux SystemZ
CCIfSubtarget<"isTargetELF()", CCDelegateTo<RetCC_SystemZ_ELF>>
]>;
//===----------------------------------------------------------------------===//
// s390x argument calling conventions
//===----------------------------------------------------------------------===//
def CC_SystemZ : CallingConv<[
// zOS XPLINK64
CCIfSubtarget<"isTargetXPLINK64()", CCDelegateTo<CC_SystemZ_XPLINK64>>,
// ELF Linux SystemZ
CCIfSubtarget<"isTargetELF()", CCDelegateTo<CC_SystemZ_ELF>>
]>;