llvm-project/lld/ELF/Relocations.h

216 lines
6.0 KiB
C++

//===- Relocations.h -------------------------------------------*- C++ -*-===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#ifndef LLD_ELF_RELOCATIONS_H
#define LLD_ELF_RELOCATIONS_H
#include "lld/Common/LLVM.h"
#include "llvm/ADT/DenseMap.h"
#include <map>
#include <vector>
namespace lld {
namespace elf {
class Symbol;
class InputSection;
class InputSectionBase;
class OutputSection;
class SectionBase;
// Represents a relocation type, such as R_X86_64_PC32 or R_ARM_THM_CALL.
typedef uint32_t RelType;
// List of target-independent relocation types. Relocations read
// from files are converted to these types so that the main code
// doesn't have to know about architecture-specific details.
enum RelExpr {
R_INVALID,
R_ABS,
R_ADDEND,
R_ARM_SBREL,
R_GOT,
R_GOTONLY_PC,
R_GOTONLY_PC_FROM_END,
R_GOTREL,
R_GOTREL_FROM_END,
R_GOT_FROM_END,
R_GOT_OFF,
R_GOT_PAGE_PC,
R_GOT_PC,
R_HINT,
R_MIPS_GOTREL,
R_MIPS_GOT_GP,
R_MIPS_GOT_GP_PC,
R_MIPS_GOT_LOCAL_PAGE,
R_MIPS_GOT_OFF,
R_MIPS_GOT_OFF32,
R_MIPS_TLSGD,
R_MIPS_TLSLD,
R_NEG_TLS,
R_NONE,
R_PAGE_PC,
R_PC,
R_PLT,
R_PLT_PAGE_PC,
R_PLT_PC,
R_PPC_CALL,
R_PPC_CALL_PLT,
R_PPC_TOC,
R_RELAX_GOT_PC,
R_RELAX_GOT_PC_NOPIC,
R_RELAX_TLS_GD_TO_IE,
R_RELAX_TLS_GD_TO_IE_ABS,
R_RELAX_TLS_GD_TO_IE_END,
R_RELAX_TLS_GD_TO_IE_GOT_OFF,
R_RELAX_TLS_GD_TO_IE_PAGE_PC,
R_RELAX_TLS_GD_TO_LE,
R_RELAX_TLS_GD_TO_LE_NEG,
R_RELAX_TLS_IE_TO_LE,
R_RELAX_TLS_LD_TO_LE,
R_RELAX_TLS_LD_TO_LE_ABS,
R_RISCV_PC_INDIRECT,
R_SIZE,
R_TLS,
R_TLSDESC,
R_TLSDESC_CALL,
R_TLSDESC_PAGE,
R_TLSGD_GOT,
R_TLSGD_GOT_FROM_END,
R_TLSGD_PC,
R_TLSIE_HINT,
R_TLSLD_GOT,
R_TLSLD_GOT_FROM_END,
R_TLSLD_GOT_OFF,
R_TLSLD_HINT,
R_TLSLD_PC,
};
// Build a bitmask with one bit set for each RelExpr.
//
// Constexpr function arguments can't be used in static asserts, so we
// use template arguments to build the mask.
// But function template partial specializations don't exist (needed
// for base case of the recursion), so we need a dummy struct.
template <RelExpr... Exprs> struct RelExprMaskBuilder {
static inline uint64_t build() { return 0; }
};
// Specialization for recursive case.
template <RelExpr Head, RelExpr... Tail>
struct RelExprMaskBuilder<Head, Tail...> {
static inline uint64_t build() {
static_assert(0 <= Head && Head < 64,
"RelExpr is too large for 64-bit mask!");
return (uint64_t(1) << Head) | RelExprMaskBuilder<Tail...>::build();
}
};
// Return true if `Expr` is one of `Exprs`.
// There are fewer than 64 RelExpr's, so we can represent any set of
// RelExpr's as a constant bit mask and test for membership with a
// couple cheap bitwise operations.
template <RelExpr... Exprs> bool isRelExprOneOf(RelExpr Expr) {
assert(0 <= Expr && (int)Expr < 64 &&
"RelExpr is too large for 64-bit mask!");
return (uint64_t(1) << Expr) & RelExprMaskBuilder<Exprs...>::build();
}
// Architecture-neutral representation of relocation.
struct Relocation {
RelExpr Expr;
RelType Type;
uint64_t Offset;
int64_t Addend;
Symbol *Sym;
};
struct RelocationOffsetComparator {
bool operator()(const Relocation &Lhs, const Relocation &Rhs) {
return Lhs.Offset < Rhs.Offset;
}
// For std::lower_bound, std::upper_bound, std::equal_range.
bool operator()(const Relocation &Rel, uint64_t Val) {
return Rel.Offset < Val;
}
bool operator()(uint64_t Val, const Relocation &Rel) {
return Val < Rel.Offset;
}
};
template <class ELFT> void scanRelocations(InputSectionBase &);
class ThunkSection;
class Thunk;
struct InputSectionDescription;
class ThunkCreator {
public:
// Return true if Thunks have been added to OutputSections
bool createThunks(ArrayRef<OutputSection *> OutputSections);
// The number of completed passes of createThunks this permits us
// to do one time initialization on Pass 0 and put a limit on the
// number of times it can be called to prevent infinite loops.
uint32_t Pass = 0;
private:
void mergeThunks(ArrayRef<OutputSection *> OutputSections);
ThunkSection *getISDThunkSec(OutputSection *OS, InputSection *IS,
InputSectionDescription *ISD, uint32_t Type,
uint64_t Src);
ThunkSection *getISThunkSec(InputSection *IS);
void createInitialThunkSections(ArrayRef<OutputSection *> OutputSections);
void forEachInputSectionDescription(
ArrayRef<OutputSection *> OutputSections,
llvm::function_ref<void(OutputSection *, InputSectionDescription *)> Fn);
std::pair<Thunk *, bool> getThunk(Symbol &Sym, RelType Type, uint64_t Src);
ThunkSection *addThunkSection(OutputSection *OS, InputSectionDescription *,
uint64_t Off);
bool normalizeExistingThunk(Relocation &Rel, uint64_t Src);
// Record all the available Thunks for a Symbol
llvm::DenseMap<std::pair<SectionBase *, uint64_t>, std::vector<Thunk *>>
ThunkedSymbolsBySection;
llvm::DenseMap<Symbol *, std::vector<Thunk *>> ThunkedSymbols;
// Find a Thunk from the Thunks symbol definition, we can use this to find
// the Thunk from a relocation to the Thunks symbol definition.
llvm::DenseMap<Symbol *, Thunk *> Thunks;
// Track InputSections that have an inline ThunkSection placed in front
// an inline ThunkSection may have control fall through to the section below
// so we need to make sure that there is only one of them.
// The Mips LA25 Thunk is an example of an inline ThunkSection.
llvm::DenseMap<InputSection *, ThunkSection *> ThunkedSections;
};
// Return a int64_t to make sure we get the sign extension out of the way as
// early as possible.
template <class ELFT>
static inline int64_t getAddend(const typename ELFT::Rel &Rel) {
return 0;
}
template <class ELFT>
static inline int64_t getAddend(const typename ELFT::Rela &Rel) {
return Rel.r_addend;
}
} // namespace elf
} // namespace lld
#endif