forked from OSchip/llvm-project
239 lines
7.1 KiB
LLVM
239 lines
7.1 KiB
LLVM
; We specify -mcpu explicitly to avoid instruction reordering that happens on
|
|
; some setups (e.g., Atom) from affecting the output.
|
|
; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32
|
|
; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86
|
|
; RUN: llc < %s -mcpu=core2 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN
|
|
; RUN: llc < %s -mcpu=core2 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX
|
|
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-win32 | FileCheck %s -check-prefix=WIN32
|
|
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-mingw32 | FileCheck %s -check-prefix=MINGW_X86
|
|
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i686-pc-cygwin | FileCheck %s -check-prefix=CYGWIN
|
|
; RUN: llc < %s -mcpu=core2 -O0 -mtriple=i386-pc-linux | FileCheck %s -check-prefix=LINUX
|
|
|
|
; The SysV ABI used by most Unixes and Mingw on x86 specifies that an sret pointer
|
|
; is callee-cleanup. However, in MSVC's cdecl calling convention, sret pointer
|
|
; arguments are caller-cleanup like normal arguments.
|
|
|
|
define void @sret1(i8* sret %x) nounwind {
|
|
entry:
|
|
; WIN32-LABEL: _sret1:
|
|
; WIN32: movb $42, (%eax)
|
|
; WIN32-NOT: popl %eax
|
|
; WIN32: {{retl$}}
|
|
|
|
; MINGW_X86-LABEL: _sret1:
|
|
; MINGW_X86: {{retl$}}
|
|
|
|
; CYGWIN-LABEL: _sret1:
|
|
; CYGWIN: retl $4
|
|
|
|
; LINUX-LABEL: sret1:
|
|
; LINUX: retl $4
|
|
|
|
store i8 42, i8* %x, align 4
|
|
ret void
|
|
}
|
|
|
|
define void @sret2(i8* sret %x, i8 %y) nounwind {
|
|
entry:
|
|
; WIN32-LABEL: _sret2:
|
|
; WIN32: movb {{.*}}, (%eax)
|
|
; WIN32-NOT: popl %eax
|
|
; WIN32: {{retl$}}
|
|
|
|
; MINGW_X86-LABEL: _sret2:
|
|
; MINGW_X86: {{retl$}}
|
|
|
|
; CYGWIN-LABEL: _sret2:
|
|
; CYGWIN: retl $4
|
|
|
|
; LINUX-LABEL: sret2:
|
|
; LINUX: retl $4
|
|
|
|
store i8 %y, i8* %x
|
|
ret void
|
|
}
|
|
|
|
define void @sret3(i8* sret %x, i8* %y) nounwind {
|
|
entry:
|
|
; WIN32-LABEL: _sret3:
|
|
; WIN32: movb $42, (%eax)
|
|
; WIN32-NOT: movb $13, (%eax)
|
|
; WIN32-NOT: popl %eax
|
|
; WIN32: {{retl$}}
|
|
|
|
; MINGW_X86-LABEL: _sret3:
|
|
; MINGW_X86: {{retl$}}
|
|
|
|
; CYGWIN-LABEL: _sret3:
|
|
; CYGWIN: retl $4
|
|
|
|
; LINUX-LABEL: sret3:
|
|
; LINUX: retl $4
|
|
|
|
store i8 42, i8* %x
|
|
store i8 13, i8* %y
|
|
ret void
|
|
}
|
|
|
|
; PR15556
|
|
%struct.S4 = type { i32, i32, i32 }
|
|
|
|
define void @sret4(%struct.S4* noalias sret %agg.result) {
|
|
entry:
|
|
; WIN32-LABEL: _sret4:
|
|
; WIN32: movl $42, (%eax)
|
|
; WIN32-NOT: popl %eax
|
|
; WIN32: {{retl$}}
|
|
|
|
; MINGW_X86-LABEL: _sret4:
