forked from OSchip/llvm-project
1604 lines
54 KiB
C++
1604 lines
54 KiB
C++
//===- AMDGPULegalizerInfo.cpp -----------------------------------*- C++ -*-==//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
/// \file
|
|
/// This file implements the targeting of the Machinelegalizer class for
|
|
/// AMDGPU.
|
|
/// \todo This should be generated by TableGen.
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#if defined(_MSC_VER) || defined(__MINGW32__)
|
|
// According to Microsoft, one must set _USE_MATH_DEFINES in order to get M_PI
|
|
// from the Visual C++ cmath / math.h headers:
|
|
// https://docs.microsoft.com/en-us/cpp/c-runtime-library/math-constants?view=vs-2019
|
|
#define _USE_MATH_DEFINES
|
|
#endif
|
|
|
|
#include "AMDGPU.h"
|
|
#include "AMDGPULegalizerInfo.h"
|
|
#include "AMDGPUTargetMachine.h"
|
|
#include "SIMachineFunctionInfo.h"
|
|
#include "llvm/CodeGen/GlobalISel/LegalizerHelper.h"
|
|
#include "llvm/CodeGen/GlobalISel/MachineIRBuilder.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/ValueTypes.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/DiagnosticInfo.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Support/Debug.h"
|
|
|
|
#define DEBUG_TYPE "amdgpu-legalinfo"
|
|
|
|
using namespace llvm;
|
|
using namespace LegalizeActions;
|
|
using namespace LegalizeMutations;
|
|
using namespace LegalityPredicates;
|
|
|
|
|
|
static LegalityPredicate isMultiple32(unsigned TypeIdx,
|
|
unsigned MaxSize = 512) {
|
|
return [=](const LegalityQuery &Query) {
|
|
const LLT Ty = Query.Types[TypeIdx];
|
|
const LLT EltTy = Ty.getScalarType();
|
|
return Ty.getSizeInBits() <= MaxSize && EltTy.getSizeInBits() % 32 == 0;
|
|
};
|
|
}
|
|
|
|
static LegalityPredicate isSmallOddVector(unsigned TypeIdx) {
|
|
return [=](const LegalityQuery &Query) {
|
|
const LLT Ty = Query.Types[TypeIdx];
|
|
return Ty.isVector() &&
|
|
Ty.getNumElements() % 2 != 0 &&
|
|
Ty.getElementType().getSizeInBits() < 32;
|
|
};
|
|
}
|
|
|
|
static LegalizeMutation oneMoreElement(unsigned TypeIdx) {
|
|
return [=](const LegalityQuery &Query) {
|
|
const LLT Ty = Query.Types[TypeIdx];
|
|
const LLT EltTy = Ty.getElementType();
|
|
return std::make_pair(TypeIdx, LLT::vector(Ty.getNumElements() + 1, EltTy));
|
|
};
|
|
}
|
|
|
|
static LegalizeMutation fewerEltsToSize64Vector(unsigned TypeIdx) {
|
|
return [=](const LegalityQuery &Query) {
|
|
const LLT Ty = Query.Types[TypeIdx];
|
|
const LLT EltTy = Ty.getElementType();
|
|
unsigned Size = Ty.getSizeInBits();
|
|
unsigned Pieces = (Size + 63) / 64;
|
|
unsigned NewNumElts = (Ty.getNumElements() + 1) / Pieces;
|
|
return std::make_pair(TypeIdx, LLT::scalarOrVector(NewNumElts, EltTy));
|
|
};
|
|
}
|
|
|
|
static LegalityPredicate vectorWiderThan(unsigned TypeIdx, unsigned Size) {
|
|
return [=](const LegalityQuery &Query) {
|
|
const LLT QueryTy = Query.Types[TypeIdx];
|
|
return QueryTy.isVector() && QueryTy.getSizeInBits() > Size;
|
|
};
|
|
}
|
|
|
|
static LegalityPredicate numElementsNotEven(unsigned TypeIdx) {
|
|
return [=](const LegalityQuery &Query) {
|
|
const LLT QueryTy = Query.Types[TypeIdx];
|
|
return QueryTy.isVector() && QueryTy.getNumElements() % 2 != 0;
|
|
};
|
|
}
|
|
|
|
// Any combination of 32 or 64-bit elements up to 512 bits, and multiples of
|
|
// v2s16.
|
|
static LegalityPredicate isRegisterType(unsigned TypeIdx) {
|
|
return [=](const LegalityQuery &Query) {
|
|
const LLT Ty = Query.Types[TypeIdx];
|
|
if (Ty.isVector()) {
|
|
const int EltSize = Ty.getElementType().getSizeInBits();
|
|
return EltSize == 32 || EltSize == 64 ||
|
|
(EltSize == 16 && Ty.getNumElements() % 2 == 0) ||
|
|
EltSize == 128 || EltSize == 256;
|
|
}
|
|
|
|
return Ty.getSizeInBits() % 32 == 0 && Ty.getSizeInBits() <= 512;
|
|
};
|
|
}
|
|
|
|
static LegalityPredicate elementTypeIs(unsigned TypeIdx, LLT Type) {
|
|
return [=](const LegalityQuery &Query) {
|
|
return Query.Types[TypeIdx].getElementType() == Type;
|
|
};
|
|
}
|
|
|
|
AMDGPULegalizerInfo::AMDGPULegalizerInfo(const GCNSubtarget &ST_,
|
|
const GCNTargetMachine &TM)
|
|
: ST(ST_) {
|
|
using namespace TargetOpcode;
|
|
|
|
auto GetAddrSpacePtr = [&TM](unsigned AS) {
|
|
return LLT::pointer(AS, TM.getPointerSizeInBits(AS));
|
|
};
|
|
|
|
const LLT S1 = LLT::scalar(1);
|
|
const LLT S8 = LLT::scalar(8);
|
|
const LLT S16 = LLT::scalar(16);
|
|
const LLT S32 = LLT::scalar(32);
|
|
const LLT S64 = LLT::scalar(64);
|
|
const LLT S128 = LLT::scalar(128);
|
|
const LLT S256 = LLT::scalar(256);
|
|
const LLT S512 = LLT::scalar(512);
|
|
|
|
const LLT V2S16 = LLT::vector(2, 16);
|
|
const LLT V4S16 = LLT::vector(4, 16);
|
|
|
|
const LLT V2S32 = LLT::vector(2, 32);
|
|
const LLT V3S32 = LLT::vector(3, 32);
|
|
const LLT V4S32 = LLT::vector(4, 32);
|
|
const LLT V5S32 = LLT::vector(5, 32);
|
|
const LLT V6S32 = LLT::vector(6, 32);
|
|
const LLT V7S32 = LLT::vector(7, 32);
|
|
const LLT V8S32 = LLT::vector(8, 32);
|
|
const LLT V9S32 = LLT::vector(9, 32);
|
|
const LLT V10S32 = LLT::vector(10, 32);
|
|
const LLT V11S32 = LLT::vector(11, 32);
|
|
const LLT V12S32 = LLT::vector(12, 32);
|
|
const LLT V13S32 = LLT::vector(13, 32);
|
|
const LLT V14S32 = LLT::vector(14, 32);
|
|
const LLT V15S32 = LLT::vector(15, 32);
|
|
const LLT V16S32 = LLT::vector(16, 32);
|
|
|
|
const LLT V2S64 = LLT::vector(2, 64);
|
|
const LLT V3S64 = LLT::vector(3, 64);
|
|
const LLT V4S64 = LLT::vector(4, 64);
|
|
const LLT V5S64 = LLT::vector(5, 64);
|
|
const LLT V6S64 = LLT::vector(6, 64);
|
|
const LLT V7S64 = LLT::vector(7, 64);
|
|
const LLT V8S64 = LLT::vector(8, 64);
|
|
|
|
std::initializer_list<LLT> AllS32Vectors =
|
|
{V2S32, V3S32, V4S32, V5S32, V6S32, V7S32, V8S32,
|
|
V9S32, V10S32, V11S32, V12S32, V13S32, V14S32, V15S32, V16S32};
|
|
std::initializer_list<LLT> AllS64Vectors =
|
|
{V2S64, V3S64, V4S64, V5S64, V6S64, V7S64, V8S64};
|
|
|
|
const LLT GlobalPtr = GetAddrSpacePtr(AMDGPUAS::GLOBAL_ADDRESS);
|
|
const LLT ConstantPtr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS);
|
|
const LLT Constant32Ptr = GetAddrSpacePtr(AMDGPUAS::CONSTANT_ADDRESS_32BIT);
|
|
const LLT LocalPtr = GetAddrSpacePtr(AMDGPUAS::LOCAL_ADDRESS);
|
|
const LLT RegionPtr = GetAddrSpacePtr(AMDGPUAS::REGION_ADDRESS);
|
|
const LLT FlatPtr = GetAddrSpacePtr(AMDGPUAS::FLAT_ADDRESS);
|
|
const LLT PrivatePtr = GetAddrSpacePtr(AMDGPUAS::PRIVATE_ADDRESS);
|
|
|
|
const LLT CodePtr = FlatPtr;
|
|
|
|
const std::initializer_list<LLT> AddrSpaces64 = {
|
|
GlobalPtr, ConstantPtr, FlatPtr
|
|
};
|
|
|
|
const std::initializer_list<LLT> AddrSpaces32 = {
|
|
LocalPtr, PrivatePtr, Constant32Ptr, RegionPtr
|
|
};
|
|
|
|
const std::initializer_list<LLT> FPTypesBase = {
|
|
S32, S64
|
|
};
|
|
|
|
const std::initializer_list<LLT> FPTypes16 = {
|
|
S32, S64, S16
|
|
};
|
|
|
|
const std::initializer_list<LLT> FPTypesPK16 = {
|
|
S32, S64, S16, V2S16
|
|
};
|
|
|
|
setAction({G_BRCOND, S1}, Legal);
|
|
|
|
// TODO: All multiples of 32, vectors of pointers, all v2s16 pairs, more
|
|
// elements for v3s16
|
|
getActionDefinitionsBuilder(G_PHI)
|
|
.legalFor({S32, S64, V2S16, V4S16, S1, S128, S256})
|
|
.legalFor(AllS32Vectors)
|
|
.legalFor(AllS64Vectors)
|
|
.legalFor(AddrSpaces64)
|
|
.legalFor(AddrSpaces32)
|
|
.clampScalar(0, S32, S256)
|
|
.widenScalarToNextPow2(0, 32)
|
|
.clampMaxNumElements(0, S32, 16)
|
|
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
|
|
.legalIf(isPointer(0));
|
|
|
|
if (ST.has16BitInsts()) {
|
|
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
|
|
.legalFor({S32, S16})
|
|
.clampScalar(0, S16, S32)
|
|
.scalarize(0);
|
|
} else {
|
|
getActionDefinitionsBuilder({G_ADD, G_SUB, G_MUL})
|
|
.legalFor({S32})
|
|
.clampScalar(0, S32, S32)
|
|
.scalarize(0);
|
|
}
|
|
|
|
getActionDefinitionsBuilder({G_UMULH, G_SMULH})
|
|
.legalFor({S32})
|
|
.clampScalar(0, S32, S32)
|
|
.scalarize(0);
|
|
|
|
// Report legal for any types we can handle anywhere. For the cases only legal
|
|
// on the SALU, RegBankSelect will be able to re-legalize.
