forked from OSchip/llvm-project
781 lines
35 KiB
C++
781 lines
35 KiB
C++
//===-- DWARFCallFrameInfo.cpp ----------------------------------*- C++ -*-===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
|
|
// C Includes
|
|
// C++ Includes
|
|
#include <list>
|
|
|
|
#include "lldb/Core/Log.h"
|
|
#include "lldb/Core/Section.h"
|
|
#include "lldb/Core/ArchSpec.h"
|
|
#include "lldb/Core/Module.h"
|
|
#include "lldb/Core/Section.h"
|
|
#include "lldb/Host/Host.h"
|
|
#include "lldb/Symbol/DWARFCallFrameInfo.h"
|
|
#include "lldb/Symbol/ObjectFile.h"
|
|
#include "lldb/Symbol/UnwindPlan.h"
|
|
#include "lldb/Target/RegisterContext.h"
|
|
#include "lldb/Target/Thread.h"
|
|
|
|
using namespace lldb;
|
|
using namespace lldb_private;
|
|
|
|
DWARFCallFrameInfo::DWARFCallFrameInfo(ObjectFile& objfile, SectionSP& section_sp, lldb::RegisterKind reg_kind, bool is_eh_frame) :
|
|
m_objfile (objfile),
|
|
m_section_sp (section_sp),
|
|
m_reg_kind (reg_kind), // The flavor of registers that the CFI data uses (enum RegisterKind)
|
|
m_flags (),
|
|
m_cie_map (),
|
|
m_cfi_data (),
|
|
m_cfi_data_initialized (false),
|
|
m_fde_index (),
|
|
m_fde_index_initialized (false),
|
|
m_is_eh_frame (is_eh_frame)
|
|
{
|
|
}
|
|
|
|
DWARFCallFrameInfo::~DWARFCallFrameInfo()
|
|
{
|
|
}
|
|
|
|
|
|
bool
|
|
DWARFCallFrameInfo::GetAddressRange (Address addr, AddressRange &range)
|
|
{
|
|
FDEEntry fde_entry;
|
|
if (GetFDEEntryByAddress (addr, fde_entry) == false)
|
|
return false;
|
|
range = fde_entry.bounds;
|
|
return true;
|
|
}
|
|
|
|
bool
|
|
DWARFCallFrameInfo::GetUnwindPlan (Address addr, UnwindPlan& unwind_plan)
|
|
{
|
|
FDEEntry fde_entry;
|
|
if (GetFDEEntryByAddress (addr, fde_entry) == false)
|
|
return false;
|
|
return FDEToUnwindPlan (fde_entry.offset, addr, unwind_plan);
|
|
}
|
|
|
|
bool
|
|
DWARFCallFrameInfo::GetFDEEntryByAddress (Address addr, FDEEntry& fde_entry)
|
|
{
|
|
if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
|
|
return false;
|
|
GetFDEIndex();
|
|
|
|
struct FDEEntry searchfde;
|
|
searchfde.bounds = AddressRange (addr, 1);
|
|
|
|
std::vector<FDEEntry>::const_iterator idx;
|
|
if (m_fde_index.size() == 0)
|
|
return false;
|
|
|
|
idx = std::lower_bound (m_fde_index.begin(), m_fde_index.end(), searchfde);
|
|
if (idx == m_fde_index.end())
|
|
{
|
|
--idx;
|
|
}
|
|
if (idx != m_fde_index.begin() && idx->bounds.GetBaseAddress().GetOffset() != addr.GetOffset())
|
|
{
|
|
--idx;
|
|
}
|
|
if (idx->bounds.ContainsFileAddress (addr))
|
|
{
|
|
fde_entry = *idx;
|
|
return true;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
const DWARFCallFrameInfo::CIE*
|
|
DWARFCallFrameInfo::GetCIE(dw_offset_t cie_offset)
|
|
{
|
|
cie_map_t::iterator pos = m_cie_map.find(cie_offset);
|
|
|
|
if (pos != m_cie_map.end())
|
|
{
|
|
// Parse and cache the CIE
|
|
if (pos->second.get() == NULL)
|
|
pos->second = ParseCIE (cie_offset);
|
|
|
|
return pos->second.get();
