forked from OSchip/llvm-project
903 lines
32 KiB
C++
903 lines
32 KiB
C++
//===- MachineCSE.cpp - Machine Common Subexpression Elimination Pass -----===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This pass performs global common subexpression elimination on machine
|
|
// instructions using a scoped hash table based value numbering scheme. It
|
|
// must be run while the machine function is still in SSA form.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ADT/DenseMap.h"
|
|
#include "llvm/ADT/ScopedHashTable.h"
|
|
#include "llvm/ADT/SmallPtrSet.h"
|
|
#include "llvm/ADT/SmallSet.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/CodeGen/MachineBasicBlock.h"
|
|
#include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
|
|
#include "llvm/CodeGen/MachineDominators.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineFunctionPass.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/MachineRegisterInfo.h"
|
|
#include "llvm/CodeGen/Passes.h"
|
|
#include "llvm/CodeGen/TargetInstrInfo.h"
|
|
#include "llvm/CodeGen/TargetOpcodes.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/InitializePasses.h"
|
|
#include "llvm/MC/MCInstrDesc.h"
|
|
#include "llvm/MC/MCRegisterInfo.h"
|
|
#include "llvm/Pass.h"
|
|
#include "llvm/Support/Allocator.h"
|
|
#include "llvm/Support/Debug.h"
|
|
#include "llvm/Support/RecyclingAllocator.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <cassert>
|
|
#include <iterator>
|
|
#include <utility>
|
|
#include <vector>
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "machine-cse"
|
|
|
|
STATISTIC(NumCoalesces, "Number of copies coalesced");
|
|
STATISTIC(NumCSEs, "Number of common subexpression eliminated");
|
|
STATISTIC(NumPREs, "Number of partial redundant expression"
|
|
" transformed to fully redundant");
|
|
STATISTIC(NumPhysCSEs,
|
|
"Number of physreg referencing common subexpr eliminated");
|
|
STATISTIC(NumCrossBBCSEs,
|
|
"Number of cross-MBB physreg referencing CS eliminated");
|
|
STATISTIC(NumCommutes, "Number of copies coalesced after commuting");
|
|
|
|
namespace {
|
|
|
|
class MachineCSE : public MachineFunctionPass {
|
|
const TargetInstrInfo *TII;
|
|
const TargetRegisterInfo *TRI;
|
|
AliasAnalysis *AA;
|
|
MachineDominatorTree *DT;
|
|
MachineRegisterInfo *MRI;
|
|
MachineBlockFrequencyInfo *MBFI;
|
|
|
|
public:
|
|
static char ID; // Pass identification
|
|
|
|
MachineCSE() : MachineFunctionPass(ID) {
|
|
initializeMachineCSEPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
bool runOnMachineFunction(MachineFunction &MF) override;
|
|
|
|
void getAnalysisUsage(AnalysisUsage &AU) const override {
|
|
AU.setPreservesCFG();
|
|
MachineFunctionPass::getAnalysisUsage(AU);
|
|
AU.addRequired<AAResultsWrapperPass>();
|
|
AU.addPreservedID(MachineLoopInfoID);
|
|
AU.addRequired<MachineDominatorTree>();
|
|
AU.addPreserved<MachineDominatorTree>();
|
|
AU.addRequired<MachineBlockFrequencyInfo>();
|
|
AU.addPreserved<MachineBlockFrequencyInfo>();
|
|
}
|
|
|
|
void releaseMemory() override {
|
|
ScopeMap.clear();
|
|
PREMap.clear();
|
|
Exps.clear();
|
|
}
|
|
|
|
private:
|
|
using AllocatorTy = RecyclingAllocator<BumpPtrAllocator,
|
|
ScopedHashTableVal<MachineInstr *, unsigned>>;
|
|
using ScopedHTType =
|
|
ScopedHashTable<MachineInstr *, unsigned, MachineInstrExpressionTrait,
|
|
AllocatorTy>;
|
|
using ScopeType = ScopedHTType::ScopeTy;
|
|
using PhysDefVector = SmallVector<std::pair<unsigned, unsigned>, 2>;
|
|
|
|
unsigned LookAheadLimit = 0;
|
|
DenseMap<MachineBasicBlock *, ScopeType *> ScopeMap;
|
|
DenseMap<MachineInstr *, MachineBasicBlock *, MachineInstrExpressionTrait>
|
|
PREMap;
|
|
ScopedHTType VNT;
|
|
SmallVector<MachineInstr *, 64> Exps;
|
|
unsigned CurrVN = 0;
|
|
|
|
bool PerformTrivialCopyPropagation(MachineInstr *MI,
|
|
MachineBasicBlock *MBB);
|
|
bool isPhysDefTriviallyDead(unsigned Reg,
|
|
MachineBasicBlock::const_iterator I,
|
|
MachineBasicBlock::const_iterator E) const;
|
|
bool hasLivePhysRegDefUses(const MachineInstr *MI,
|
|
const MachineBasicBlock *MBB,
|
|
SmallSet<unsigned, 8> &PhysRefs,
|
|
PhysDefVector &PhysDefs, bool &PhysUseDef) const;
|
|
bool PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
|
|
SmallSet<unsigned, 8> &PhysRefs,
|
|
PhysDefVector &PhysDefs, bool &NonLocal) const;
|
|
bool isCSECandidate(MachineInstr *MI);
|
|
bool isProfitableToCSE(unsigned CSReg, unsigned Reg,
|
|
MachineBasicBlock *CSBB, MachineInstr *MI);
|
|
void EnterScope(MachineBasicBlock *MBB);
|
|
void ExitScope(MachineBasicBlock *MBB);
|
|
bool ProcessBlockCSE(MachineBasicBlock *MBB);
|
|
void ExitScopeIfDone(MachineDomTreeNode *Node,
|
|
DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren);
|
|
bool PerformCSE(MachineDomTreeNode *Node);
|
|
|
|
bool isPRECandidate(MachineInstr *MI);
|
|
bool ProcessBlockPRE(MachineDominatorTree *MDT, MachineBasicBlock *MBB);
|
|
bool PerformSimplePRE(MachineDominatorTree *DT);
|
|
/// Heuristics to see if it's profitable to move common computations of MBB
|
|
/// and MBB1 to CandidateBB.