|
|
getActionDefinitionsBuilder({G_AND, G_OR, G_XOR})
|
|
.legalFor({S32, S1, S64, V2S32, S16, V2S16, V4S16})
|
|
.clampScalar(0, S32, S64)
|
|
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
|
|
.fewerElementsIf(vectorWiderThan(0, 32), fewerEltsToSize64Vector(0))
|
|
.widenScalarToNextPow2(0)
|
|
.scalarize(0);
|
|
|
|
getActionDefinitionsBuilder({G_UADDO, G_SADDO, G_USUBO, G_SSUBO,
|
|
G_UADDE, G_SADDE, G_USUBE, G_SSUBE})
|
|
.legalFor({{S32, S1}})
|
|
.clampScalar(0, S32, S32);
|
|
|
|
getActionDefinitionsBuilder(G_BITCAST)
|
|
.legalForCartesianProduct({S32, V2S16})
|
|
.legalForCartesianProduct({S64, V2S32, V4S16})
|
|
.legalForCartesianProduct({V2S64, V4S32})
|
|
// Don't worry about the size constraint.
|
|
.legalIf(all(isPointer(0), isPointer(1)));
|
|
|
|
getActionDefinitionsBuilder(G_FCONSTANT)
|
|
.legalFor({S32, S64, S16})
|
|
.clampScalar(0, S16, S64);
|
|
|
|
getActionDefinitionsBuilder(G_IMPLICIT_DEF)
|
|
.legalFor({S1, S32, S64, S16, V2S32, V4S32, V2S16, V4S16, GlobalPtr,
|
|
ConstantPtr, LocalPtr, FlatPtr, PrivatePtr})
|
|
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
|
|
.clampScalarOrElt(0, S32, S512)
|
|
.legalIf(isMultiple32(0))
|
|
.widenScalarToNextPow2(0, 32)
|
|
.clampMaxNumElements(0, S32, 16);
|
|
|
|
|
|
// FIXME: i1 operands to intrinsics should always be legal, but other i1
|
|
// values may not be legal. We need to figure out how to distinguish
|
|
// between these two scenarios.
|
|
getActionDefinitionsBuilder(G_CONSTANT)
|
|
.legalFor({S1, S32, S64, S16, GlobalPtr,
|
|
LocalPtr, ConstantPtr, PrivatePtr, FlatPtr })
|
|
.clampScalar(0, S32, S64)
|
|
.widenScalarToNextPow2(0)
|
|
.legalIf(isPointer(0));
|
|
|
|
setAction({G_FRAME_INDEX, PrivatePtr}, Legal);
|
|
getActionDefinitionsBuilder(G_GLOBAL_VALUE).customFor({LocalPtr});
|
|
|
|
|
|
auto &FPOpActions = getActionDefinitionsBuilder(
|
|
{ G_FADD, G_FMUL, G_FNEG, G_FABS, G_FMA, G_FCANONICALIZE})
|
|
.legalFor({S32, S64});
|
|
auto &TrigActions = getActionDefinitionsBuilder({G_FSIN, G_FCOS})
|
|
.customFor({S32, S64});
|
|
|
|
if (ST.has16BitInsts()) {
|
|
if (ST.hasVOP3PInsts())
|
|
FPOpActions.legalFor({S16, V2S16});
|
|
else
|
|
FPOpActions.legalFor({S16});
|
|
|
|
TrigActions.customFor({S16});
|
|
}
|
|
|
|
auto &MinNumMaxNum = getActionDefinitionsBuilder({
|
|
G_FMINNUM, G_FMAXNUM, G_FMINNUM_IEEE, G_FMAXNUM_IEEE});
|
|
|
|
if (ST.hasVOP3PInsts()) {
|
|
MinNumMaxNum.customFor(FPTypesPK16)
|
|
.clampMaxNumElements(0, S16, 2)
|
|
.clampScalar(0, S16, S64)
|
|
.scalarize(0);
|
|
} else if (ST.has16BitInsts()) {
|
|
MinNumMaxNum.customFor(FPTypes16)
|
|
.clampScalar(0, S16, S64)
|
|
.scalarize(0);
|
|
} else {
|
|
MinNumMaxNum.customFor(FPTypesBase)
|
|
.clampScalar(0, S32, S64)
|
|
.scalarize(0);
|
|
}
|
|
|
|
// TODO: Implement
|
|
getActionDefinitionsBuilder({G_FMINIMUM, G_FMAXIMUM}).lower();
|
|
|
|
if (ST.hasVOP3PInsts())
|
|
FPOpActions.clampMaxNumElements(0, S16, 2);
|
|
|
|
FPOpActions
|
|
.scalarize(0)
|
|
.clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
|
|
|
|
TrigActions
|
|
.scalarize(0)
|
|
.clampScalar(0, ST.has16BitInsts() ? S16 : S32, S64);
|
|
|
|
if (ST.has16BitInsts()) {
|
|
getActionDefinitionsBuilder(G_FSQRT)
|
|
.legalFor({S32, S64, S16})
|
|
.scalarize(0)
|
|
.clampScalar(0, S16, S64);
|
|
} else {
|
|
getActionDefinitionsBuilder(G_FSQRT)
|
|
.legalFor({S32, S64})
|
|
.scalarize(0)
|
|
.clampScalar(0, S32, S64);
|
|
}
|
|
|
|
getActionDefinitionsBuilder(G_FPTRUNC)
|
|
.legalFor({{S32, S64}, {S16, S32}})
|
|
.scalarize(0);
|
|
|
|
getActionDefinitionsBuilder(G_FPEXT)
|
|
.legalFor({{S64, S32}, {S32, S16}})
|
|
.lowerFor({{S64, S16}}) // FIXME: Implement
|
|
.scalarize(0);
|
|
|
|
// TODO: Verify V_BFI_B32 is generated from expanded bit ops.
|
|
getActionDefinitionsBuilder(G_FCOPYSIGN).lower();
|
|
|
|
getActionDefinitionsBuilder(G_FSUB)
|
|
// Use actual fsub instruction
|
|
.legalFor({S32})
|
|
// Must use fadd + fneg
|
|
.lowerFor({S64, S16, V2S16})
|
|
.scalarize(0)
|
|
.clampScalar(0, S32, S64);
|
|
|
|
getActionDefinitionsBuilder({G_SEXT, G_ZEXT, G_ANYEXT})
|
|
.legalFor({{S64, S32}, {S32, S16}, {S64, S16},
|
|
{S32, S1}, {S64, S1}, {S16, S1},
|
|
// FIXME: Hack
|
|
{S64, LLT::scalar(33)},
|
|
{S32, S8}, {S128, S32}, {S128, S64}, {S32, LLT::scalar(24)}})
|
|
.scalarize(0);
|
|
|
|
getActionDefinitionsBuilder({G_SITOFP, G_UITOFP})
|
|
.legalFor({{S32, S32}, {S64, S32}})
|
|
.lowerFor({{S32, S64}})
|
|
.customFor({{S64, S64}})
|
|
.scalarize(0);
|
|
|
|
getActionDefinitionsBuilder({G_FPTOSI, G_FPTOUI})
|
|
.legalFor({{S32, S32}, {S32, S64}})
|
|
.scalarize(0);
|
|
|
|
getActionDefinitionsBuilder(G_INTRINSIC_ROUND)
|
|
.legalFor({S32, S64})
|
|
.scalarize(0);
|
|
|
|
if (ST.getGeneration() >= AMDGPUSubtarget::SEA_ISLANDS) {
|
|
getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
|
|
.legalFor({S32, S64})
|
|
.clampScalar(0, S32, S64)
|
|
.scalarize(0);
|
|
} else {
|
|
getActionDefinitionsBuilder({G_INTRINSIC_TRUNC, G_FCEIL, G_FRINT})
|
|
.legalFor({S32})
|
|
.customFor({S64})
|
|
.clampScalar(0, S32, S64)
|
|
.scalarize(0);
|
|
}
|
|
|
|
getActionDefinitionsBuilder(G_GEP)
|
|
.legalForCartesianProduct(AddrSpaces64, {S64})
|
|
.legalForCartesianProduct(AddrSpaces32, {S32})
|
|
.scalarize(0);
|
|
|
|
getActionDefinitionsBuilder(G_PTR_MASK)
|
|
.scalarize(0)
|
|
.alwaysLegal();
|
|
|
|
setAction({G_BLOCK_ADDR, CodePtr}, Legal);
|
|
|
|
auto &CmpBuilder =
|
|
getActionDefinitionsBuilder(G_ICMP)
|
|
.legalForCartesianProduct(
|
|
{S1}, {S32, S64, GlobalPtr, LocalPtr, ConstantPtr, PrivatePtr, FlatPtr})
|
|
.legalFor({{S1, S32}, {S1, S64}});
|
|
if (ST.has16BitInsts()) {
|
|
CmpBuilder.legalFor({{S1, S16}});
|
|
}
|
|
|
|
CmpBuilder
|
|
.widenScalarToNextPow2(1)
|
|
.clampScalar(1, S32, S64)
|
|
.scalarize(0)
|
|
.legalIf(all(typeIs(0, S1), isPointer(1)));
|
|
|
|
getActionDefinitionsBuilder(G_FCMP)
|
|
.legalForCartesianProduct({S1}, ST.has16BitInsts() ? FPTypes16 : FPTypesBase)
|
|
.widenScalarToNextPow2(1)
|
|
.clampScalar(1, S32, S64)
|
|
.scalarize(0);
|
|
|
|
// FIXME: fexp, flog2, flog10 needs to be custom lowered.