|
|
}
|
|
return NULL;
|
|
}
|
|
|
|
DWARFCallFrameInfo::CIESP
|
|
DWARFCallFrameInfo::ParseCIE (const dw_offset_t cie_offset)
|
|
{
|
|
CIESP cie_sp(new CIE(cie_offset));
|
|
dw_offset_t offset = cie_offset;
|
|
if (m_cfi_data_initialized == false)
|
|
GetCFIData();
|
|
const uint32_t length = m_cfi_data.GetU32(&offset);
|
|
const dw_offset_t cie_id = m_cfi_data.GetU32(&offset);
|
|
const dw_offset_t end_offset = cie_offset + length + 4;
|
|
if (length > 0 && ((!m_is_eh_frame && cie_id == 0xfffffffful) || (m_is_eh_frame && cie_id == 0ul)))
|
|
{
|
|
size_t i;
|
|
// cie.offset = cie_offset;
|
|
// cie.length = length;
|
|
// cie.cieID = cieID;
|
|
cie_sp->ptr_encoding = DW_EH_PE_absptr;
|
|
cie_sp->version = m_cfi_data.GetU8(&offset);
|
|
|
|
for (i=0; i<CFI_AUG_MAX_SIZE; ++i)
|
|
{
|
|
cie_sp->augmentation[i] = m_cfi_data.GetU8(&offset);
|
|
if (cie_sp->augmentation[i] == '\0')
|
|
{
|
|
// Zero out remaining bytes in augmentation string
|
|
for (size_t j = i+1; j<CFI_AUG_MAX_SIZE; ++j)
|
|
cie_sp->augmentation[j] = '\0';
|
|
|
|
break;
|
|
}
|
|
}
|
|
|
|
if (i == CFI_AUG_MAX_SIZE && cie_sp->augmentation[CFI_AUG_MAX_SIZE-1] != '\0')
|
|
{
|
|
Host::SystemLog (Host::eSystemLogError, "CIE parse error: CIE augmentation string was too large for the fixed sized buffer of %d bytes.\n", CFI_AUG_MAX_SIZE);
|
|
return cie_sp;
|
|
}
|
|
cie_sp->code_align = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
cie_sp->data_align = (int32_t)m_cfi_data.GetSLEB128(&offset);
|
|
cie_sp->return_addr_reg_num = m_cfi_data.GetU8(&offset);
|
|
|
|
if (cie_sp->augmentation[0])
|
|
{
|
|
// Get the length of the eh_frame augmentation data
|
|
// which starts with a ULEB128 length in bytes
|
|
const size_t aug_data_len = (size_t)m_cfi_data.GetULEB128(&offset);
|
|
const size_t aug_data_end = offset + aug_data_len;
|
|
const size_t aug_str_len = strlen(cie_sp->augmentation);
|
|
// A 'z' may be present as the first character of the string.
|
|
// If present, the Augmentation Data field shall be present.
|
|
// The contents of the Augmentation Data shall be intepreted
|
|
// according to other characters in the Augmentation String.
|
|
if (cie_sp->augmentation[0] == 'z')
|
|
{
|
|
// Extract the Augmentation Data
|
|
size_t aug_str_idx = 0;
|
|
for (aug_str_idx = 1; aug_str_idx < aug_str_len; aug_str_idx++)
|
|
{
|
|
char aug = cie_sp->augmentation[aug_str_idx];
|
|
switch (aug)
|
|
{
|
|
case 'L':
|
|
// Indicates the presence of one argument in the
|
|
// Augmentation Data of the CIE, and a corresponding
|
|
// argument in the Augmentation Data of the FDE. The
|
|
// argument in the Augmentation Data of the CIE is
|
|
// 1-byte and represents the pointer encoding used
|
|
// for the argument in the Augmentation Data of the
|
|
// FDE, which is the address of a language-specific
|
|
// data area (LSDA). The size of the LSDA pointer is
|
|
// specified by the pointer encoding used.