|
|
bool isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock *MBB1);
|
|
};
|
|
|
|
} // end anonymous namespace
|
|
|
|
char MachineCSE::ID = 0;
|
|
|
|
char &llvm::MachineCSEID = MachineCSE::ID;
|
|
|
|
INITIALIZE_PASS_BEGIN(MachineCSE, DEBUG_TYPE,
|
|
"Machine Common Subexpression Elimination", false, false)
|
|
INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
|
|
INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
|
|
INITIALIZE_PASS_END(MachineCSE, DEBUG_TYPE,
|
|
"Machine Common Subexpression Elimination", false, false)
|
|
|
|
/// The source register of a COPY machine instruction can be propagated to all
|
|
/// its users, and this propagation could increase the probability of finding
|
|
/// common subexpressions. If the COPY has only one user, the COPY itself can
|
|
/// be removed.
|
|
bool MachineCSE::PerformTrivialCopyPropagation(MachineInstr *MI,
|
|
MachineBasicBlock *MBB) {
|
|
bool Changed = false;
|
|
for (MachineOperand &MO : MI->operands()) {
|
|
if (!MO.isReg() || !MO.isUse())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Register::isVirtualRegister(Reg))
|
|
continue;
|
|
bool OnlyOneUse = MRI->hasOneNonDBGUse(Reg);
|
|
MachineInstr *DefMI = MRI->getVRegDef(Reg);
|
|
if (!DefMI->isCopy())
|
|
continue;
|
|
Register SrcReg = DefMI->getOperand(1).getReg();
|
|
if (!Register::isVirtualRegister(SrcReg))
|
|
continue;
|
|
if (DefMI->getOperand(0).getSubReg())
|
|
continue;
|
|
// FIXME: We should trivially coalesce subregister copies to expose CSE
|
|
// opportunities on instructions with truncated operands (see
|
|
// cse-add-with-overflow.ll). This can be done here as follows:
|
|
// if (SrcSubReg)
|
|
// RC = TRI->getMatchingSuperRegClass(MRI->getRegClass(SrcReg), RC,
|
|
// SrcSubReg);
|
|
// MO.substVirtReg(SrcReg, SrcSubReg, *TRI);
|
|
//
|
|
// The 2-addr pass has been updated to handle coalesced subregs. However,
|
|
// some machine-specific code still can't handle it.
|
|
// To handle it properly we also need a way find a constrained subregister
|
|
// class given a super-reg class and subreg index.
|
|
if (DefMI->getOperand(1).getSubReg())
|
|
continue;
|
|
if (!MRI->constrainRegAttrs(SrcReg, Reg))
|
|
continue;
|
|
LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
|
|
LLVM_DEBUG(dbgs() << "*** to: " << *MI);
|
|
|
|
// Propagate SrcReg of copies to MI.
|
|
MO.setReg(SrcReg);
|
|
MRI->clearKillFlags(SrcReg);
|
|
// Coalesce single use copies.
|
|
if (OnlyOneUse) {
|
|
// If (and only if) we've eliminated all uses of the copy, also
|
|
// copy-propagate to any debug-users of MI, or they'll be left using
|
|
// an undefined value.
|
|
DefMI->changeDebugValuesDefReg(SrcReg);
|
|
|
|
DefMI->eraseFromParent();
|
|
++NumCoalesces;
|
|
}
|
|
Changed = true;
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool
|
|
MachineCSE::isPhysDefTriviallyDead(unsigned Reg,
|
|
MachineBasicBlock::const_iterator I,
|
|
MachineBasicBlock::const_iterator E) const {
|
|
unsigned LookAheadLeft = LookAheadLimit;
|
|
while (LookAheadLeft) {
|
|
// Skip over dbg_value's.
|
|
I = skipDebugInstructionsForward(I, E);
|
|
|
|
if (I == E)
|
|
// Reached end of block, we don't know if register is dead or not.