|
|
; MINGW_X86: {{retl$}}
|
|
|
|
; CYGWIN-LABEL: _sret4:
|
|
; CYGWIN: retl $4
|
|
|
|
; LINUX-LABEL: sret4:
|
|
; LINUX: retl $4
|
|
|
|
%x = getelementptr inbounds %struct.S4, %struct.S4* %agg.result, i32 0, i32 0
|
|
store i32 42, i32* %x, align 4
|
|
ret void
|
|
}
|
|
|
|
%struct.S5 = type { i32 }
|
|
%class.C5 = type { i8 }
|
|
|
|
define x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* noalias sret %agg.result, %class.C5* %this) {
|
|
entry:
|
|
%this.addr = alloca %class.C5*, align 4
|
|
store %class.C5* %this, %class.C5** %this.addr, align 4
|
|
%this1 = load %class.C5*, %class.C5** %this.addr
|
|
%x = getelementptr inbounds %struct.S5, %struct.S5* %agg.result, i32 0, i32 0
|
|
store i32 42, i32* %x, align 4
|
|
ret void
|
|
; WIN32-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
|
|
; MINGW_X86-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
|
|
; CYGWIN-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
|
|
; LINUX-LABEL: {{^}}"?foo@C5@@QAE?AUS5@@XZ":
|
|
|
|
; The address of the return structure is passed as an implicit parameter.
|
|
; In the -O0 build, %eax is spilled at the beginning of the function, hence we
|
|
; should match both 4(%esp) and 8(%esp).
|
|
; WIN32: {{[48]}}(%esp), %eax
|
|
; WIN32: movl $42, (%eax)
|
|
; WIN32: retl $4
|
|
}
|
|
|
|
define void @call_foo5() {
|
|
entry:
|
|
%c = alloca %class.C5, align 1
|
|
%s = alloca %struct.S5, align 4
|
|
call x86_thiscallcc void @"\01?foo@C5@@QAE?AUS5@@XZ"(%struct.S5* sret %s, %class.C5* %c)
|
|
; WIN32-LABEL: {{^}}_call_foo5:
|
|
; MINGW_X86-LABEL: {{^}}_call_foo5:
|
|
; CYGWIN-LABEL: {{^}}_call_foo5:
|
|
; LINUX-LABEL: {{^}}call_foo5:
|
|
|
|
|
|
; Load the address of the result and put it onto stack
|
|
; The this pointer goes to ECX.
|
|
; (through %ecx in the -O0 build).
|
|
; WIN32-DAG: leal {{[0-9]*}}(%esp), %e{{[a-d]}}x
|
|
; WIN32-DAG: {{leal [1-9]+\(%esp\)|movl %esp}}, %ecx
|
|
; WIN32-DAG: {{pushl %e[a-d]x|movl %e[a-d]x, \(%esp\)}}
|
|
; WIN32-NEXT: calll "?foo@C5@@QAE?AUS5@@XZ"
|
|
; WIN32: retl
|
|
ret void
|
|
}
|
|
|
|
|
|
%struct.test6 = type { i32, i32, i32 }
|
|
define void @test6_f(%struct.test6* %x) nounwind {
|
|
; WIN32-LABEL: _test6_f:
|
|
; MINGW_X86-LABEL: _test6_f:
|
|
; CYGWIN-LABEL: _test6_f:
|
|
; LINUX-LABEL: test6_f:
|
|
|
|
; The %x argument is moved to %ecx. It will be the this pointer.
|
|
; WIN32-DAG: movl {{16|20}}(%esp), %ecx
|
|
|
|
|
|
; The sret pointer is (%esp)
|
|
; WIN32-DAG: {{leal 4\(%esp\)|movl %esp}}, %eax
|
|
; WIN32-DAG: {{pushl %eax|movl %eax, \(%esp\)}}
|
|
|
|
; The sret pointer is %ecx
|
|
; The %x argument is moved to (%esp). It will be the this pointer.