|
|
m_cfi_data.GetU8(&offset);
|
|
break;
|
|
|
|
case 'P':
|
|
// Indicates the presence of two arguments in the
|
|
// Augmentation Data of the cie_sp-> The first argument
|
|
// is 1-byte and represents the pointer encoding
|
|
// used for the second argument, which is the
|
|
// address of a personality routine handler. The
|
|
// size of the personality routine pointer is
|
|
// specified by the pointer encoding used.
|
|
{
|
|
uint8_t arg_ptr_encoding = m_cfi_data.GetU8(&offset);
|
|
m_cfi_data.GetGNUEHPointer(&offset, arg_ptr_encoding, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS, LLDB_INVALID_ADDRESS);
|
|
}
|
|
break;
|
|
|
|
case 'R':
|
|
// A 'R' may be present at any position after the
|
|
// first character of the string. The Augmentation
|
|
// Data shall include a 1 byte argument that
|
|
// represents the pointer encoding for the address
|
|
// pointers used in the FDE.
|
|
cie_sp->ptr_encoding = m_cfi_data.GetU8(&offset);
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
else if (strcmp(cie_sp->augmentation, "eh") == 0)
|
|
{
|
|
// If the Augmentation string has the value "eh", then
|
|
// the EH Data field shall be present
|
|
}
|
|
|
|
// Set the offset to be the end of the augmentation data just in case
|
|
// we didn't understand any of the data.
|
|
offset = (uint32_t)aug_data_end;
|
|
}
|
|
|
|
if (end_offset > offset)
|
|
{
|
|
cie_sp->inst_offset = offset;
|
|
cie_sp->inst_length = end_offset - offset;
|
|
}
|
|
while (offset < end_offset)
|
|
{
|
|
uint8_t inst = m_cfi_data.GetU8(&offset);
|
|
uint8_t primary_opcode = inst & 0xC0;
|
|
uint8_t extended_opcode = inst & 0x3F;
|
|
|
|
if (extended_opcode == DW_CFA_def_cfa)
|
|
{
|
|
// Takes two unsigned LEB128 operands representing a register
|
|
// number and a (non-factored) offset. The required action
|
|
// is to define the current CFA rule to use the provided
|
|
// register and offset.
|
|
uint32_t reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
|
|
cie_sp->initial_row.SetCFARegister (reg_num);
|
|
cie_sp->initial_row.SetCFAOffset (op_offset);
|
|
continue;
|
|
}
|
|
if (primary_opcode == DW_CFA_offset)
|
|
{
|
|
// 0x80 - high 2 bits are 0x2, lower 6 bits are register.
|
|
// Takes two arguments: an unsigned LEB128 constant representing a
|
|
// factored offset and a register number. The required action is to
|
|
// change the rule for the register indicated by the register number
|
|
// to be an offset(N) rule with a value of
|
|
// (N = factored offset * data_align).
|
|
uint32_t reg_num = extended_opcode;
|
|
int op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * cie_sp->data_align;
|
|
UnwindPlan::Row::RegisterLocation reg_location;
|
|
reg_location.SetAtCFAPlusOffset(op_offset);
|
|
cie_sp->initial_row.SetRegisterInfo (reg_num, reg_location);
|
|
continue;
|
|
}
|
|
if (extended_opcode == DW_CFA_nop)
|
|
{
|
|
continue;
|
|
}
|
|
break; // Stop if we hit an unrecognized opcode
|
|
}
|
|
}
|
|
|
|
return cie_sp;
|
|
}
|
|
|
|
void
|
|
DWARFCallFrameInfo::GetCFIData()
|
|
{
|
|
if (m_cfi_data_initialized == false)
|
|
{
|
|
LogSP log(GetLogIfAllCategoriesSet (LIBLLDB_LOG_UNWIND));
|
|
if (log)
|
|
m_objfile.GetModule()->LogMessage(log.get(), "Reading EH frame info");
|
|
m_objfile.ReadSectionData (m_section_sp.get(), m_cfi_data);
|
|
m_cfi_data_initialized = true;
|
|
}
|
|
}
|
|
// Scan through the eh_frame or debug_frame section looking for FDEs and noting the start/end addresses
|
|
// of the functions and a pointer back to the function's FDE for later expansion.