|
|
return false;
|
|
|
|
bool SeenDef = false;
|
|
for (const MachineOperand &MO : I->operands()) {
|
|
if (MO.isRegMask() && MO.clobbersPhysReg(Reg))
|
|
SeenDef = true;
|
|
if (!MO.isReg() || !MO.getReg())
|
|
continue;
|
|
if (!TRI->regsOverlap(MO.getReg(), Reg))
|
|
continue;
|
|
if (MO.isUse())
|
|
// Found a use!
|
|
return false;
|
|
SeenDef = true;
|
|
}
|
|
if (SeenDef)
|
|
// See a def of Reg (or an alias) before encountering any use, it's
|
|
// trivially dead.
|
|
return true;
|
|
|
|
--LookAheadLeft;
|
|
++I;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isCallerPreservedOrConstPhysReg(unsigned Reg,
|
|
const MachineFunction &MF,
|
|
const TargetRegisterInfo &TRI) {
|
|
// MachineRegisterInfo::isConstantPhysReg directly called by
|
|
// MachineRegisterInfo::isCallerPreservedOrConstPhysReg expects the
|
|
// reserved registers to be frozen. That doesn't cause a problem post-ISel as
|
|
// most (if not all) targets freeze reserved registers right after ISel.
|
|
//
|
|
// It does cause issues mid-GlobalISel, however, hence the additional
|
|
// reservedRegsFrozen check.
|
|
const MachineRegisterInfo &MRI = MF.getRegInfo();
|
|
return TRI.isCallerPreservedPhysReg(Reg, MF) ||
|
|
(MRI.reservedRegsFrozen() && MRI.isConstantPhysReg(Reg));
|
|
}
|
|
|
|
/// hasLivePhysRegDefUses - Return true if the specified instruction read/write
|
|
/// physical registers (except for dead defs of physical registers). It also
|
|
/// returns the physical register def by reference if it's the only one and the
|
|
/// instruction does not uses a physical register.
|
|
bool MachineCSE::hasLivePhysRegDefUses(const MachineInstr *MI,
|
|
const MachineBasicBlock *MBB,
|
|
SmallSet<unsigned, 8> &PhysRefs,
|
|
PhysDefVector &PhysDefs,
|
|
bool &PhysUseDef) const {
|
|
// First, add all uses to PhysRefs.
|
|
for (const MachineOperand &MO : MI->operands()) {
|
|
if (!MO.isReg() || MO.isDef())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (Register::isVirtualRegister(Reg))
|
|
continue;
|
|
// Reading either caller preserved or constant physregs is ok.
|
|
if (!isCallerPreservedOrConstPhysReg(Reg, *MI->getMF(), *TRI))
|
|
for (MCRegAliasIterator AI(Reg, TRI, true); AI.isValid(); ++AI)
|
|
PhysRefs.insert(*AI);
|
|
}
|
|
|
|
// Next, collect all defs into PhysDefs. If any is already in PhysRefs
|
|
// (which currently contains only uses), set the PhysUseDef flag.
|
|
PhysUseDef = false;
|
|
MachineBasicBlock::const_iterator I = MI; I = std::next(I);
|
|
for (const auto &MOP : llvm::enumerate(MI->operands())) {
|
|
const MachineOperand &MO = MOP.value();
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
Register Reg = MO.getReg();
|
|
if (!Reg)
|
|
continue;
|
|
if (Register::isVirtualRegister(Reg))
|
|
continue;
|
|
// Check against PhysRefs even if the def is "dead".
|
|
if (PhysRefs.count(Reg))
|
|
PhysUseDef = true;
|
|
// If the def is dead, it's ok. But the def may not marked "dead". That's
|
|
// common since this pass is run before livevariables. We can scan
|
|
// forward a few instructions and check if it is obviously dead.
|
|
if (!MO.isDead() && !isPhysDefTriviallyDead(Reg, I, MBB->end()))
|
|
PhysDefs.push_back(std::make_pair(MOP.index(), Reg));
|
|
}
|
|
|
|
// Finally, add all defs to PhysRefs as well.
|
|
for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i)
|
|
for (MCRegAliasIterator AI(PhysDefs[i].second, TRI, true); AI.isValid();
|
|
++AI)
|
|
PhysRefs.insert(*AI);
|
|
|
|
return !PhysRefs.empty();
|
|
}
|
|
|
|
bool MachineCSE::PhysRegDefsReach(MachineInstr *CSMI, MachineInstr *MI,
|
|
SmallSet<unsigned, 8> &PhysRefs,
|
|
PhysDefVector &PhysDefs,
|
|
bool &NonLocal) const {
|
|
// For now conservatively returns false if the common subexpression is
|
|
// not in the same basic block as the given instruction. The only exception
|
|
// is if the common subexpression is in the sole predecessor block.
