llvm-project/llvm/lib/CodeGen/BBSectionsPrepare.cpp

458 lines
19 KiB
C++

//===-- BBSectionsPrepare.cpp ---=========---------------------------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// BBSectionsPrepare implementation.
//
// The purpose of this pass is to assign sections to basic blocks when
// -fbasic-block-sections= option is used. Further, with profile information
// only the subset of basic blocks with profiles are placed in separate sections
// and the rest are grouped in a cold section. The exception handling blocks are
// treated specially to ensure they are all in one seciton.
//
// Basic Block Sections
// ====================
//
// With option, -fbasic-block-sections=list, every function may be split into
// clusters of basic blocks. Every cluster will be emitted into a separate
// section with its basic blocks sequenced in the given order. To get the
// optimized performance, the clusters must form an optimal BB layout for the
// function. Every cluster's section is labeled with a symbol to allow the
// linker to reorder the sections in any arbitrary sequence. A global order of
// these sections would encapsulate the function layout.
//
// There are a couple of challenges to be addressed:
//
// 1. The last basic block of every cluster should not have any implicit
// fallthrough to its next basic block, as it can be reordered by the linker.
// The compiler should make these fallthroughs explicit by adding
// unconditional jumps..
//
// 2. All inter-cluster branch targets would now need to be resolved by the
// linker as they cannot be calculated during compile time. This is done
// using static relocations. Further, the compiler tries to use short branch
// instructions on some ISAs for small branch offsets. This is not possible
// for inter-cluster branches as the offset is not determined at compile
// time, and therefore, long branch instructions have to be used for those.
//
// 3. Debug Information (DebugInfo) and Call Frame Information (CFI) emission
// needs special handling with basic block sections. DebugInfo needs to be
// emitted with more relocations as basic block sections can break a
// function into potentially several disjoint pieces, and CFI needs to be
// emitted per cluster. This also bloats the object file and binary sizes.
//
// Basic Block Labels
// ==================
//
// With -fbasic-block-sections=labels, or when a basic block is placed in a
// unique section, it is labelled with a symbol. This allows easy mapping of
// virtual addresses from PMU profiles back to the corresponding basic blocks.
// Since the number of basic blocks is large, the labeling bloats the symbol
// table sizes and the string table sizes significantly. While the binary size
// does increase, it does not affect performance as the symbol table is not
// loaded in memory during run-time. The string table size bloat is kept very
// minimal using a unary naming scheme that uses string suffix compression. The
// basic blocks for function foo are named "a.BB.foo", "aa.BB.foo", ... This
// turns out to be very good for string table sizes and the bloat in the string
// table size for a very large binary is ~8 %. The naming also allows using
// the --symbol-ordering-file option in LLD to arbitrarily reorder the
// sections.
//
//===----------------------------------------------------------------------===//
#include "llvm/ADT/Optional.h"
#include "llvm/ADT/SmallSet.h"
#include "llvm/ADT/SmallVector.h"
#include "llvm/ADT/StringMap.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/CodeGen/MachineFunction.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/CodeGen/MachineModuleInfo.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/CodeGen/TargetInstrInfo.h"
#include "llvm/InitializePasses.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/LineIterator.h"
#include "llvm/Support/MemoryBuffer.h"
#include "llvm/Target/TargetMachine.h"
using llvm::SmallSet;
using llvm::SmallVector;
using llvm::StringMap;
using llvm::StringRef;
using namespace llvm;
namespace {
// This struct represents the cluster information for a machine basic block.
struct BBClusterInfo {
// MachineBasicBlock ID.
unsigned MBBNumber;
// Cluster ID this basic block belongs to.
unsigned ClusterID;
// Position of basic block within the cluster.
unsigned PositionInCluster;
};
using ProgramBBClusterInfoMapTy = StringMap<SmallVector<BBClusterInfo, 4>>;
class BBSectionsPrepare : public MachineFunctionPass {
public:
static char ID;
// This contains the basic-block-sections profile.
const MemoryBuffer *MBuf = nullptr;
// This encapsulates the BB cluster information for the whole program.
//
// For every function name, it contains the cluster information for (all or
// some of) its basic blocks. The cluster information for every basic block
// includes its cluster ID along with the position of the basic block in that
// cluster.
ProgramBBClusterInfoMapTy ProgramBBClusterInfo;
// Some functions have alias names. We use this map to find the main alias
// name for which we have mapping in ProgramBBClusterInfo.