|
|
// Internalize CIEs as we come across them.
|
|
|
|
void
|
|
DWARFCallFrameInfo::GetFDEIndex ()
|
|
{
|
|
if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
|
|
return;
|
|
|
|
if (m_fde_index_initialized)
|
|
return;
|
|
|
|
Mutex::Locker locker(m_fde_index_mutex);
|
|
|
|
if (m_fde_index_initialized) // if two threads hit the locker
|
|
return;
|
|
|
|
dw_offset_t offset = 0;
|
|
if (m_cfi_data_initialized == false)
|
|
GetCFIData();
|
|
while (m_cfi_data.ValidOffsetForDataOfSize (offset, 8))
|
|
{
|
|
const dw_offset_t current_entry = offset;
|
|
uint32_t len = m_cfi_data.GetU32 (&offset);
|
|
dw_offset_t next_entry = current_entry + len + 4;
|
|
dw_offset_t cie_id = m_cfi_data.GetU32 (&offset);
|
|
|
|
if (cie_id == 0 || cie_id == UINT32_MAX)
|
|
{
|
|
m_cie_map[current_entry] = ParseCIE (current_entry);
|
|
offset = next_entry;
|
|
continue;
|
|
}
|
|
|
|
const dw_offset_t cie_offset = current_entry + 4 - cie_id;
|
|
const CIE *cie = GetCIE (cie_offset);
|
|
if (cie)
|
|
{
|
|
const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
|
|
const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
|
|
const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
|
|
|
|
lldb::addr_t addr = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
|
|
lldb::addr_t length = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
|
|
FDEEntry fde;
|
|
fde.bounds = AddressRange (addr, length, m_objfile.GetSectionList());
|
|
fde.offset = current_entry;
|
|
m_fde_index.push_back(fde);
|
|
}
|
|
else
|
|
{
|
|
Host::SystemLog (Host::eSystemLogError,
|
|
"error: unable to find CIE at 0x%8.8x for cie_id = 0x%8.8x for entry at 0x%8.8x.\n",
|
|
cie_offset,
|
|
cie_id,
|
|
current_entry);
|
|
}
|
|
offset = next_entry;
|
|
}
|
|
std::sort (m_fde_index.begin(), m_fde_index.end());
|
|
m_fde_index_initialized = true;
|
|
}
|
|
|
|
bool
|
|
DWARFCallFrameInfo::FDEToUnwindPlan (dw_offset_t offset, Address startaddr, UnwindPlan& unwind_plan)
|
|
{
|
|
dw_offset_t current_entry = offset;
|
|
|
|
if (m_section_sp.get() == NULL || m_section_sp->IsEncrypted())
|
|
return false;
|
|
|
|
if (m_cfi_data_initialized == false)
|
|
GetCFIData();
|
|
|
|
uint32_t length = m_cfi_data.GetU32 (&offset);
|
|
dw_offset_t cie_offset = m_cfi_data.GetU32 (&offset);
|
|
|
|
assert (cie_offset != 0 && cie_offset != UINT32_MAX);
|
|
|
|
// Translate the CIE_id from the eh_frame format, which
|
|
// is relative to the FDE offset, into a __eh_frame section
|
|
// offset
|
|
if (m_is_eh_frame)
|
|
{
|
|
unwind_plan.SetSourceName ("eh_frame CFI");
|
|
cie_offset = current_entry + 4 - cie_offset;
|
|
}
|
|
else
|
|
{
|
|
unwind_plan.SetSourceName ("DWARF CFI");
|
|
}
|
|
|
|
const CIE *cie = GetCIE (cie_offset);
|
|
assert (cie != NULL);
|
|
|
|
const dw_offset_t end_offset = current_entry + length + 4;
|
|
|
|
const lldb::addr_t pc_rel_addr = m_section_sp->GetFileAddress();
|
|
const lldb::addr_t text_addr = LLDB_INVALID_ADDRESS;
|
|
const lldb::addr_t data_addr = LLDB_INVALID_ADDRESS;
|
|
lldb::addr_t range_base = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding, pc_rel_addr, text_addr, data_addr);
|
|
lldb::addr_t range_len = m_cfi_data.GetGNUEHPointer(&offset, cie->ptr_encoding & DW_EH_PE_MASK_ENCODING, pc_rel_addr, text_addr, data_addr);
|
|