|
|
const MachineBasicBlock *MBB = MI->getParent();
|
|
const MachineBasicBlock *CSMBB = CSMI->getParent();
|
|
|
|
bool CrossMBB = false;
|
|
if (CSMBB != MBB) {
|
|
if (MBB->pred_size() != 1 || *MBB->pred_begin() != CSMBB)
|
|
return false;
|
|
|
|
for (unsigned i = 0, e = PhysDefs.size(); i != e; ++i) {
|
|
if (MRI->isAllocatable(PhysDefs[i].second) ||
|
|
MRI->isReserved(PhysDefs[i].second))
|
|
// Avoid extending live range of physical registers if they are
|
|
//allocatable or reserved.
|
|
return false;
|
|
}
|
|
CrossMBB = true;
|
|
}
|
|
MachineBasicBlock::const_iterator I = CSMI; I = std::next(I);
|
|
MachineBasicBlock::const_iterator E = MI;
|
|
MachineBasicBlock::const_iterator EE = CSMBB->end();
|
|
unsigned LookAheadLeft = LookAheadLimit;
|
|
while (LookAheadLeft) {
|
|
// Skip over dbg_value's.
|
|
while (I != E && I != EE && I->isDebugInstr())
|
|
++I;
|
|
|
|
if (I == EE) {
|
|
assert(CrossMBB && "Reaching end-of-MBB without finding MI?");
|
|
(void)CrossMBB;
|
|
CrossMBB = false;
|
|
NonLocal = true;
|
|
I = MBB->begin();
|
|
EE = MBB->end();
|
|
continue;
|
|
}
|
|
|
|
if (I == E)
|
|
return true;
|
|
|
|
for (const MachineOperand &MO : I->operands()) {
|
|
// RegMasks go on instructions like calls that clobber lots of physregs.
|
|
// Don't attempt to CSE across such an instruction.
|
|
if (MO.isRegMask())
|
|
return false;
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
Register MOReg = MO.getReg();
|
|
if (Register::isVirtualRegister(MOReg))
|
|
continue;
|
|
if (PhysRefs.count(MOReg))
|
|
return false;
|
|
}
|
|
|
|
--LookAheadLeft;
|
|
++I;
|
|
}
|
|
|
|
return false;
|
|
}
|
|
|
|
bool MachineCSE::isCSECandidate(MachineInstr *MI) {
|
|
if (MI->isPosition() || MI->isPHI() || MI->isImplicitDef() || MI->isKill() ||
|
|
MI->isInlineAsm() || MI->isDebugInstr())
|
|
return false;
|
|
|
|
// Ignore copies.
|
|
if (MI->isCopyLike())
|
|
return false;
|
|
|
|
// Ignore stuff that we obviously can't move.
|
|
if (MI->mayStore() || MI->isCall() || MI->isTerminator() ||
|
|
MI->mayRaiseFPException() || MI->hasUnmodeledSideEffects())
|
|
return false;
|
|
|
|
if (MI->mayLoad()) {
|
|
// Okay, this instruction does a load. As a refinement, we allow the target
|
|
// to decide whether the loaded value is actually a constant. If so, we can
|
|
// actually use it as a load.
|
|
if (!MI->isDereferenceableInvariantLoad(AA))
|
|
// FIXME: we should be able to hoist loads with no other side effects if
|
|
// there are no other instructions which can change memory in this loop.
|
|
// This is a trivial form of alias analysis.
|
|
return false;
|
|
}
|
|
|
|
// Ignore stack guard loads, otherwise the register that holds CSEed value may
|
|
// be spilled and get loaded back with corrupted data.
|
|
if (MI->getOpcode() == TargetOpcode::LOAD_STACK_GUARD)
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
/// isProfitableToCSE - Return true if it's profitable to eliminate MI with a
|
|
/// common expression that defines Reg. CSBB is basic block where CSReg is
|
|
/// defined.
|
|
bool MachineCSE::isProfitableToCSE(unsigned CSReg, unsigned Reg,
|
|
MachineBasicBlock *CSBB, MachineInstr *MI) {
|
|
// FIXME: Heuristics that works around the lack the live range splitting.
|
|
|
|
// If CSReg is used at all uses of Reg, CSE should not increase register
|
|
// pressure of CSReg.
|
|
bool MayIncreasePressure = true;
|
|
if (Register::isVirtualRegister(CSReg) && Register::isVirtualRegister(Reg)) {
|
|
MayIncreasePressure = false;
|
|
SmallPtrSet<MachineInstr*, 8> CSUses;
|
|
for (MachineInstr &MI : MRI->use_nodbg_instructions(CSReg)) {
|
|
CSUses.insert(&MI);
|
|
}
|
|
for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
|
|
if (!CSUses.count(&MI)) {
|
|
MayIncreasePressure = true;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
if (!MayIncreasePressure) return true;
|
|
|
|
// Heuristics #1: Don't CSE "cheap" computation if the def is not local or in
|
|
// an immediate predecessor. We don't want to increase register pressure and
|
|
// end up causing other computation to be spilled.
|
|
if (TII->isAsCheapAsAMove(*MI)) {
|
|
MachineBasicBlock *BB = MI->getParent();
|
|
if (CSBB != BB && !CSBB->isSuccessor(BB))
|
|
return false;
|
|
}
|
|
|
|
// Heuristics #2: If the expression doesn't not use a vr and the only use
|
|
// of the redundant computation are copies, do not cse.