|
|
getActionDefinitionsBuilder({G_FPOW, G_FEXP, G_FEXP2,
|
|
G_FLOG, G_FLOG2, G_FLOG10})
|
|
.legalFor({S32})
|
|
.scalarize(0);
|
|
|
|
// The 64-bit versions produce 32-bit results, but only on the SALU.
|
|
getActionDefinitionsBuilder({G_CTLZ, G_CTLZ_ZERO_UNDEF,
|
|
G_CTTZ, G_CTTZ_ZERO_UNDEF,
|
|
G_CTPOP})
|
|
.legalFor({{S32, S32}, {S32, S64}})
|
|
.clampScalar(0, S32, S32)
|
|
.clampScalar(1, S32, S64)
|
|
.scalarize(0)
|
|
.widenScalarToNextPow2(0, 32)
|
|
.widenScalarToNextPow2(1, 32);
|
|
|
|
// TODO: Expand for > s32
|
|
getActionDefinitionsBuilder({G_BSWAP, G_BITREVERSE})
|
|
.legalFor({S32})
|
|
.clampScalar(0, S32, S32)
|
|
.scalarize(0);
|
|
|
|
if (ST.has16BitInsts()) {
|
|
if (ST.hasVOP3PInsts()) {
|
|
getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
|
|
.legalFor({S32, S16, V2S16})
|
|
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
|
|
.clampMaxNumElements(0, S16, 2)
|
|
.clampScalar(0, S16, S32)
|
|
.widenScalarToNextPow2(0)
|
|
.scalarize(0);
|
|
} else {
|
|
getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
|
|
.legalFor({S32, S16})
|
|
.widenScalarToNextPow2(0)
|
|
.clampScalar(0, S16, S32)
|
|
.scalarize(0);
|
|
}
|
|
} else {
|
|
getActionDefinitionsBuilder({G_SMIN, G_SMAX, G_UMIN, G_UMAX})
|
|
.legalFor({S32})
|
|
.clampScalar(0, S32, S32)
|
|
.widenScalarToNextPow2(0)
|
|
.scalarize(0);
|
|
}
|
|
|
|
auto smallerThan = [](unsigned TypeIdx0, unsigned TypeIdx1) {
|
|
return [=](const LegalityQuery &Query) {
|
|
return Query.Types[TypeIdx0].getSizeInBits() <
|
|
Query.Types[TypeIdx1].getSizeInBits();
|
|
};
|
|
};
|
|
|
|
auto greaterThan = [](unsigned TypeIdx0, unsigned TypeIdx1) {
|
|
return [=](const LegalityQuery &Query) {
|
|
return Query.Types[TypeIdx0].getSizeInBits() >
|
|
Query.Types[TypeIdx1].getSizeInBits();
|
|
};
|
|
};
|
|
|
|
getActionDefinitionsBuilder(G_INTTOPTR)
|
|
// List the common cases
|
|
.legalForCartesianProduct(AddrSpaces64, {S64})
|
|
.legalForCartesianProduct(AddrSpaces32, {S32})
|
|
.scalarize(0)
|
|
// Accept any address space as long as the size matches
|
|
.legalIf(sameSize(0, 1))
|
|
.widenScalarIf(smallerThan(1, 0),
|
|
[](const LegalityQuery &Query) {
|
|
return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
|
|
})
|
|
.narrowScalarIf(greaterThan(1, 0),
|
|
[](const LegalityQuery &Query) {
|
|
return std::make_pair(1, LLT::scalar(Query.Types[0].getSizeInBits()));
|
|
});
|
|
|
|
getActionDefinitionsBuilder(G_PTRTOINT)
|
|
// List the common cases
|
|
.legalForCartesianProduct(AddrSpaces64, {S64})
|
|
.legalForCartesianProduct(AddrSpaces32, {S32})
|
|
.scalarize(0)
|
|
// Accept any address space as long as the size matches
|
|
.legalIf(sameSize(0, 1))
|
|
.widenScalarIf(smallerThan(0, 1),
|
|
[](const LegalityQuery &Query) {
|
|
return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
|
|
})
|
|
.narrowScalarIf(
|
|
greaterThan(0, 1),
|
|
[](const LegalityQuery &Query) {
|
|
return std::make_pair(0, LLT::scalar(Query.Types[1].getSizeInBits()));
|
|
});
|
|
|
|
getActionDefinitionsBuilder(G_ADDRSPACE_CAST)
|
|
.scalarize(0)
|
|
.custom();
|
|
|
|
// TODO: Should load to s16 be legal? Most loads extend to 32-bits, but we
|
|
// handle some operations by just promoting the register during
|
|
// selection. There are also d16 loads on GFX9+ which preserve the high bits.
|
|
getActionDefinitionsBuilder({G_LOAD, G_STORE})
|
|
.narrowScalarIf([](const LegalityQuery &Query) {
|
|
unsigned Size = Query.Types[0].getSizeInBits();
|
|
unsigned MemSize = Query.MMODescrs[0].SizeInBits;
|
|
return (Size > 32 && MemSize < Size);
|
|
},
|
|
[](const LegalityQuery &Query) {
|
|
return std::make_pair(0, LLT::scalar(32));
|
|
})
|
|
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
|
|
.fewerElementsIf([=](const LegalityQuery &Query) {
|
|
unsigned MemSize = Query.MMODescrs[0].SizeInBits;
|
|
return (MemSize == 96) &&
|
|
Query.Types[0].isVector() &&
|
|
!ST.hasDwordx3LoadStores();
|
|
},
|
|
[=](const LegalityQuery &Query) {
|
|
return std::make_pair(0, V2S32);
|
|
})
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
const LLT &Ty0 = Query.Types[0];
|
|
|
|
unsigned Size = Ty0.getSizeInBits();
|
|
unsigned MemSize = Query.MMODescrs[0].SizeInBits;
|
|
if (Size < 32 || (Size > 32 && MemSize < Size))
|
|
return false;
|
|
|
|
if (Ty0.isVector() && Size != MemSize)
|
|
return false;
|
|
|
|
// TODO: Decompose private loads into 4-byte components.
|
|
// TODO: Illegal flat loads on SI
|
|
switch (MemSize) {
|
|
case 8:
|
|
case 16:
|
|
return Size == 32;
|
|
case 32:
|
|
case 64:
|
|
case 128:
|
|
return true;
|
|
|
|
case 96:
|
|
return ST.hasDwordx3LoadStores();
|
|
|
|
case 256:
|
|
case 512:
|
|
// TODO: Possibly support loads of i256 and i512 . This will require
|
|
// adding i256 and i512 types to MVT in order for to be able to use
|
|
// TableGen.
|
|
// TODO: Add support for other vector types, this will require
|
|
// defining more value mappings for the new types.
|
|
return Ty0.isVector() && (Ty0.getScalarType().getSizeInBits() == 32 ||
|
|
Ty0.getScalarType().getSizeInBits() == 64);
|
|
|
|
default:
|
|
return false;
|
|
}
|
|
})
|
|
.clampScalar(0, S32, S64);
|
|
|
|
|
|
// FIXME: Handle alignment requirements.