AddressRange range (range_base, m_objfile.GetAddressByteSize(), m_objfile.GetSectionList());
|
|
range.SetByteSize (range_len);
|
|
|
|
if (cie->augmentation[0] == 'z')
|
|
{
|
|
uint32_t aug_data_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
offset += aug_data_len;
|
|
}
|
|
|
|
uint32_t reg_num = 0;
|
|
int32_t op_offset = 0;
|
|
uint32_t code_align = cie->code_align;
|
|
int32_t data_align = cie->data_align;
|
|
|
|
unwind_plan.SetPlanValidAddressRange (range);
|
|
UnwindPlan::Row *cie_initial_row = new UnwindPlan::Row;
|
|
*cie_initial_row = cie->initial_row;
|
|
UnwindPlan::RowSP row(cie_initial_row);
|
|
|
|
unwind_plan.SetRegisterKind (m_reg_kind);
|
|
unwind_plan.SetReturnAddressRegister (cie->return_addr_reg_num);
|
|
|
|
UnwindPlan::Row::RegisterLocation reg_location;
|
|
while (m_cfi_data.ValidOffset(offset) && offset < end_offset)
|
|
{
|
|
uint8_t inst = m_cfi_data.GetU8(&offset);
|
|
uint8_t primary_opcode = inst & 0xC0;
|
|
uint8_t extended_opcode = inst & 0x3F;
|
|
|
|
if (primary_opcode)
|
|
{
|
|
switch (primary_opcode)
|
|
{
|
|
case DW_CFA_advance_loc : // (Row Creation Instruction)
|
|
{ // 0x40 - high 2 bits are 0x1, lower 6 bits are delta
|
|
// takes a single argument that represents a constant delta. The
|
|
// required action is to create a new table row with a location
|
|
// value that is computed by taking the current entry's location
|
|
// value and adding (delta * code_align). All other
|
|
// values in the new row are initially identical to the current row.
|
|
unwind_plan.AppendRow(row);
|
|
UnwindPlan::Row *newrow = new UnwindPlan::Row;
|
|
*newrow = *row.get();
|
|
row.reset (newrow);
|
|
row->SlideOffset(extended_opcode * code_align);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_offset :
|
|
{ // 0x80 - high 2 bits are 0x2, lower 6 bits are register
|
|
// takes two arguments: an unsigned LEB128 constant representing a
|
|
// factored offset and a register number. The required action is to
|
|
// change the rule for the register indicated by the register number
|
|
// to be an offset(N) rule with a value of
|
|
// (N = factored offset * data_align).
|
|
reg_num = extended_opcode;
|
|
op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
|
|
reg_location.SetAtCFAPlusOffset(op_offset);
|
|
row->SetRegisterInfo (reg_num, reg_location);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_restore :
|
|
{ // 0xC0 - high 2 bits are 0x3, lower 6 bits are register
|
|
// takes a single argument that represents a register number. The
|
|
// required action is to change the rule for the indicated register
|
|
// to the rule assigned it by the initial_instructions in the CIE.
|
|
reg_num = extended_opcode;
|
|
// We only keep enough register locations around to
|
|
// unwind what is in our thread, and these are organized
|
|
// by the register index in that state, so we need to convert our
|
|
// GCC register number from the EH frame info, to a register index
|
|
|
|
if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
|
|
row->SetRegisterInfo (reg_num, reg_location);
|
|
}
|
|
break;
|
|
}
|
|
}
|
|
else
|
|
{
|
|
switch (extended_opcode)
|
|
{
|
|
case DW_CFA_nop : // 0x0
|
|
break;
|
|
|
|
case DW_CFA_set_loc : // 0x1 (Row Creation Instruction)
|
|
{
|
|
// DW_CFA_set_loc takes a single argument that represents an address.