|
|
bool HasVRegUse = false;
|
|
for (const MachineOperand &MO : MI->operands()) {
|
|
if (MO.isReg() && MO.isUse() && Register::isVirtualRegister(MO.getReg())) {
|
|
HasVRegUse = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!HasVRegUse) {
|
|
bool HasNonCopyUse = false;
|
|
for (MachineInstr &MI : MRI->use_nodbg_instructions(Reg)) {
|
|
// Ignore copies.
|
|
if (!MI.isCopyLike()) {
|
|
HasNonCopyUse = true;
|
|
break;
|
|
}
|
|
}
|
|
if (!HasNonCopyUse)
|
|
return false;
|
|
}
|
|
|
|
// Heuristics #3: If the common subexpression is used by PHIs, do not reuse
|
|
// it unless the defined value is already used in the BB of the new use.
|
|
bool HasPHI = false;
|
|
for (MachineInstr &UseMI : MRI->use_nodbg_instructions(CSReg)) {
|
|
HasPHI |= UseMI.isPHI();
|
|
if (UseMI.getParent() == MI->getParent())
|
|
return true;
|
|
}
|
|
|
|
return !HasPHI;
|
|
}
|
|
|
|
void MachineCSE::EnterScope(MachineBasicBlock *MBB) {
|
|
LLVM_DEBUG(dbgs() << "Entering: " << MBB->getName() << '\n');
|
|
ScopeType *Scope = new ScopeType(VNT);
|
|
ScopeMap[MBB] = Scope;
|
|
}
|
|
|
|
void MachineCSE::ExitScope(MachineBasicBlock *MBB) {
|
|
LLVM_DEBUG(dbgs() << "Exiting: " << MBB->getName() << '\n');
|
|
DenseMap<MachineBasicBlock*, ScopeType*>::iterator SI = ScopeMap.find(MBB);
|
|
assert(SI != ScopeMap.end());
|
|
delete SI->second;
|
|
ScopeMap.erase(SI);
|
|
}
|
|
|
|
bool MachineCSE::ProcessBlockCSE(MachineBasicBlock *MBB) {
|
|
bool Changed = false;
|
|
|
|
SmallVector<std::pair<unsigned, unsigned>, 8> CSEPairs;
|
|
SmallVector<unsigned, 2> ImplicitDefsToUpdate;
|
|
SmallVector<unsigned, 2> ImplicitDefs;
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E; ) {
|
|
MachineInstr *MI = &*I;
|
|
++I;
|
|
|
|
if (!isCSECandidate(MI))
|
|
continue;
|
|
|
|
bool FoundCSE = VNT.count(MI);
|
|
if (!FoundCSE) {
|
|
// Using trivial copy propagation to find more CSE opportunities.
|
|
if (PerformTrivialCopyPropagation(MI, MBB)) {
|
|
Changed = true;
|
|
|
|
// After coalescing MI itself may become a copy.
|
|
if (MI->isCopyLike())
|
|
continue;
|
|
|
|
// Try again to see if CSE is possible.
|
|
FoundCSE = VNT.count(MI);
|
|
}
|
|
}
|
|
|
|
// Commute commutable instructions.
|
|
bool Commuted = false;
|
|
if (!FoundCSE && MI->isCommutable()) {
|
|
if (MachineInstr *NewMI = TII->commuteInstruction(*MI)) {
|
|
Commuted = true;
|
|
FoundCSE = VNT.count(NewMI);
|
|
if (NewMI != MI) {
|
|
// New instruction. It doesn't need to be kept.
|
|
NewMI->eraseFromParent();
|
|
Changed = true;
|
|
} else if (!FoundCSE)
|
|
// MI was changed but it didn't help, commute it back!
|
|
(void)TII->commuteInstruction(*MI);
|
|
}
|
|
}
|
|
|
|
// If the instruction defines physical registers and the values *may* be
|
|
// used, then it's not safe to replace it with a common subexpression.
|
|
// It's also not safe if the instruction uses physical registers.
|
|
bool CrossMBBPhysDef = false;
|
|
SmallSet<unsigned, 8> PhysRefs;
|
|
PhysDefVector PhysDefs;
|
|
bool PhysUseDef = false;
|
|
if (FoundCSE && hasLivePhysRegDefUses(MI, MBB, PhysRefs,
|
|
PhysDefs, PhysUseDef)) {
|
|
FoundCSE = false;
|
|
|
|
// ... Unless the CS is local or is in the sole predecessor block
|
|
// and it also defines the physical register which is not clobbered
|
|
// in between and the physical register uses were not clobbered.
|
|
// This can never be the case if the instruction both uses and
|
|
// defines the same physical register, which was detected above.
|
|
if (!PhysUseDef) {
|
|
unsigned CSVN = VNT.lookup(MI);
|
|
MachineInstr *CSMI = Exps[CSVN];
|
|
if (PhysRegDefsReach(CSMI, MI, PhysRefs, PhysDefs, CrossMBBPhysDef))
|
|
FoundCSE = true;
|
|
}
|
|
}
|
|
|
|
if (!FoundCSE) {
|
|
VNT.insert(MI, CurrVN++);
|
|
Exps.push_back(MI);
|
|
continue;
|
|
}
|
|
|
|
// Found a common subexpression, eliminate it.