|
|
auto &ExtLoads = getActionDefinitionsBuilder({G_SEXTLOAD, G_ZEXTLOAD})
|
|
.legalForTypesWithMemDesc({
|
|
{S32, GlobalPtr, 8, 8},
|
|
{S32, GlobalPtr, 16, 8},
|
|
{S32, LocalPtr, 8, 8},
|
|
{S32, LocalPtr, 16, 8},
|
|
{S32, PrivatePtr, 8, 8},
|
|
{S32, PrivatePtr, 16, 8}});
|
|
if (ST.hasFlatAddressSpace()) {
|
|
ExtLoads.legalForTypesWithMemDesc({{S32, FlatPtr, 8, 8},
|
|
{S32, FlatPtr, 16, 8}});
|
|
}
|
|
|
|
ExtLoads.clampScalar(0, S32, S32)
|
|
.widenScalarToNextPow2(0)
|
|
.unsupportedIfMemSizeNotPow2()
|
|
.lower();
|
|
|
|
auto &Atomics = getActionDefinitionsBuilder(
|
|
{G_ATOMICRMW_XCHG, G_ATOMICRMW_ADD, G_ATOMICRMW_SUB,
|
|
G_ATOMICRMW_AND, G_ATOMICRMW_OR, G_ATOMICRMW_XOR,
|
|
G_ATOMICRMW_MAX, G_ATOMICRMW_MIN, G_ATOMICRMW_UMAX,
|
|
G_ATOMICRMW_UMIN, G_ATOMIC_CMPXCHG})
|
|
.legalFor({{S32, GlobalPtr}, {S32, LocalPtr},
|
|
{S64, GlobalPtr}, {S64, LocalPtr}});
|
|
if (ST.hasFlatAddressSpace()) {
|
|
Atomics.legalFor({{S32, FlatPtr}, {S64, FlatPtr}});
|
|
}
|
|
|
|
getActionDefinitionsBuilder(G_ATOMICRMW_FADD)
|
|
.legalFor({{S32, LocalPtr}});
|
|
|
|
// TODO: Pointer types, any 32-bit or 64-bit vector
|
|
getActionDefinitionsBuilder(G_SELECT)
|
|
.legalForCartesianProduct({S32, S64, S16, V2S32, V2S16, V4S16,
|
|
GlobalPtr, LocalPtr, FlatPtr, PrivatePtr,
|
|
LLT::vector(2, LocalPtr), LLT::vector(2, PrivatePtr)}, {S1})
|
|
.clampScalar(0, S16, S64)
|
|
.moreElementsIf(isSmallOddVector(0), oneMoreElement(0))
|
|
.fewerElementsIf(numElementsNotEven(0), scalarize(0))
|
|
.scalarize(1)
|
|
.clampMaxNumElements(0, S32, 2)
|
|
.clampMaxNumElements(0, LocalPtr, 2)
|
|
.clampMaxNumElements(0, PrivatePtr, 2)
|
|
.scalarize(0)
|
|
.widenScalarToNextPow2(0)
|
|
.legalIf(all(isPointer(0), typeIs(1, S1)));
|
|
|
|
// TODO: Only the low 4/5/6 bits of the shift amount are observed, so we can
|
|
// be more flexible with the shift amount type.
|
|
auto &Shifts = getActionDefinitionsBuilder({G_SHL, G_LSHR, G_ASHR})
|
|
.legalFor({{S32, S32}, {S64, S32}});
|
|
if (ST.has16BitInsts()) {
|
|
if (ST.hasVOP3PInsts()) {
|
|
Shifts.legalFor({{S16, S32}, {S16, S16}, {V2S16, V2S16}})
|
|
.clampMaxNumElements(0, S16, 2);
|
|
} else
|
|
Shifts.legalFor({{S16, S32}, {S16, S16}});
|
|
|
|
Shifts.clampScalar(1, S16, S32);
|
|
Shifts.clampScalar(0, S16, S64);
|
|
Shifts.widenScalarToNextPow2(0, 16);
|
|
} else {
|
|
// Make sure we legalize the shift amount type first, as the general
|
|
// expansion for the shifted type will produce much worse code if it hasn't
|
|
// been truncated already.
|
|
Shifts.clampScalar(1, S32, S32);
|
|
Shifts.clampScalar(0, S32, S64);
|
|
Shifts.widenScalarToNextPow2(0, 32);
|
|
}
|
|
Shifts.scalarize(0);
|
|
|
|
for (unsigned Op : {G_EXTRACT_VECTOR_ELT, G_INSERT_VECTOR_ELT}) {
|
|
unsigned VecTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 1 : 0;
|
|
unsigned EltTypeIdx = Op == G_EXTRACT_VECTOR_ELT ? 0 : 1;
|
|
unsigned IdxTypeIdx = 2;
|
|
|
|
getActionDefinitionsBuilder(Op)
|
|
.customIf([=](const LegalityQuery &Query) {
|
|
const LLT EltTy = Query.Types[EltTypeIdx];
|
|
const LLT VecTy = Query.Types[VecTypeIdx];
|
|
const LLT IdxTy = Query.Types[IdxTypeIdx];
|
|
return (EltTy.getSizeInBits() == 16 ||
|
|
EltTy.getSizeInBits() % 32 == 0) &&
|
|
VecTy.getSizeInBits() % 32 == 0 &&
|
|
VecTy.getSizeInBits() <= 512 &&
|
|
IdxTy.getSizeInBits() == 32;
|
|
})
|
|
.clampScalar(EltTypeIdx, S32, S64)
|
|
.clampScalar(VecTypeIdx, S32, S64)
|
|
.clampScalar(IdxTypeIdx, S32, S32);
|
|
}
|
|
|
|
getActionDefinitionsBuilder(G_EXTRACT_VECTOR_ELT)
|
|
.unsupportedIf([=](const LegalityQuery &Query) {
|
|
const LLT &EltTy = Query.Types[1].getElementType();
|
|
return Query.Types[0] != EltTy;
|
|
});
|
|
|
|
for (unsigned Op : {G_EXTRACT, G_INSERT}) {
|
|
unsigned BigTyIdx = Op == G_EXTRACT ? 1 : 0;
|
|
unsigned LitTyIdx = Op == G_EXTRACT ? 0 : 1;
|
|
|
|
// FIXME: Doesn't handle extract of illegal sizes.
|
|
getActionDefinitionsBuilder(Op)
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
const LLT BigTy = Query.Types[BigTyIdx];
|
|
const LLT LitTy = Query.Types[LitTyIdx];
|
|
return (BigTy.getSizeInBits() % 32 == 0) &&
|
|
(LitTy.getSizeInBits() % 16 == 0);
|
|
})
|
|
.widenScalarIf(
|
|
[=](const LegalityQuery &Query) {
|
|
const LLT BigTy = Query.Types[BigTyIdx];
|
|
return (BigTy.getScalarSizeInBits() < 16);
|
|
},
|
|
LegalizeMutations::widenScalarOrEltToNextPow2(BigTyIdx, 16))
|
|
.widenScalarIf(
|
|
[=](const LegalityQuery &Query) {
|
|
const LLT LitTy = Query.Types[LitTyIdx];
|
|
return (LitTy.getScalarSizeInBits() < 16);
|
|
},
|
|
LegalizeMutations::widenScalarOrEltToNextPow2(LitTyIdx, 16))
|
|
.moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
|
|
.widenScalarToNextPow2(BigTyIdx, 32);
|
|
|
|
}
|
|
|
|
getActionDefinitionsBuilder(G_BUILD_VECTOR)
|
|
.legalForCartesianProduct(AllS32Vectors, {S32})
|
|
.legalForCartesianProduct(AllS64Vectors, {S64})
|
|
.clampNumElements(0, V16S32, V16S32)
|
|
.clampNumElements(0, V2S64, V8S64)
|
|
.minScalarSameAs(1, 0)
|
|
.legalIf(isRegisterType(0))
|
|
.minScalarOrElt(0, S32);
|
|
|
|
if (ST.hasScalarPackInsts()) {
|
|
getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
|
|
.legalFor({V2S16, S32})
|
|
.lower();
|
|
} else {
|
|
getActionDefinitionsBuilder(G_BUILD_VECTOR_TRUNC)
|
|
.lower();
|
|
}
|
|
|
|
getActionDefinitionsBuilder(G_CONCAT_VECTORS)
|
|
.legalIf(isRegisterType(0));
|
|
|
|
// TODO: Don't fully scalarize v2s16 pieces
|
|
getActionDefinitionsBuilder(G_SHUFFLE_VECTOR).lower();
|
|
|
|
// Merge/Unmerge
|
|
for (unsigned Op : {G_MERGE_VALUES, G_UNMERGE_VALUES}) {
|
|
unsigned BigTyIdx = Op == G_MERGE_VALUES ? 0 : 1;
|
|
unsigned LitTyIdx = Op == G_MERGE_VALUES ? 1 : 0;
|
|
|
|
auto notValidElt = [=](const LegalityQuery &Query, unsigned TypeIdx) {
|
|
const LLT &Ty = Query.Types[TypeIdx];
|
|
if (Ty.isVector()) {
|
|
const LLT &EltTy = Ty.getElementType();
|
|
if (EltTy.getSizeInBits() < 8 || EltTy.getSizeInBits() > 64)
|
|
return true;
|
|
if (!isPowerOf2_32(EltTy.getSizeInBits()))
|
|
return true;
|
|
}
|
|
return false;
|
|
};
|
|
|
|
getActionDefinitionsBuilder(Op)
|
|
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 16)
|
|
// Clamp the little scalar to s8-s256 and make it a power of 2. It's not
|
|
// worth considering the multiples of 64 since 2*192 and 2*384 are not
|
|
// valid.