|
|
// The required action is to create a new table row using the
|
|
// specified address as the location. All other values in the new row
|
|
// are initially identical to the current row. The new location value
|
|
// should always be greater than the current one.
|
|
unwind_plan.AppendRow(row);
|
|
UnwindPlan::Row *newrow = new UnwindPlan::Row;
|
|
*newrow = *row.get();
|
|
row.reset (newrow);
|
|
row->SetOffset(m_cfi_data.GetPointer(&offset) - startaddr.GetFileAddress());
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_advance_loc1 : // 0x2 (Row Creation Instruction)
|
|
{
|
|
// takes a single uword argument that represents a constant delta.
|
|
// This instruction is identical to DW_CFA_advance_loc except for the
|
|
// encoding and size of the delta argument.
|
|
unwind_plan.AppendRow(row);
|
|
UnwindPlan::Row *newrow = new UnwindPlan::Row;
|
|
*newrow = *row.get();
|
|
row.reset (newrow);
|
|
row->SlideOffset (m_cfi_data.GetU8(&offset) * code_align);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_advance_loc2 : // 0x3 (Row Creation Instruction)
|
|
{
|
|
// takes a single uword argument that represents a constant delta.
|
|
// This instruction is identical to DW_CFA_advance_loc except for the
|
|
// encoding and size of the delta argument.
|
|
unwind_plan.AppendRow(row);
|
|
UnwindPlan::Row *newrow = new UnwindPlan::Row;
|
|
*newrow = *row.get();
|
|
row.reset (newrow);
|
|
row->SlideOffset (m_cfi_data.GetU16(&offset) * code_align);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_advance_loc4 : // 0x4 (Row Creation Instruction)
|
|
{
|
|
// takes a single uword argument that represents a constant delta.
|
|
// This instruction is identical to DW_CFA_advance_loc except for the
|
|
// encoding and size of the delta argument.
|
|
unwind_plan.AppendRow(row);
|
|
UnwindPlan::Row *newrow = new UnwindPlan::Row;
|
|
*newrow = *row.get();
|
|
row.reset (newrow);
|
|
row->SlideOffset (m_cfi_data.GetU32(&offset) * code_align);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_offset_extended : // 0x5
|
|
{
|
|
// takes two unsigned LEB128 arguments representing a register number
|
|
// and a factored offset. This instruction is identical to DW_CFA_offset
|
|
// except for the encoding and size of the register argument.
|
|
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
op_offset = (int32_t)m_cfi_data.GetULEB128(&offset) * data_align;
|
|
reg_location.SetAtCFAPlusOffset(op_offset);
|
|
row->SetRegisterInfo (reg_num, reg_location);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_restore_extended : // 0x6
|
|
{
|
|
// takes a single unsigned LEB128 argument that represents a register
|
|
// number. This instruction is identical to DW_CFA_restore except for
|
|
// the encoding and size of the register argument.
|
|
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
if (unwind_plan.IsValidRowIndex(0) && unwind_plan.GetRowAtIndex(0)->GetRegisterInfo(reg_num, reg_location))
|
|
row->SetRegisterInfo (reg_num, reg_location);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_undefined : // 0x7
|
|
{
|
|
// takes a single unsigned LEB128 argument that represents a register
|
|
// number. The required action is to set the rule for the specified
|
|
// register to undefined.
|
|
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
reg_location.SetUndefined();
|
|
row->SetRegisterInfo (reg_num, reg_location);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_same_value : // 0x8
|
|
{
|
|
// takes a single unsigned LEB128 argument that represents a register
|
|
// number. The required action is to set the rule for the specified
|
|
// register to same value.
|
|
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
reg_location.SetSame();
|
|
row->SetRegisterInfo (reg_num, reg_location);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_register : // 0x9
|
|
{
|
|
// takes two unsigned LEB128 arguments representing register numbers.
|
|
// The required action is to set the rule for the first register to be
|
|
// the second register.