|
|
unsigned CSVN = VNT.lookup(MI);
|
|
MachineInstr *CSMI = Exps[CSVN];
|
|
LLVM_DEBUG(dbgs() << "Examining: " << *MI);
|
|
LLVM_DEBUG(dbgs() << "*** Found a common subexpression: " << *CSMI);
|
|
|
|
// Check if it's profitable to perform this CSE.
|
|
bool DoCSE = true;
|
|
unsigned NumDefs = MI->getNumDefs();
|
|
|
|
for (unsigned i = 0, e = MI->getNumOperands(); NumDefs && i != e; ++i) {
|
|
MachineOperand &MO = MI->getOperand(i);
|
|
if (!MO.isReg() || !MO.isDef())
|
|
continue;
|
|
Register OldReg = MO.getReg();
|
|
Register NewReg = CSMI->getOperand(i).getReg();
|
|
|
|
// Go through implicit defs of CSMI and MI, if a def is not dead at MI,
|
|
// we should make sure it is not dead at CSMI.
|
|
if (MO.isImplicit() && !MO.isDead() && CSMI->getOperand(i).isDead())
|
|
ImplicitDefsToUpdate.push_back(i);
|
|
|
|
// Keep track of implicit defs of CSMI and MI, to clear possibly
|
|
// made-redundant kill flags.
|
|
if (MO.isImplicit() && !MO.isDead() && OldReg == NewReg)
|
|
ImplicitDefs.push_back(OldReg);
|
|
|
|
if (OldReg == NewReg) {
|
|
--NumDefs;
|
|
continue;
|
|
}
|
|
|
|
assert(Register::isVirtualRegister(OldReg) &&
|
|
Register::isVirtualRegister(NewReg) &&
|
|
"Do not CSE physical register defs!");
|
|
|
|
if (!isProfitableToCSE(NewReg, OldReg, CSMI->getParent(), MI)) {
|
|
LLVM_DEBUG(dbgs() << "*** Not profitable, avoid CSE!\n");
|
|
DoCSE = false;
|
|
break;
|
|
}
|
|
|
|
// Don't perform CSE if the result of the new instruction cannot exist
|
|
// within the constraints (register class, bank, or low-level type) of
|
|
// the old instruction.
|
|
if (!MRI->constrainRegAttrs(NewReg, OldReg)) {
|
|
LLVM_DEBUG(
|
|
dbgs() << "*** Not the same register constraints, avoid CSE!\n");
|
|
DoCSE = false;
|
|
break;
|
|
}
|
|
|
|
CSEPairs.push_back(std::make_pair(OldReg, NewReg));
|
|
--NumDefs;
|
|
}
|
|
|
|
// Actually perform the elimination.
|
|
if (DoCSE) {
|
|
for (std::pair<unsigned, unsigned> &CSEPair : CSEPairs) {
|
|
unsigned OldReg = CSEPair.first;
|
|
unsigned NewReg = CSEPair.second;
|
|
// OldReg may have been unused but is used now, clear the Dead flag
|
|
MachineInstr *Def = MRI->getUniqueVRegDef(NewReg);
|
|
assert(Def != nullptr && "CSEd register has no unique definition?");
|
|
Def->clearRegisterDeads(NewReg);
|
|
// Replace with NewReg and clear kill flags which may be wrong now.
|
|
MRI->replaceRegWith(OldReg, NewReg);
|
|
MRI->clearKillFlags(NewReg);
|
|
}
|
|
|
|
// Go through implicit defs of CSMI and MI, if a def is not dead at MI,
|
|
// we should make sure it is not dead at CSMI.
|
|
for (unsigned ImplicitDefToUpdate : ImplicitDefsToUpdate)
|
|
CSMI->getOperand(ImplicitDefToUpdate).setIsDead(false);
|
|
for (auto PhysDef : PhysDefs)
|
|
if (!MI->getOperand(PhysDef.first).isDead())
|
|
CSMI->getOperand(PhysDef.first).setIsDead(false);
|
|
|
|
// Go through implicit defs of CSMI and MI, and clear the kill flags on
|
|
// their uses in all the instructions between CSMI and MI.
|
|
// We might have made some of the kill flags redundant, consider:
|
|
// subs ... implicit-def %nzcv <- CSMI
|
|
// csinc ... implicit killed %nzcv <- this kill flag isn't valid anymore
|
|
// subs ... implicit-def %nzcv <- MI, to be eliminated
|
|
// csinc ... implicit killed %nzcv
|
|
// Since we eliminated MI, and reused a register imp-def'd by CSMI
|
|
// (here %nzcv), that register, if it was killed before MI, should have
|
|
// that kill flag removed, because it's lifetime was extended.