|
|
.clampScalar(LitTyIdx, S16, S256)
|
|
.widenScalarToNextPow2(LitTyIdx, /*Min*/ 32)
|
|
.moreElementsIf(isSmallOddVector(BigTyIdx), oneMoreElement(BigTyIdx))
|
|
.fewerElementsIf(all(typeIs(0, S16), vectorWiderThan(1, 32),
|
|
elementTypeIs(1, S16)),
|
|
changeTo(1, V2S16))
|
|
// Break up vectors with weird elements into scalars
|
|
.fewerElementsIf(
|
|
[=](const LegalityQuery &Query) { return notValidElt(Query, 0); },
|
|
scalarize(0))
|
|
.fewerElementsIf(
|
|
[=](const LegalityQuery &Query) { return notValidElt(Query, 1); },
|
|
scalarize(1))
|
|
.clampScalar(BigTyIdx, S32, S512)
|
|
.lowerFor({{S16, V2S16}})
|
|
.widenScalarIf(
|
|
[=](const LegalityQuery &Query) {
|
|
const LLT &Ty = Query.Types[BigTyIdx];
|
|
return !isPowerOf2_32(Ty.getSizeInBits()) &&
|
|
Ty.getSizeInBits() % 16 != 0;
|
|
},
|
|
[=](const LegalityQuery &Query) {
|
|
// Pick the next power of 2, or a multiple of 64 over 128.
|
|
// Whichever is smaller.
|
|
const LLT &Ty = Query.Types[BigTyIdx];
|
|
unsigned NewSizeInBits = 1 << Log2_32_Ceil(Ty.getSizeInBits() + 1);
|
|
if (NewSizeInBits >= 256) {
|
|
unsigned RoundedTo = alignTo<64>(Ty.getSizeInBits() + 1);
|
|
if (RoundedTo < NewSizeInBits)
|
|
NewSizeInBits = RoundedTo;
|
|
}
|
|
return std::make_pair(BigTyIdx, LLT::scalar(NewSizeInBits));
|
|
})
|
|
.legalIf([=](const LegalityQuery &Query) {
|
|
const LLT &BigTy = Query.Types[BigTyIdx];
|
|
const LLT &LitTy = Query.Types[LitTyIdx];
|
|
|
|
if (BigTy.isVector() && BigTy.getSizeInBits() < 32)
|
|
return false;
|
|
if (LitTy.isVector() && LitTy.getSizeInBits() < 32)
|
|
return false;
|
|
|
|
return BigTy.getSizeInBits() % 16 == 0 &&
|
|
LitTy.getSizeInBits() % 16 == 0 &&
|
|
BigTy.getSizeInBits() <= 512;
|
|
})
|
|
// Any vectors left are the wrong size. Scalarize them.
|
|
.scalarize(0)
|
|
.scalarize(1);
|
|
}
|
|
|
|
getActionDefinitionsBuilder(G_SEXT_INREG).lower();
|
|
|
|
computeTables();
|
|
verify(*ST.getInstrInfo());
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeCustom(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder,
|
|
GISelChangeObserver &Observer) const {
|
|
switch (MI.getOpcode()) {
|
|
case TargetOpcode::G_ADDRSPACE_CAST:
|
|
return legalizeAddrSpaceCast(MI, MRI, MIRBuilder);
|
|
case TargetOpcode::G_FRINT:
|
|
return legalizeFrint(MI, MRI, MIRBuilder);
|
|
case TargetOpcode::G_FCEIL:
|
|
return legalizeFceil(MI, MRI, MIRBuilder);
|
|
case TargetOpcode::G_INTRINSIC_TRUNC:
|
|
return legalizeIntrinsicTrunc(MI, MRI, MIRBuilder);
|
|
case TargetOpcode::G_SITOFP:
|
|
return legalizeITOFP(MI, MRI, MIRBuilder, true);
|
|
case TargetOpcode::G_UITOFP:
|
|
return legalizeITOFP(MI, MRI, MIRBuilder, false);
|
|
case TargetOpcode::G_FMINNUM:
|
|
case TargetOpcode::G_FMAXNUM:
|
|
case TargetOpcode::G_FMINNUM_IEEE:
|
|
case TargetOpcode::G_FMAXNUM_IEEE:
|
|
return legalizeMinNumMaxNum(MI, MRI, MIRBuilder);
|
|
case TargetOpcode::G_EXTRACT_VECTOR_ELT:
|
|
return legalizeExtractVectorElt(MI, MRI, MIRBuilder);
|
|
case TargetOpcode::G_INSERT_VECTOR_ELT:
|
|
return legalizeInsertVectorElt(MI, MRI, MIRBuilder);
|
|
case TargetOpcode::G_FSIN:
|
|
case TargetOpcode::G_FCOS:
|
|
return legalizeSinCos(MI, MRI, MIRBuilder);
|
|
case TargetOpcode::G_GLOBAL_VALUE:
|
|
return legalizeGlobalValue(MI, MRI, MIRBuilder);
|
|
default:
|
|
return false;
|
|
}
|
|
|
|
llvm_unreachable("expected switch to return");
|
|
}
|
|
|
|
Register AMDGPULegalizerInfo::getSegmentAperture(
|
|
unsigned AS,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
const LLT S32 = LLT::scalar(32);
|
|
|
|
if (ST.hasApertureRegs()) {
|
|
// FIXME: Use inline constants (src_{shared, private}_base) instead of
|
|
// getreg.
|
|
unsigned Offset = AS == AMDGPUAS::LOCAL_ADDRESS ?
|
|
AMDGPU::Hwreg::OFFSET_SRC_SHARED_BASE :
|
|
AMDGPU::Hwreg::OFFSET_SRC_PRIVATE_BASE;
|
|
unsigned WidthM1 = AS == AMDGPUAS::LOCAL_ADDRESS ?
|
|
AMDGPU::Hwreg::WIDTH_M1_SRC_SHARED_BASE :
|
|
AMDGPU::Hwreg::WIDTH_M1_SRC_PRIVATE_BASE;
|
|
unsigned Encoding =
|
|
AMDGPU::Hwreg::ID_MEM_BASES << AMDGPU::Hwreg::ID_SHIFT_ |
|
|
Offset << AMDGPU::Hwreg::OFFSET_SHIFT_ |
|
|
WidthM1 << AMDGPU::Hwreg::WIDTH_M1_SHIFT_;
|
|
|
|
Register ApertureReg = MRI.createGenericVirtualRegister(S32);
|
|
Register GetReg = MRI.createVirtualRegister(&AMDGPU::SReg_32RegClass);
|
|
|
|
MIRBuilder.buildInstr(AMDGPU::S_GETREG_B32)
|
|
.addDef(GetReg)
|
|
.addImm(Encoding);
|
|
MRI.setType(GetReg, S32);
|
|
|
|
auto ShiftAmt = MIRBuilder.buildConstant(S32, WidthM1 + 1);
|
|
MIRBuilder.buildInstr(TargetOpcode::G_SHL)
|
|
.addDef(ApertureReg)
|
|
.addUse(GetReg)
|
|
.addUse(ShiftAmt.getReg(0));
|
|
|
|
return ApertureReg;
|
|
}
|
|
|
|
Register QueuePtr = MRI.createGenericVirtualRegister(
|
|
LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS, 64));
|
|
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
if (!loadInputValue(QueuePtr, MIRBuilder, &MFI->getArgInfo().QueuePtr))
|
|
return Register();
|
|
|
|
// Offset into amd_queue_t for group_segment_aperture_base_hi /
|
|
// private_segment_aperture_base_hi.
|
|
uint32_t StructOffset = (AS == AMDGPUAS::LOCAL_ADDRESS) ? 0x40 : 0x44;
|
|
|
|
// FIXME: Don't use undef
|
|
Value *V = UndefValue::get(PointerType::get(
|
|
Type::getInt8Ty(MF.getFunction().getContext()),
|
|
AMDGPUAS::CONSTANT_ADDRESS));
|
|
|
|
MachinePointerInfo PtrInfo(V, StructOffset);
|
|
MachineMemOperand *MMO = MF.getMachineMemOperand(
|
|
PtrInfo,
|
|
MachineMemOperand::MOLoad |
|
|
MachineMemOperand::MODereferenceable |
|
|
MachineMemOperand::MOInvariant,
|
|
4,
|
|
MinAlign(64, StructOffset));
|
|
|
|
Register LoadResult = MRI.createGenericVirtualRegister(S32);
|
|
Register LoadAddr;
|
|
|
|
MIRBuilder.materializeGEP(LoadAddr, QueuePtr, LLT::scalar(64), StructOffset);
|
|
MIRBuilder.buildLoad(LoadResult, LoadAddr, *MMO);
|
|
return LoadResult;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeAddrSpaceCast(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
MachineFunction &MF = MIRBuilder.getMF();
|
|
|
|
MIRBuilder.setInstr(MI);
|
|
|
|
const LLT S32 = LLT::scalar(32);
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register Src = MI.getOperand(1).getReg();
|
|
|
|
LLT DstTy = MRI.getType(Dst);
|
|
LLT SrcTy = MRI.getType(Src);
|
|
unsigned DestAS = DstTy.getAddressSpace();
|
|
unsigned SrcAS = SrcTy.getAddressSpace();
|
|
|
|
// TODO: Avoid reloading from the queue ptr for each cast, or at least each
|
|
// vector element.
|
|
assert(!DstTy.isVector());
|
|
|
|
const AMDGPUTargetMachine &TM
|
|
= static_cast<const AMDGPUTargetMachine &>(MF.getTarget());
|
|
|
|
const GCNSubtarget &ST = MF.getSubtarget<GCNSubtarget>();
|
|
if (ST.getTargetLowering()->isNoopAddrSpaceCast(SrcAS, DestAS)) {
|
|
MI.setDesc(MIRBuilder.getTII().get(TargetOpcode::G_BITCAST));
|
|
return true;
|
|
}
|
|
|
|
if (DestAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
|
|
// Truncate.
|
|
MIRBuilder.buildExtract(Dst, Src, 0);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
if (SrcAS == AMDGPUAS::CONSTANT_ADDRESS_32BIT) {
|
|
const SIMachineFunctionInfo *Info = MF.getInfo<SIMachineFunctionInfo>();
|
|
uint32_t AddrHiVal = Info->get32BitAddressHighBits();
|
|
|
|
// FIXME: This is a bit ugly due to creating a merge of 2 pointers to
|
|
// another. Merge operands are required to be the same type, but creating an
|
|
// extra ptrtoint would be kind of pointless.