StringMap<StringRef> FuncAliasMap;
BBSectionsPrepare(const MemoryBuffer *Buf)
: MachineFunctionPass(ID), MBuf(Buf) {
initializeBBSectionsPreparePass(*PassRegistry::getPassRegistry());
};
BBSectionsPrepare() : MachineFunctionPass(ID) {
initializeBBSectionsPreparePass(*PassRegistry::getPassRegistry());
}
StringRef getPassName() const override {
return "Basic Block Sections Analysis";
}
void getAnalysisUsage(AnalysisUsage &AU) const override;
/// Read profiles of basic blocks if available here.
bool doInitialization(Module &M) override;
/// Identify basic blocks that need separate sections and prepare to emit them
/// accordingly.
bool runOnMachineFunction(MachineFunction &MF) override;
};
} // end anonymous namespace
char BBSectionsPrepare::ID = 0;
INITIALIZE_PASS(BBSectionsPrepare, "bbsections-prepare",
"Prepares for basic block sections, by splitting functions "
"into clusters of basic blocks.",
false, false)
// This function updates and optimizes the branching instructions of every basic
// block in a given function to account for changes in the layout.
static void updateBranches(
MachineFunction &MF,
const SmallVector<MachineBasicBlock *, 4> &PreLayoutFallThroughs) {
const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
SmallVector<MachineOperand, 4> Cond;
for (auto &MBB : MF) {
auto NextMBBI = std::next(MBB.getIterator());
auto *FTMBB = PreLayoutFallThroughs[MBB.getNumber()];
// If this block had a fallthrough before we need an explicit unconditional
// branch to that block if either
// 1- the block ends a section, which means its next block may be
// reorderd by the linker, or
// 2- the fallthrough block is not adjacent to the block in the new
// order.
if (FTMBB && (MBB.isEndSection() || &*NextMBBI != FTMBB))
TII->insertUnconditionalBranch(MBB, FTMBB, MBB.findBranchDebugLoc());
// We do not optimize branches for machine basic blocks ending sections, as
// their adjacent block might be reordered by the linker.
if (MBB.isEndSection())
continue;
// It might be possible to optimize branches by flipping the branch
// condition.
Cond.clear();
MachineBasicBlock *TBB = nullptr, *FBB = nullptr; // For analyzeBranch.
if (TII->analyzeBranch(MBB, TBB, FBB, Cond))
continue;
MBB.updateTerminator(FTMBB);
}
}
// This function provides the BBCluster information associated with a function.
// Returns true if a valid association exists and false otherwise.
static bool getBBClusterInfoForFunction(
const MachineFunction &MF, const StringMap<StringRef> FuncAliasMap,
const ProgramBBClusterInfoMapTy &ProgramBBClusterInfo,
std::vector<Optional<BBClusterInfo>> &V) {
// Get the main alias name for the function.
auto FuncName = MF.getName();
auto R = FuncAliasMap.find(FuncName);
StringRef AliasName = R == FuncAliasMap.end() ? FuncName : R->second;
// Find the assoicated cluster information.
auto P = ProgramBBClusterInfo.find(AliasName);
if (P == ProgramBBClusterInfo.end())
return false;
if (P->second.empty()) {
// This indicates that sections are desired for all basic blocks of this
// function. We clear the BBClusterInfo vector to denote this.
V.clear();
return true;
}
V.resize(MF.getNumBlockIDs());
for (auto bbClusterInfo : P->second) {
// Bail out if the cluster information contains invalid MBB numbers.
if (bbClusterInfo.MBBNumber >= MF.getNumBlockIDs())
return false;
V[bbClusterInfo.MBBNumber] = bbClusterInfo;
}
return true;
}
// This function sorts basic blocks according to the cluster's information.
// All explicitly specified clusters of basic blocks will be ordered
// accordingly. All non-specified BBs go into a separate "Cold" section.
// Additionally, if exception handling landing pads end up in more than one
// clusters, they are moved into a single "Exception" section. Eventually,
// clusters are ordered in increasing order of their IDs, with the "Exception"
// and "Cold" succeeding all other clusters.