|
|
if (CSMI->getParent() == MI->getParent()) {
|
|
for (MachineBasicBlock::iterator II = CSMI, IE = MI; II != IE; ++II)
|
|
for (auto ImplicitDef : ImplicitDefs)
|
|
if (MachineOperand *MO = II->findRegisterUseOperand(
|
|
ImplicitDef, /*isKill=*/true, TRI))
|
|
MO->setIsKill(false);
|
|
} else {
|
|
// If the instructions aren't in the same BB, bail out and clear the
|
|
// kill flag on all uses of the imp-def'd register.
|
|
for (auto ImplicitDef : ImplicitDefs)
|
|
MRI->clearKillFlags(ImplicitDef);
|
|
}
|
|
|
|
if (CrossMBBPhysDef) {
|
|
// Add physical register defs now coming in from a predecessor to MBB
|
|
// livein list.
|
|
while (!PhysDefs.empty()) {
|
|
auto LiveIn = PhysDefs.pop_back_val();
|
|
if (!MBB->isLiveIn(LiveIn.second))
|
|
MBB->addLiveIn(LiveIn.second);
|
|
}
|
|
++NumCrossBBCSEs;
|
|
}
|
|
|
|
MI->eraseFromParent();
|
|
++NumCSEs;
|
|
if (!PhysRefs.empty())
|
|
++NumPhysCSEs;
|
|
if (Commuted)
|
|
++NumCommutes;
|
|
Changed = true;
|
|
} else {
|
|
VNT.insert(MI, CurrVN++);
|
|
Exps.push_back(MI);
|
|
}
|
|
CSEPairs.clear();
|
|
ImplicitDefsToUpdate.clear();
|
|
ImplicitDefs.clear();
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
/// ExitScopeIfDone - Destroy scope for the MBB that corresponds to the given
|
|
/// dominator tree node if its a leaf or all of its children are done. Walk
|
|
/// up the dominator tree to destroy ancestors which are now done.
|
|
void
|
|
MachineCSE::ExitScopeIfDone(MachineDomTreeNode *Node,
|
|
DenseMap<MachineDomTreeNode*, unsigned> &OpenChildren) {
|
|
if (OpenChildren[Node])
|
|
return;
|
|
|
|
// Pop scope.
|
|
ExitScope(Node->getBlock());
|
|
|
|
// Now traverse upwards to pop ancestors whose offsprings are all done.
|
|
while (MachineDomTreeNode *Parent = Node->getIDom()) {
|
|
unsigned Left = --OpenChildren[Parent];
|
|
if (Left != 0)
|
|
break;
|
|
ExitScope(Parent->getBlock());
|
|
Node = Parent;
|
|
}
|
|
}
|
|
|
|
bool MachineCSE::PerformCSE(MachineDomTreeNode *Node) {
|
|
SmallVector<MachineDomTreeNode*, 32> Scopes;
|
|
SmallVector<MachineDomTreeNode*, 8> WorkList;
|
|
DenseMap<MachineDomTreeNode*, unsigned> OpenChildren;
|
|
|
|
CurrVN = 0;
|
|
|
|
// Perform a DFS walk to determine the order of visit.
|
|
WorkList.push_back(Node);
|
|
do {
|
|
Node = WorkList.pop_back_val();
|
|
Scopes.push_back(Node);
|
|
OpenChildren[Node] = Node->getNumChildren();
|
|
for (MachineDomTreeNode *Child : Node->children())
|
|
WorkList.push_back(Child);
|
|
} while (!WorkList.empty());
|
|
|
|
// Now perform CSE.
|
|
bool Changed = false;
|
|
for (MachineDomTreeNode *Node : Scopes) {
|
|
MachineBasicBlock *MBB = Node->getBlock();
|
|
EnterScope(MBB);
|
|
Changed |= ProcessBlockCSE(MBB);
|
|
// If it's a leaf node, it's done. Traverse upwards to pop ancestors.
|
|
ExitScopeIfDone(Node, OpenChildren);
|
|
}
|
|
|
|
return Changed;
|
|
}
|
|
|
|
// We use stronger checks for PRE candidate rather than for CSE ones to embrace
|
|
// checks inside ProcessBlockCSE(), not only inside isCSECandidate(). This helps
|
|
// to exclude instrs created by PRE that won't be CSEed later.
|
|
bool MachineCSE::isPRECandidate(MachineInstr *MI) {
|
|
if (!isCSECandidate(MI) ||
|
|
MI->isNotDuplicable() ||
|
|
MI->mayLoad() ||
|
|
MI->isAsCheapAsAMove() ||
|
|
MI->getNumDefs() != 1 ||
|
|
MI->getNumExplicitDefs() != 1)
|
|
return false;
|
|
|
|
for (auto def : MI->defs())
|
|
if (!Register::isVirtualRegister(def.getReg()))
|
|
return false;
|
|
|
|
for (auto use : MI->uses())
|
|
if (use.isReg() && !Register::isVirtualRegister(use.getReg()))
|
|
return false;
|
|
|
|
return true;
|
|
}
|
|
|
|
bool MachineCSE::ProcessBlockPRE(MachineDominatorTree *DT,
|
|
MachineBasicBlock *MBB) {
|
|
bool Changed = false;
|
|
for (MachineBasicBlock::iterator I = MBB->begin(), E = MBB->end(); I != E;) {
|
|
MachineInstr *MI = &*I;
|
|
++I;
|
|
|
|
if (!isPRECandidate(MI))
|
|
continue;
|
|
|
|
if (!PREMap.count(MI)) {
|
|
PREMap[MI] = MBB;
|
|
continue;
|
|
}
|
|
|
|
auto MBB1 = PREMap[MI];
|
|
assert(
|
|
!DT->properlyDominates(MBB, MBB1) &&
|
|
"MBB cannot properly dominate MBB1 while DFS through dominators tree!");
|
|
auto CMBB = DT->findNearestCommonDominator(MBB, MBB1);
|
|
if (!CMBB->isLegalToHoistInto())
|
|
continue;
|
|
|
|
if (!isProfitableToHoistInto(CMBB, MBB, MBB1))
|
|
continue;
|
|
|
|
// Two instrs are partial redundant if their basic blocks are reachable
|
|
// from one to another but one doesn't dominate another.