|
|
auto HighAddr = MIRBuilder.buildConstant(
|
|
LLT::pointer(AMDGPUAS::CONSTANT_ADDRESS_32BIT, 32), AddrHiVal);
|
|
MIRBuilder.buildMerge(Dst, {Src, HighAddr.getReg(0)});
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
if (SrcAS == AMDGPUAS::FLAT_ADDRESS) {
|
|
assert(DestAS == AMDGPUAS::LOCAL_ADDRESS ||
|
|
DestAS == AMDGPUAS::PRIVATE_ADDRESS);
|
|
unsigned NullVal = TM.getNullPointerValue(DestAS);
|
|
|
|
auto SegmentNull = MIRBuilder.buildConstant(DstTy, NullVal);
|
|
auto FlatNull = MIRBuilder.buildConstant(SrcTy, 0);
|
|
|
|
Register PtrLo32 = MRI.createGenericVirtualRegister(DstTy);
|
|
|
|
// Extract low 32-bits of the pointer.
|
|
MIRBuilder.buildExtract(PtrLo32, Src, 0);
|
|
|
|
Register CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1));
|
|
MIRBuilder.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, FlatNull.getReg(0));
|
|
MIRBuilder.buildSelect(Dst, CmpRes, PtrLo32, SegmentNull.getReg(0));
|
|
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
if (SrcAS != AMDGPUAS::LOCAL_ADDRESS && SrcAS != AMDGPUAS::PRIVATE_ADDRESS)
|
|
return false;
|
|
|
|
if (!ST.hasFlatAddressSpace())
|
|
return false;
|
|
|
|
auto SegmentNull =
|
|
MIRBuilder.buildConstant(SrcTy, TM.getNullPointerValue(SrcAS));
|
|
auto FlatNull =
|
|
MIRBuilder.buildConstant(DstTy, TM.getNullPointerValue(DestAS));
|
|
|
|
Register ApertureReg = getSegmentAperture(DestAS, MRI, MIRBuilder);
|
|
if (!ApertureReg.isValid())
|
|
return false;
|
|
|
|
Register CmpRes = MRI.createGenericVirtualRegister(LLT::scalar(1));
|
|
MIRBuilder.buildICmp(CmpInst::ICMP_NE, CmpRes, Src, SegmentNull.getReg(0));
|
|
|
|
Register BuildPtr = MRI.createGenericVirtualRegister(DstTy);
|
|
|
|
// Coerce the type of the low half of the result so we can use merge_values.
|
|
Register SrcAsInt = MRI.createGenericVirtualRegister(S32);
|
|
MIRBuilder.buildInstr(TargetOpcode::G_PTRTOINT)
|
|
.addDef(SrcAsInt)
|
|
.addUse(Src);
|
|
|
|
// TODO: Should we allow mismatched types but matching sizes in merges to
|
|
// avoid the ptrtoint?
|
|
MIRBuilder.buildMerge(BuildPtr, {SrcAsInt, ApertureReg});
|
|
MIRBuilder.buildSelect(Dst, CmpRes, BuildPtr, FlatNull.getReg(0));
|
|
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeFrint(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &MIRBuilder) const {
|
|
MIRBuilder.setInstr(MI);
|
|
|
|
Register Src = MI.getOperand(1).getReg();
|
|
LLT Ty = MRI.getType(Src);
|
|
assert(Ty.isScalar() && Ty.getSizeInBits() == 64);
|
|
|
|
APFloat C1Val(APFloat::IEEEdouble(), "0x1.0p+52");
|
|
APFloat C2Val(APFloat::IEEEdouble(), "0x1.fffffffffffffp+51");
|
|
|
|
auto C1 = MIRBuilder.buildFConstant(Ty, C1Val);
|
|
auto CopySign = MIRBuilder.buildFCopysign(Ty, C1, Src);
|
|
|
|
// TODO: Should this propagate fast-math-flags?
|
|
auto Tmp1 = MIRBuilder.buildFAdd(Ty, Src, CopySign);
|
|
auto Tmp2 = MIRBuilder.buildFSub(Ty, Tmp1, CopySign);
|
|
|
|
auto C2 = MIRBuilder.buildFConstant(Ty, C2Val);
|
|
auto Fabs = MIRBuilder.buildFAbs(Ty, Src);
|
|
|
|
auto Cond = MIRBuilder.buildFCmp(CmpInst::FCMP_OGT, LLT::scalar(1), Fabs, C2);
|
|
MIRBuilder.buildSelect(MI.getOperand(0).getReg(), Cond, Src, Tmp2);
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeFceil(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B) const {
|
|
B.setInstr(MI);
|
|
|
|
const LLT S1 = LLT::scalar(1);
|
|
const LLT S64 = LLT::scalar(64);
|
|
|
|
Register Src = MI.getOperand(1).getReg();
|
|
assert(MRI.getType(Src) == S64);
|
|
|
|
// result = trunc(src)
|
|
// if (src > 0.0 && src != result)
|
|
// result += 1.0
|
|
|
|
auto Trunc = B.buildInstr(TargetOpcode::G_INTRINSIC_TRUNC, {S64}, {Src});
|
|
|
|
const auto Zero = B.buildFConstant(S64, 0.0);
|
|
const auto One = B.buildFConstant(S64, 1.0);
|
|
auto Lt0 = B.buildFCmp(CmpInst::FCMP_OGT, S1, Src, Zero);
|
|
auto NeTrunc = B.buildFCmp(CmpInst::FCMP_ONE, S1, Src, Trunc);
|
|
auto And = B.buildAnd(S1, Lt0, NeTrunc);
|
|
auto Add = B.buildSelect(S64, And, One, Zero);
|
|
|
|
// TODO: Should this propagate fast-math-flags?
|
|
B.buildFAdd(MI.getOperand(0).getReg(), Trunc, Add);
|
|
return true;
|
|
}
|
|
|
|
static MachineInstrBuilder extractF64Exponent(unsigned Hi,
|
|
MachineIRBuilder &B) {
|
|
const unsigned FractBits = 52;
|
|
const unsigned ExpBits = 11;
|
|
LLT S32 = LLT::scalar(32);
|
|
|
|
auto Const0 = B.buildConstant(S32, FractBits - 32);
|
|
auto Const1 = B.buildConstant(S32, ExpBits);
|
|
|
|
auto ExpPart = B.buildIntrinsic(Intrinsic::amdgcn_ubfe, {S32}, false)
|
|
.addUse(Const0.getReg(0))
|
|
.addUse(Const1.getReg(0));
|
|
|
|
return B.buildSub(S32, ExpPart, B.buildConstant(S32, 1023));
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeIntrinsicTrunc(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B) const {
|
|
B.setInstr(MI);
|
|
|
|
const LLT S1 = LLT::scalar(1);
|
|
const LLT S32 = LLT::scalar(32);
|
|
const LLT S64 = LLT::scalar(64);
|
|
|
|
Register Src = MI.getOperand(1).getReg();
|
|
assert(MRI.getType(Src) == S64);
|
|
|
|
// TODO: Should this use extract since the low half is unused?
|
|
auto Unmerge = B.buildUnmerge({S32, S32}, Src);
|
|
Register Hi = Unmerge.getReg(1);
|
|
|
|
// Extract the upper half, since this is where we will find the sign and
|
|
// exponent.
|
|
auto Exp = extractF64Exponent(Hi, B);
|
|
|
|
const unsigned FractBits = 52;
|
|
|
|
// Extract the sign bit.
|
|
const auto SignBitMask = B.buildConstant(S32, UINT32_C(1) << 31);
|
|
auto SignBit = B.buildAnd(S32, Hi, SignBitMask);
|
|
|
|
const auto FractMask = B.buildConstant(S64, (UINT64_C(1) << FractBits) - 1);
|
|
|
|
const auto Zero32 = B.buildConstant(S32, 0);
|
|
|
|
// Extend back to 64-bits.
|
|
auto SignBit64 = B.buildMerge(S64, {Zero32.getReg(0), SignBit.getReg(0)});
|
|
|
|
auto Shr = B.buildAShr(S64, FractMask, Exp);
|
|
auto Not = B.buildNot(S64, Shr);
|
|
auto Tmp0 = B.buildAnd(S64, Src, Not);
|
|
auto FiftyOne = B.buildConstant(S32, FractBits - 1);
|
|
|
|
auto ExpLt0 = B.buildICmp(CmpInst::ICMP_SLT, S1, Exp, Zero32);
|
|
auto ExpGt51 = B.buildICmp(CmpInst::ICMP_SGT, S1, Exp, FiftyOne);
|
|
|
|
auto Tmp1 = B.buildSelect(S64, ExpLt0, SignBit64, Tmp0);
|
|
B.buildSelect(MI.getOperand(0).getReg(), ExpGt51, Src, Tmp1);
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeITOFP(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B, bool Signed) const {
|
|
B.setInstr(MI);
|
|
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register Src = MI.getOperand(1).getReg();
|
|
|
|
const LLT S64 = LLT::scalar(64);
|
|
const LLT S32 = LLT::scalar(32);
|
|
|
|
assert(MRI.getType(Src) == S64 && MRI.getType(Dst) == S64);
|
|
|
|
auto Unmerge = B.buildUnmerge({S32, S32}, Src);
|
|
|
|
auto CvtHi = Signed ?