|
|
|
|
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
uint32_t other_reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
reg_location.SetInRegister(other_reg_num);
|
|
row->SetRegisterInfo (reg_num, reg_location);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_remember_state : // 0xA
|
|
{
|
|
// These instructions define a stack of information. Encountering the
|
|
// DW_CFA_remember_state instruction means to save the rules for every
|
|
// register on the current row on the stack. Encountering the
|
|
// DW_CFA_restore_state instruction means to pop the set of rules off
|
|
// the stack and place them in the current row. (This operation is
|
|
// useful for compilers that move epilogue code into the body of a
|
|
// function.)
|
|
unwind_plan.AppendRow (row);
|
|
UnwindPlan::Row *newrow = new UnwindPlan::Row;
|
|
*newrow = *row.get();
|
|
row.reset (newrow);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_restore_state : // 0xB
|
|
// These instructions define a stack of information. Encountering the
|
|
// DW_CFA_remember_state instruction means to save the rules for every
|
|
// register on the current row on the stack. Encountering the
|
|
// DW_CFA_restore_state instruction means to pop the set of rules off
|
|
// the stack and place them in the current row. (This operation is
|
|
// useful for compilers that move epilogue code into the body of a
|
|
// function.)
|
|
{
|
|
row = unwind_plan.GetRowAtIndex(unwind_plan.GetRowCount() - 1);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_def_cfa : // 0xC (CFA Definition Instruction)
|
|
{
|
|
// Takes two unsigned LEB128 operands representing a register
|
|
// number and a (non-factored) offset. The required action
|
|
// is to define the current CFA rule to use the provided
|
|
// register and offset.
|
|
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
|
|
row->SetCFARegister (reg_num);
|
|
row->SetCFAOffset (op_offset);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_def_cfa_register : // 0xD (CFA Definition Instruction)
|
|
{
|
|
// takes a single unsigned LEB128 argument representing a register
|
|
// number. The required action is to define the current CFA rule to
|
|
// use the provided register (but to keep the old offset).
|
|
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
row->SetCFARegister (reg_num);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_def_cfa_offset : // 0xE (CFA Definition Instruction)
|
|
{
|
|
// Takes a single unsigned LEB128 operand representing a
|
|
// (non-factored) offset. The required action is to define
|
|
// the current CFA rule to use the provided offset (but
|
|
// to keep the old register).
|
|
op_offset = (int32_t)m_cfi_data.GetULEB128(&offset);
|
|
row->SetCFAOffset (op_offset);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_def_cfa_expression : // 0xF (CFA Definition Instruction)
|
|
{
|
|
size_t block_len = (size_t)m_cfi_data.GetULEB128(&offset);
|
|
offset += (uint32_t)block_len;
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_expression : // 0x10
|
|
{
|
|
// Takes two operands: an unsigned LEB128 value representing
|
|
// a register number, and a DW_FORM_block value representing a DWARF
|
|
// expression. The required action is to change the rule for the
|
|
// register indicated by the register number to be an expression(E)
|
|
// rule where E is the DWARF expression. That is, the DWARF
|
|
// expression computes the address. The value of the CFA is
|
|
// pushed on the DWARF evaluation stack prior to execution of
|
|
// the DWARF expression.
|
|
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
const uint8_t *block_data = (uint8_t *)m_cfi_data.GetData(&offset, block_len);
|
|
|
|
reg_location.SetAtDWARFExpression(block_data, block_len);
|
|
row->SetRegisterInfo (reg_num, reg_location);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_offset_extended_sf : // 0x11
|
|
{
|
|
// takes two operands: an unsigned LEB128 value representing a
|
|
// register number and a signed LEB128 factored offset. This
|
|
// instruction is identical to DW_CFA_offset_extended except
|
|
//that the second operand is signed and factored.
|
|
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
|
|
reg_location.SetAtCFAPlusOffset(op_offset);
|
|
row->SetRegisterInfo (reg_num, reg_location);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_def_cfa_sf : // 0x12 (CFA Definition Instruction)
|
|
{
|
|
// Takes two operands: an unsigned LEB128 value representing
|
|
// a register number and a signed LEB128 factored offset.
|
|
// This instruction is identical to DW_CFA_def_cfa except
|
|
// that the second operand is signed and factored.