|
|
; MINGW_X86-DAG: {{leal 4\(%esp\)|movl %esp}}, %ecx
|
|
; MINGW_X86-DAG: {{pushl 16\(%esp\)|movl %eax, \(%esp\)}}
|
|
; MINGW_X86-NEXT: calll _test6_g
|
|
|
|
; CYGWIN-DAG: {{leal 4\(%esp\)|movl %esp}}, %ecx
|
|
; CYGWIN-DAG: {{pushl 16\(%esp\)|movl %eax, \(%esp\)}}
|
|
; CYGWIN-NEXT: calll _test6_g
|
|
|
|
%tmp = alloca %struct.test6, align 4
|
|
call x86_thiscallcc void @test6_g(%struct.test6* sret %tmp, %struct.test6* %x)
|
|
ret void
|
|
}
|
|
declare x86_thiscallcc void @test6_g(%struct.test6* sret, %struct.test6*)
|
|
|
|
; Flipping the parameters at the IR level generates the same code.
|
|
%struct.test7 = type { i32, i32, i32 }
|
|
define void @test7_f(%struct.test7* %x) nounwind {
|
|
; WIN32-LABEL: _test7_f:
|
|
; MINGW_X86-LABEL: _test7_f:
|
|
; CYGWIN-LABEL: _test7_f:
|
|
; LINUX-LABEL: test7_f:
|
|
|
|
; The %x argument is moved to %ecx on all OSs. It will be the this pointer.
|
|
; WIN32: movl {{16|20}}(%esp), %ecx
|
|
; MINGW_X86: movl {{16|20}}(%esp), %ecx
|
|
; CYGWIN: movl {{16|20}}(%esp), %ecx
|
|
|
|
; The sret pointer is (%esp)
|
|
; WIN32: {{leal 4\(%esp\)|movl %esp}}, %eax
|
|
; WIN32-NEXT: {{pushl %eax|movl %eax, \(%esp\)}}
|
|
; MINGW_X86: {{leal 4\(%esp\)|movl %esp}}, %eax
|
|
; MINGW_X86-NEXT: {{pushl %eax|movl %eax, \(%esp\)}}
|
|
; CYGWIN: {{leal 4\(%esp\)|movl %esp}}, %eax
|
|
; CYGWIN-NEXT: {{pushl %eax|movl %eax, \(%esp\)}}
|
|
|
|
%tmp = alloca %struct.test7, align 4
|
|
call x86_thiscallcc void @test7_g(%struct.test7* %x, %struct.test7* sret %tmp)
|
|
ret void
|
|
}
|
|
|
|
define x86_thiscallcc void @test7_g(%struct.test7* %in, %struct.test7* sret %out) {
|
|
%s = getelementptr %struct.test7, %struct.test7* %in, i32 0, i32 0
|
|
%d = getelementptr %struct.test7, %struct.test7* %out, i32 0, i32 0
|
|
%v = load i32, i32* %s
|
|
store i32 %v, i32* %d
|
|
call void @clobber_eax()
|
|
ret void
|
|
|
|
; Make sure we return the second parameter in %eax.
|
|
; WIN32-LABEL: _test7_g:
|
|
; WIN32: calll _clobber_eax
|
|
; WIN32: movl {{.*}}, %eax
|
|
; WIN32: retl
|
|
}
|
|
|
|
declare void @clobber_eax()
|
|
|
|
; Test what happens if the first parameter has to be split by codegen.
|
|
; Realistically, no frontend will generate code like this, but here it is for
|
|
; completeness.
|
|
define void @test8_f(i64 inreg %a, i64* sret %out) {
|
|
store i64 %a, i64* %out
|
|
call void @clobber_eax()
|
|
ret void
|
|
|
|
; WIN32-LABEL: _test8_f:
|
|
; WIN32: movl {{[0-9]+}}(%esp), %[[out:[a-z]+]]
|
|
; WIN32-DAG: movl %edx, 4(%[[out]])
|
|
; WIN32-DAG: movl %eax, (%[[out]])
|
|
; WIN32: calll _clobber_eax
|
|
; WIN32: movl {{.*}}, %eax
|
|
; WIN32: retl
|
|
}
|