|
|
if (CMBB != MBB1) {
|
|
auto BB = MBB->getBasicBlock(), BB1 = MBB1->getBasicBlock();
|
|
if (BB != nullptr && BB1 != nullptr &&
|
|
(isPotentiallyReachable(BB1, BB) ||
|
|
isPotentiallyReachable(BB, BB1))) {
|
|
|
|
assert(MI->getOperand(0).isDef() &&
|
|
"First operand of instr with one explicit def must be this def");
|
|
Register VReg = MI->getOperand(0).getReg();
|
|
Register NewReg = MRI->cloneVirtualRegister(VReg);
|
|
if (!isProfitableToCSE(NewReg, VReg, CMBB, MI))
|
|
continue;
|
|
MachineInstr &NewMI =
|
|
TII->duplicate(*CMBB, CMBB->getFirstTerminator(), *MI);
|
|
|
|
// When hoisting, make sure we don't carry the debug location of
|
|
// the original instruction, as that's not correct and can cause
|
|
// unexpected jumps when debugging optimized code.
|
|
auto EmptyDL = DebugLoc();
|
|
NewMI.setDebugLoc(EmptyDL);
|
|
|
|
NewMI.getOperand(0).setReg(NewReg);
|
|
|
|
PREMap[MI] = CMBB;
|
|
++NumPREs;
|
|
Changed = true;
|
|
}
|
|
}
|
|
}
|
|
return Changed;
|
|
}
|
|
|
|
// This simple PRE (partial redundancy elimination) pass doesn't actually
|
|
// eliminate partial redundancy but transforms it to full redundancy,
|
|
// anticipating that the next CSE step will eliminate this created redundancy.
|
|
// If CSE doesn't eliminate this, than created instruction will remain dead
|
|
// and eliminated later by Remove Dead Machine Instructions pass.
|
|
bool MachineCSE::PerformSimplePRE(MachineDominatorTree *DT) {
|
|
SmallVector<MachineDomTreeNode *, 32> BBs;
|
|
|
|
PREMap.clear();
|
|
bool Changed = false;
|
|
BBs.push_back(DT->getRootNode());
|
|
do {
|
|
auto Node = BBs.pop_back_val();
|
|
for (MachineDomTreeNode *Child : Node->children())
|
|
BBs.push_back(Child);
|
|
|
|
MachineBasicBlock *MBB = Node->getBlock();
|
|
Changed |= ProcessBlockPRE(DT, MBB);
|
|
|
|
} while (!BBs.empty());
|
|
|
|
return Changed;
|
|
}
|
|
|
|
bool MachineCSE::isProfitableToHoistInto(MachineBasicBlock *CandidateBB,
|
|
MachineBasicBlock *MBB,
|
|
MachineBasicBlock *MBB1) {
|
|
if (CandidateBB->getParent()->getFunction().hasMinSize())
|
|
return true;
|
|
assert(DT->dominates(CandidateBB, MBB) && "CandidateBB should dominate MBB");
|
|
assert(DT->dominates(CandidateBB, MBB1) &&
|
|
"CandidateBB should dominate MBB1");
|
|
return MBFI->getBlockFreq(CandidateBB) <=
|
|
MBFI->getBlockFreq(MBB) + MBFI->getBlockFreq(MBB1);
|
|
}
|
|
|
|
bool MachineCSE::runOnMachineFunction(MachineFunction &MF) {
|
|
if (skipFunction(MF.getFunction()))
|
|
return false;
|
|
|
|
TII = MF.getSubtarget().getInstrInfo();
|
|
TRI = MF.getSubtarget().getRegisterInfo();
|
|
MRI = &MF.getRegInfo();
|
|
AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
|
|
DT = &getAnalysis<MachineDominatorTree>();
|
|
MBFI = &getAnalysis<MachineBlockFrequencyInfo>();
|
|
LookAheadLimit = TII->getMachineCSELookAheadLimit();
|
|
bool ChangedPRE, ChangedCSE;
|
|
ChangedPRE = PerformSimplePRE(DT);
|
|
ChangedCSE = PerformCSE(DT->getRootNode());
|
|
return ChangedPRE || ChangedCSE;
|
|
}
|