|
|
B.buildSITOFP(S64, Unmerge.getReg(1)) :
|
|
B.buildUITOFP(S64, Unmerge.getReg(1));
|
|
|
|
auto CvtLo = B.buildUITOFP(S64, Unmerge.getReg(0));
|
|
|
|
auto ThirtyTwo = B.buildConstant(S32, 32);
|
|
auto LdExp = B.buildIntrinsic(Intrinsic::amdgcn_ldexp, {S64}, false)
|
|
.addUse(CvtHi.getReg(0))
|
|
.addUse(ThirtyTwo.getReg(0));
|
|
|
|
// TODO: Should this propagate fast-math-flags?
|
|
B.buildFAdd(Dst, LdExp, CvtLo);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeMinNumMaxNum(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B) const {
|
|
MachineFunction &MF = B.getMF();
|
|
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
const bool IsIEEEOp = MI.getOpcode() == AMDGPU::G_FMINNUM_IEEE ||
|
|
MI.getOpcode() == AMDGPU::G_FMAXNUM_IEEE;
|
|
|
|
// With ieee_mode disabled, the instructions have the correct behavior
|
|
// already for G_FMINNUM/G_FMAXNUM
|
|
if (!MFI->getMode().IEEE)
|
|
return !IsIEEEOp;
|
|
|
|
if (IsIEEEOp)
|
|
return true;
|
|
|
|
MachineIRBuilder HelperBuilder(MI);
|
|
GISelObserverWrapper DummyObserver;
|
|
LegalizerHelper Helper(MF, DummyObserver, HelperBuilder);
|
|
HelperBuilder.setMBB(*MI.getParent());
|
|
return Helper.lowerFMinNumMaxNum(MI) == LegalizerHelper::Legalized;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeExtractVectorElt(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B) const {
|
|
// TODO: Should move some of this into LegalizerHelper.
|
|
|
|
// TODO: Promote dynamic indexing of s16 to s32
|
|
// TODO: Dynamic s64 indexing is only legal for SGPR.
|
|
Optional<int64_t> IdxVal = getConstantVRegVal(MI.getOperand(2).getReg(), MRI);
|
|
if (!IdxVal) // Dynamic case will be selected to register indexing.
|
|
return true;
|
|
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register Vec = MI.getOperand(1).getReg();
|
|
|
|
LLT VecTy = MRI.getType(Vec);
|
|
LLT EltTy = VecTy.getElementType();
|
|
assert(EltTy == MRI.getType(Dst));
|
|
|
|
B.setInstr(MI);
|
|
|
|
if (IdxVal.getValue() < VecTy.getNumElements())
|
|
B.buildExtract(Dst, Vec, IdxVal.getValue() * EltTy.getSizeInBits());
|
|
else
|
|
B.buildUndef(Dst);
|
|
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeInsertVectorElt(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B) const {
|
|
// TODO: Should move some of this into LegalizerHelper.
|
|
|
|
// TODO: Promote dynamic indexing of s16 to s32
|
|
// TODO: Dynamic s64 indexing is only legal for SGPR.
|
|
Optional<int64_t> IdxVal = getConstantVRegVal(MI.getOperand(3).getReg(), MRI);
|
|
if (!IdxVal) // Dynamic case will be selected to register indexing.
|
|
return true;
|
|
|
|
Register Dst = MI.getOperand(0).getReg();
|
|
Register Vec = MI.getOperand(1).getReg();
|
|
Register Ins = MI.getOperand(2).getReg();
|
|
|
|
LLT VecTy = MRI.getType(Vec);
|
|
LLT EltTy = VecTy.getElementType();
|
|
assert(EltTy == MRI.getType(Ins));
|
|
|
|
B.setInstr(MI);
|
|
|
|
if (IdxVal.getValue() < VecTy.getNumElements())
|
|
B.buildInsert(Dst, Vec, Ins, IdxVal.getValue() * EltTy.getSizeInBits());
|
|
else
|
|
B.buildUndef(Dst);
|
|
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeSinCos(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B) const {
|
|
B.setInstr(MI);
|
|
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
Register SrcReg = MI.getOperand(1).getReg();
|
|
LLT Ty = MRI.getType(DstReg);
|
|
unsigned Flags = MI.getFlags();
|
|
|
|
Register TrigVal;
|
|
auto OneOver2Pi = B.buildFConstant(Ty, 0.5 / M_PI);
|
|
if (ST.hasTrigReducedRange()) {
|
|
auto MulVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags);
|
|
TrigVal = B.buildIntrinsic(Intrinsic::amdgcn_fract, {Ty}, false)
|
|
.addUse(MulVal.getReg(0))
|
|
.setMIFlags(Flags).getReg(0);
|
|
} else
|
|
TrigVal = B.buildFMul(Ty, SrcReg, OneOver2Pi, Flags).getReg(0);
|
|
|
|
Intrinsic::ID TrigIntrin = MI.getOpcode() == AMDGPU::G_FSIN ?
|
|
Intrinsic::amdgcn_sin : Intrinsic::amdgcn_cos;
|
|
B.buildIntrinsic(TrigIntrin, makeArrayRef<Register>(DstReg), false)
|
|
.addUse(TrigVal)
|
|
.setMIFlags(Flags);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeGlobalValue(
|
|
MachineInstr &MI, MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B) const {
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
LLT Ty = MRI.getType(DstReg);
|
|
unsigned AS = Ty.getAddressSpace();
|
|
|
|
const GlobalValue *GV = MI.getOperand(1).getGlobal();
|
|
MachineFunction &MF = B.getMF();
|
|
SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
|
|
|
|
if (AS == AMDGPUAS::LOCAL_ADDRESS || AS == AMDGPUAS::REGION_ADDRESS) {
|
|
B.setInstr(MI);
|
|
|
|
if (!MFI->isEntryFunction()) {
|
|
const Function &Fn = MF.getFunction();
|
|
DiagnosticInfoUnsupported BadLDSDecl(
|
|
Fn, "local memory global used by non-kernel function", MI.getDebugLoc());
|
|
Fn.getContext().diagnose(BadLDSDecl);
|
|
}
|
|
|
|
// TODO: We could emit code to handle the initialization somewhere.
|
|
if (!AMDGPUTargetLowering::hasDefinedInitializer(GV)) {
|
|
B.buildConstant(DstReg, MFI->allocateLDSGlobal(B.getDataLayout(), *GV));
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
} else
|
|
return false;
|
|
|
|
const Function &Fn = MF.getFunction();
|
|
DiagnosticInfoUnsupported BadInit(
|
|
Fn, "unsupported initializer for address space", MI.getDebugLoc());
|
|
Fn.getContext().diagnose(BadInit);
|
|
return true;
|
|
}
|
|
|
|
// Return the use branch instruction, otherwise null if the usage is invalid.
|
|
static MachineInstr *verifyCFIntrinsic(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI) {
|
|
Register CondDef = MI.getOperand(0).getReg();
|
|
if (!MRI.hasOneNonDBGUse(CondDef))
|
|
return nullptr;
|
|
|
|
MachineInstr &UseMI = *MRI.use_instr_nodbg_begin(CondDef);
|
|
return UseMI.getParent() == MI.getParent() &&
|
|
UseMI.getOpcode() == AMDGPU::G_BRCOND ? &UseMI : nullptr;
|
|
}
|
|
|
|
Register AMDGPULegalizerInfo::getLiveInRegister(MachineRegisterInfo &MRI,
|
|
Register Reg, LLT Ty) const {
|
|
Register LiveIn = MRI.getLiveInVirtReg(Reg);
|
|
if (LiveIn)
|
|
return LiveIn;
|
|
|
|
Register NewReg = MRI.createGenericVirtualRegister(Ty);
|
|
MRI.addLiveIn(Reg, NewReg);
|
|
return NewReg;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::loadInputValue(Register DstReg, MachineIRBuilder &B,
|
|
const ArgDescriptor *Arg) const {
|
|
if (!Arg->isRegister() || !Arg->getRegister().isValid())
|
|
return false; // TODO: Handle these
|
|
|
|
assert(Arg->getRegister().isPhysical());
|
|
|
|
MachineRegisterInfo &MRI = *B.getMRI();
|
|
|
|
LLT Ty = MRI.getType(DstReg);
|
|
Register LiveIn = getLiveInRegister(MRI, Arg->getRegister(), Ty);
|
|
|
|
if (Arg->isMasked()) {
|
|
// TODO: Should we try to emit this once in the entry block?
|
|
const LLT S32 = LLT::scalar(32);
|
|
const unsigned Mask = Arg->getMask();
|
|
const unsigned Shift = countTrailingZeros<unsigned>(Mask);
|
|
|
|
auto ShiftAmt = B.buildConstant(S32, Shift);
|
|
auto LShr = B.buildLShr(S32, LiveIn, ShiftAmt);
|
|
B.buildAnd(DstReg, LShr, B.buildConstant(S32, Mask >> Shift));
|
|
} else
|
|
B.buildCopy(DstReg, LiveIn);
|
|
|
|
// Insert the argument copy if it doens't already exist.
|
|
// FIXME: It seems EmitLiveInCopies isn't called anywhere?