|
|
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
|
|
row->SetCFARegister (reg_num);
|
|
row->SetCFAOffset (op_offset);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_def_cfa_offset_sf : // 0x13 (CFA Definition Instruction)
|
|
{
|
|
// takes a signed LEB128 operand representing a factored
|
|
// offset. This instruction is identical to DW_CFA_def_cfa_offset
|
|
// except that the operand is signed and factored.
|
|
op_offset = (int32_t)m_cfi_data.GetSLEB128(&offset) * data_align;
|
|
row->SetCFAOffset (op_offset);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_val_expression : // 0x16
|
|
{
|
|
// takes two operands: an unsigned LEB128 value representing a register
|
|
// number, and a DW_FORM_block value representing a DWARF expression.
|
|
// The required action is to change the rule for the register indicated
|
|
// by the register number to be a val_expression(E) rule where E is the
|
|
// DWARF expression. That is, the DWARF expression computes the value of
|
|
// the given register. The value of the CFA is pushed on the DWARF
|
|
// evaluation stack prior to execution of the DWARF expression.
|
|
reg_num = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
uint32_t block_len = (uint32_t)m_cfi_data.GetULEB128(&offset);
|
|
const uint8_t* block_data = (uint8_t*)m_cfi_data.GetData(&offset, block_len);
|
|
//#if defined(__i386__) || defined(__x86_64__)
|
|
// // The EH frame info for EIP and RIP contains code that looks for traps to
|
|
// // be a specific type and increments the PC.
|
|
// // For i386:
|
|
// // DW_CFA_val_expression where:
|
|
// // eip = DW_OP_breg6(+28), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x34),
|
|
// // DW_OP_deref, DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref,
|
|
// // DW_OP_dup, DW_OP_lit3, DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne,
|
|
// // DW_OP_and, DW_OP_plus
|
|
// // This basically does a:
|
|
// // eip = ucontenxt.mcontext32->gpr.eip;
|
|
// // if (ucontenxt.mcontext32->exc.trapno != 3 && ucontenxt.mcontext32->exc.trapno != 4)
|
|
// // eip++;
|
|
// //
|
|
// // For x86_64:
|
|
// // DW_CFA_val_expression where:
|
|
// // rip = DW_OP_breg3(+48), DW_OP_deref, DW_OP_dup, DW_OP_plus_uconst(0x90), DW_OP_deref,
|
|
// // DW_OP_swap, DW_OP_plus_uconst(0), DW_OP_deref_size(4), DW_OP_dup, DW_OP_lit3,
|
|
// // DW_OP_ne, DW_OP_swap, DW_OP_lit4, DW_OP_ne, DW_OP_and, DW_OP_plus
|
|
// // This basically does a:
|
|
// // rip = ucontenxt.mcontext64->gpr.rip;
|
|
// // if (ucontenxt.mcontext64->exc.trapno != 3 && ucontenxt.mcontext64->exc.trapno != 4)
|
|
// // rip++;
|
|
// // The trap comparisons and increments are not needed as it hoses up the unwound PC which
|
|
// // is expected to point at least past the instruction that causes the fault/trap. So we
|
|
// // take it out by trimming the expression right at the first "DW_OP_swap" opcodes
|
|
// if (block_data != NULL && thread->GetPCRegNum(Thread::GCC) == reg_num)
|
|
// {
|
|
// if (thread->Is64Bit())
|
|
// {
|
|
// if (block_len > 9 && block_data[8] == DW_OP_swap && block_data[9] == DW_OP_plus_uconst)
|
|
// block_len = 8;
|
|
// }
|
|
// else
|
|
// {
|
|
// if (block_len > 8 && block_data[7] == DW_OP_swap && block_data[8] == DW_OP_plus_uconst)
|
|
// block_len = 7;
|
|
// }
|
|
// }
|
|
//#endif
|
|
reg_location.SetIsDWARFExpression(block_data, block_len);
|
|
row->SetRegisterInfo (reg_num, reg_location);
|
|
}
|
|
break;
|
|
|
|
case DW_CFA_val_offset : // 0x14
|
|
case DW_CFA_val_offset_sf : // 0x15
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
unwind_plan.AppendRow(row);
|
|
|
|
return true;
|
|
}
|