// FuncBBClusterInfo represent the cluster information for basic blocks. If this
// is empty, it means unique sections for all basic blocks in the function.
static bool assignSectionsAndSortBasicBlocks(
MachineFunction &MF,
const std::vector<Optional<BBClusterInfo>> &FuncBBClusterInfo) {
assert(MF.hasBBSections() && "BB Sections is not set for function.");
// This variable stores the section ID of the cluster containing eh_pads (if
// all eh_pads are one cluster). If more than one cluster contain eh_pads, we
// set it equal to ExceptionSectionID.
Optional<MBBSectionID> EHPadsSectionID;
for (auto &MBB : MF) {
// With the 'all' option, every basic block is placed in a unique section.
// With the 'list' option, every basic block is placed in a section
// associated with its cluster, unless we want individual unique sections
// for every basic block in this function (if FuncBBClusterInfo is empty).
if (MF.getTarget().getBBSectionsType() == llvm::BasicBlockSection::All ||
FuncBBClusterInfo.empty()) {
// If unique sections are desired for all basic blocks of the function, we
// set every basic block's section ID equal to its number (basic block
// id). This further ensures that basic blocks are ordered canonically.
MBB.setSectionID({static_cast<unsigned int>(MBB.getNumber())});
} else if (FuncBBClusterInfo[MBB.getNumber()].hasValue())
MBB.setSectionID(FuncBBClusterInfo[MBB.getNumber()]->ClusterID);
else {
// BB goes into the special cold section if it is not specified in the
// cluster info map.
MBB.setSectionID(MBBSectionID::ColdSectionID);
}
if (MBB.isEHPad() && EHPadsSectionID != MBB.getSectionID() &&
EHPadsSectionID != MBBSectionID::ExceptionSectionID) {
// If we already have one cluster containing eh_pads, this must be updated
// to ExceptionSectionID. Otherwise, we set it equal to the current
// section ID.
EHPadsSectionID = EHPadsSectionID.hasValue()
? MBBSectionID::ExceptionSectionID
: MBB.getSectionID();
}
}
// If EHPads are in more than one section, this places all of them in the
// special exception section.
if (EHPadsSectionID == MBBSectionID::ExceptionSectionID)
for (auto &MBB : MF)
if (MBB.isEHPad())
MBB.setSectionID(EHPadsSectionID.getValue());
SmallVector<MachineBasicBlock *, 4> PreLayoutFallThroughs(
MF.getNumBlockIDs());
for (auto &MBB : MF)
PreLayoutFallThroughs[MBB.getNumber()] = MBB.getFallThrough();
// We make sure that the cluster including the entry basic block precedes all
// other clusters.
auto EntryBBSectionID = MF.front().getSectionID();
// Helper function for ordering BB sections as follows:
// * Entry section (section including the entry block).
// * Regular sections (in increasing order of their Number).
// ...
// * Exception section
// * Cold section
auto MBBSectionOrder = [EntryBBSectionID](const MBBSectionID &LHS,
const MBBSectionID &RHS) {
// We make sure that the section containing the entry block precedes all the
// other sections.
if (LHS == EntryBBSectionID || RHS == EntryBBSectionID)
return LHS == EntryBBSectionID;
return LHS.Type == RHS.Type ? LHS.Number < RHS.Number : LHS.Type < RHS.Type;
};
// We sort all basic blocks to make sure the basic blocks of every cluster are
// contiguous and ordered accordingly. Furthermore, clusters are ordered in
// increasing order of their section IDs, with the exception and the
// cold section placed at the end of the function.
MF.sort([&](MachineBasicBlock &X, MachineBasicBlock &Y) {
auto XSectionID = X.getSectionID();
auto YSectionID = Y.getSectionID();
if (XSectionID != YSectionID)
return MBBSectionOrder(XSectionID, YSectionID);
// If the two basic block are in the same section, the order is decided by
// their position within the section.
if (XSectionID.Type == MBBSectionID::SectionType::Default)
return FuncBBClusterInfo[X.getNumber()]->PositionInCluster <
FuncBBClusterInfo[Y.getNumber()]->PositionInCluster;
return X.getNumber() < Y.getNumber();
});
// Set IsBeginSection and IsEndSection according to the assigned section IDs.
MF.assignBeginEndSections();
// After reordering basic blocks, we must update basic block branches to
// insert explicit fallthrough branches when required and optimize branches
// when possible.
updateBranches(MF, PreLayoutFallThroughs);
return true;
}
bool BBSectionsPrepare::runOnMachineFunction(MachineFunction &MF) {
auto BBSectionsType = MF.getTarget().getBBSectionsType();
assert(BBSectionsType != BasicBlockSection::None &&
"BB Sections not enabled!");
// Renumber blocks before sorting them for basic block sections. This is
// useful during sorting, basic blocks in the same section will retain the
// default order. This renumbering should also be done for basic block
// labels to match the profiles with the correct blocks.