|
|
if (!MRI.getVRegDef(LiveIn)) {
|
|
// FIXME: Should have scoped insert pt
|
|
MachineBasicBlock &OrigInsBB = B.getMBB();
|
|
auto OrigInsPt = B.getInsertPt();
|
|
|
|
MachineBasicBlock &EntryMBB = B.getMF().front();
|
|
EntryMBB.addLiveIn(Arg->getRegister());
|
|
B.setInsertPt(EntryMBB, EntryMBB.begin());
|
|
B.buildCopy(LiveIn, Arg->getRegister());
|
|
|
|
B.setInsertPt(OrigInsBB, OrigInsPt);
|
|
}
|
|
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizePreloadedArgIntrin(
|
|
MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B,
|
|
AMDGPUFunctionArgInfo::PreloadedValue ArgType) const {
|
|
B.setInstr(MI);
|
|
|
|
const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
|
|
|
|
const ArgDescriptor *Arg;
|
|
const TargetRegisterClass *RC;
|
|
std::tie(Arg, RC) = MFI->getPreloadedValue(ArgType);
|
|
if (!Arg) {
|
|
LLVM_DEBUG(dbgs() << "Required arg register missing\n");
|
|
return false;
|
|
}
|
|
|
|
if (loadInputValue(MI.getOperand(0).getReg(), B, Arg)) {
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeFDIVFast(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B) const {
|
|
B.setInstr(MI);
|
|
Register Res = MI.getOperand(0).getReg();
|
|
Register LHS = MI.getOperand(2).getReg();
|
|
Register RHS = MI.getOperand(3).getReg();
|
|
uint16_t Flags = MI.getFlags();
|
|
|
|
LLT S32 = LLT::scalar(32);
|
|
LLT S1 = LLT::scalar(1);
|
|
|
|
auto Abs = B.buildFAbs(S32, RHS, Flags);
|
|
const APFloat C0Val(1.0f);
|
|
|
|
auto C0 = B.buildConstant(S32, 0x6f800000);
|
|
auto C1 = B.buildConstant(S32, 0x2f800000);
|
|
auto C2 = B.buildConstant(S32, FloatToBits(1.0f));
|
|
|
|
auto CmpRes = B.buildFCmp(CmpInst::FCMP_OGT, S1, Abs, C0, Flags);
|
|
auto Sel = B.buildSelect(S32, CmpRes, C1, C2, Flags);
|
|
|
|
auto Mul0 = B.buildFMul(S32, RHS, Sel, Flags);
|
|
|
|
auto RCP = B.buildIntrinsic(Intrinsic::amdgcn_rcp, {S32}, false)
|
|
.addUse(Mul0.getReg(0))
|
|
.setMIFlags(Flags);
|
|
|
|
auto Mul1 = B.buildFMul(S32, LHS, RCP, Flags);
|
|
|
|
B.buildFMul(Res, Sel, Mul1, Flags);
|
|
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeImplicitArgPtr(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B) const {
|
|
const SIMachineFunctionInfo *MFI = B.getMF().getInfo<SIMachineFunctionInfo>();
|
|
if (!MFI->isEntryFunction()) {
|
|
return legalizePreloadedArgIntrin(MI, MRI, B,
|
|
AMDGPUFunctionArgInfo::IMPLICIT_ARG_PTR);
|
|
}
|
|
|
|
B.setInstr(MI);
|
|
|
|
uint64_t Offset =
|
|
ST.getTargetLowering()->getImplicitParameterOffset(
|
|
B.getMF(), AMDGPUTargetLowering::FIRST_IMPLICIT);
|
|
Register DstReg = MI.getOperand(0).getReg();
|
|
LLT DstTy = MRI.getType(DstReg);
|
|
LLT IdxTy = LLT::scalar(DstTy.getSizeInBits());
|
|
|
|
const ArgDescriptor *Arg;
|
|
const TargetRegisterClass *RC;
|
|
std::tie(Arg, RC)
|
|
= MFI->getPreloadedValue(AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
|
|
if (!Arg)
|
|
return false;
|
|
|
|
Register KernargPtrReg = MRI.createGenericVirtualRegister(DstTy);
|
|
if (!loadInputValue(KernargPtrReg, B, Arg))
|
|
return false;
|
|
|
|
B.buildGEP(DstReg, KernargPtrReg, B.buildConstant(IdxTy, Offset).getReg(0));
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeIsAddrSpace(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B,
|
|
unsigned AddrSpace) const {
|
|
B.setInstr(MI);
|
|
Register ApertureReg = getSegmentAperture(AddrSpace, MRI, B);
|
|
auto Hi32 = B.buildExtract(LLT::scalar(32), MI.getOperand(2).getReg(), 32);
|
|
B.buildICmp(ICmpInst::ICMP_EQ, MI.getOperand(0), Hi32, ApertureReg);
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
bool AMDGPULegalizerInfo::legalizeIntrinsic(MachineInstr &MI,
|
|
MachineRegisterInfo &MRI,
|
|
MachineIRBuilder &B) const {
|
|
// Replace the use G_BRCOND with the exec manipulate and branch pseudos.
|
|
switch (MI.getOperand(MI.getNumExplicitDefs()).getIntrinsicID()) {
|
|
case Intrinsic::amdgcn_if: {
|
|
if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI)) {
|
|
const SIRegisterInfo *TRI
|
|
= static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
|
|
|
|
B.setInstr(*BrCond);
|
|
Register Def = MI.getOperand(1).getReg();
|
|
Register Use = MI.getOperand(3).getReg();
|
|
B.buildInstr(AMDGPU::SI_IF)
|
|
.addDef(Def)
|
|
.addUse(Use)
|
|
.addMBB(BrCond->getOperand(1).getMBB());
|
|
|
|
MRI.setRegClass(Def, TRI->getWaveMaskRegClass());
|
|
MRI.setRegClass(Use, TRI->getWaveMaskRegClass());
|
|
MI.eraseFromParent();
|
|
BrCond->eraseFromParent();
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
case Intrinsic::amdgcn_loop: {
|
|
if (MachineInstr *BrCond = verifyCFIntrinsic(MI, MRI)) {
|
|
const SIRegisterInfo *TRI
|
|
= static_cast<const SIRegisterInfo *>(MRI.getTargetRegisterInfo());
|
|
|
|
B.setInstr(*BrCond);
|
|
Register Reg = MI.getOperand(2).getReg();
|
|
B.buildInstr(AMDGPU::SI_LOOP)
|
|
.addUse(Reg)
|
|
.addMBB(BrCond->getOperand(1).getMBB());
|
|
MI.eraseFromParent();
|
|
BrCond->eraseFromParent();
|
|
MRI.setRegClass(Reg, TRI->getWaveMaskRegClass());
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
case Intrinsic::amdgcn_kernarg_segment_ptr:
|
|
return legalizePreloadedArgIntrin(
|
|
MI, MRI, B, AMDGPUFunctionArgInfo::KERNARG_SEGMENT_PTR);
|
|
case Intrinsic::amdgcn_implicitarg_ptr:
|
|
return legalizeImplicitArgPtr(MI, MRI, B);
|
|
case Intrinsic::amdgcn_workitem_id_x:
|
|
return legalizePreloadedArgIntrin(MI, MRI, B,
|
|
AMDGPUFunctionArgInfo::WORKITEM_ID_X);
|
|
case Intrinsic::amdgcn_workitem_id_y:
|
|
return legalizePreloadedArgIntrin(MI, MRI, B,
|
|
AMDGPUFunctionArgInfo::WORKITEM_ID_Y);
|
|
case Intrinsic::amdgcn_workitem_id_z:
|
|
return legalizePreloadedArgIntrin(MI, MRI, B,
|
|
AMDGPUFunctionArgInfo::WORKITEM_ID_Z);
|
|
case Intrinsic::amdgcn_workgroup_id_x:
|
|
return legalizePreloadedArgIntrin(MI, MRI, B,
|
|
AMDGPUFunctionArgInfo::WORKGROUP_ID_X);
|
|
case Intrinsic::amdgcn_workgroup_id_y:
|
|
return legalizePreloadedArgIntrin(MI, MRI, B,
|
|
AMDGPUFunctionArgInfo::WORKGROUP_ID_Y);
|
|
case Intrinsic::amdgcn_workgroup_id_z:
|
|
return legalizePreloadedArgIntrin(MI, MRI, B,
|
|
AMDGPUFunctionArgInfo::WORKGROUP_ID_Z);
|
|
case Intrinsic::amdgcn_dispatch_ptr:
|
|
return legalizePreloadedArgIntrin(MI, MRI, B,
|
|
AMDGPUFunctionArgInfo::DISPATCH_PTR);
|
|
case Intrinsic::amdgcn_queue_ptr:
|
|
return legalizePreloadedArgIntrin(MI, MRI, B,
|
|
AMDGPUFunctionArgInfo::QUEUE_PTR);
|
|
case Intrinsic::amdgcn_implicit_buffer_ptr:
|
|
return legalizePreloadedArgIntrin(
|
|
MI, MRI, B, AMDGPUFunctionArgInfo::IMPLICIT_BUFFER_PTR);
|
|
case Intrinsic::amdgcn_dispatch_id:
|
|
return legalizePreloadedArgIntrin(MI, MRI, B,
|
|
AMDGPUFunctionArgInfo::DISPATCH_ID);
|
|
case Intrinsic::amdgcn_fdiv_fast:
|
|
return legalizeFDIVFast(MI, MRI, B);
|
|
case Intrinsic::amdgcn_is_shared:
|
|
return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::LOCAL_ADDRESS);
|
|
case Intrinsic::amdgcn_is_private:
|
|
return legalizeIsAddrSpace(MI, MRI, B, AMDGPUAS::PRIVATE_ADDRESS);
|
|
case Intrinsic::amdgcn_wavefrontsize: {
|
|
B.setInstr(MI);
|
|
B.buildConstant(MI.getOperand(0), ST.getWavefrontSize());
|
|
MI.eraseFromParent();
|
|
return true;
|
|
}
|
|
default:
|
|
return true;
|
|
}
|
|
|
|
return true;
|
|
}
|