MF.RenumberBlocks();
if (BBSectionsType == BasicBlockSection::Labels) {
MF.setBBSectionsType(BBSectionsType);
MF.createBBLabels();
return true;
}
std::vector<Optional<BBClusterInfo>> FuncBBClusterInfo;
if (BBSectionsType == BasicBlockSection::List &&
!getBBClusterInfoForFunction(MF, FuncAliasMap, ProgramBBClusterInfo,
FuncBBClusterInfo))
return true;
MF.setBBSectionsType(BBSectionsType);
MF.createBBLabels();
assignSectionsAndSortBasicBlocks(MF, FuncBBClusterInfo);
return true;
}
// Basic Block Sections can be enabled for a subset of machine basic blocks.
// This is done by passing a file containing names of functions for which basic
// block sections are desired. Additionally, machine basic block ids of the
// functions can also be specified for a finer granularity. Moreover, a cluster
// of basic blocks could be assigned to the same section.
// A file with basic block sections for all of function main and three blocks
// for function foo (of which 1 and 2 are placed in a cluster) looks like this:
// ----------------------------
// list.txt:
// !main
// !foo
// !!1 2
// !!4
static Error getBBClusterInfo(const MemoryBuffer *MBuf,
ProgramBBClusterInfoMapTy &ProgramBBClusterInfo,
StringMap<StringRef> &FuncAliasMap) {
assert(MBuf);
line_iterator LineIt(*MBuf, /*SkipBlanks=*/true, /*CommentMarker=*/'#');
auto invalidProfileError = [&](auto Message) {
return make_error<StringError>(
Twine("Invalid profile " + MBuf->getBufferIdentifier() + " at line " +
Twine(LineIt.line_number()) + ": " + Message),
inconvertibleErrorCode());
};
auto FI = ProgramBBClusterInfo.end();
// Current cluster ID corresponding to this function.
unsigned CurrentCluster = 0;
// Current position in the current cluster.
unsigned CurrentPosition = 0;
// Temporary set to ensure every basic block ID appears once in the clusters
// of a function.
SmallSet<unsigned, 4> FuncBBIDs;
for (; !LineIt.is_at_eof(); ++LineIt) {
StringRef S(*LineIt);
if (S[0] == '@')
continue;
// Check for the leading "!"
if (!S.consume_front("!") || S.empty())
break;
// Check for second "!" which indicates a cluster of basic blocks.
if (S.consume_front("!")) {
if (FI == ProgramBBClusterInfo.end())
return invalidProfileError(
"Cluster list does not follow a function name specifier.");
SmallVector<StringRef, 4> BBIndexes;
S.split(BBIndexes, ' ');
// Reset current cluster position.
CurrentPosition = 0;
for (auto BBIndexStr : BBIndexes) {
unsigned long long BBIndex;
if (getAsUnsignedInteger(BBIndexStr, 10, BBIndex))
return invalidProfileError(Twine("Unsigned integer expected: '") +
BBIndexStr + "'.");
if (!FuncBBIDs.insert(BBIndex).second)
return invalidProfileError(Twine("Duplicate basic block id found '") +
BBIndexStr + "'.");
if (!BBIndex && CurrentPosition)
return invalidProfileError("Entry BB (0) does not begin a cluster.");
FI->second.emplace_back(BBClusterInfo{
((unsigned)BBIndex), CurrentCluster, CurrentPosition++});
}
CurrentCluster++;
} else { // This is a function name specifier.
// Function aliases are separated using '/'. We use the first function
// name for the cluster info mapping and delegate all other aliases to
// this one.
SmallVector<StringRef, 4> Aliases;
S.split(Aliases, '/');
for (size_t i = 1; i < Aliases.size(); ++i)
FuncAliasMap.try_emplace(Aliases[i], Aliases.front());
// Prepare for parsing clusters of this function name.
// Start a new cluster map for this function name.
FI = ProgramBBClusterInfo.try_emplace(Aliases.front()).first;
CurrentCluster = 0;
FuncBBIDs.clear();
}
}
return Error::success();
}
bool BBSectionsPrepare::doInitialization(Module &M) {
if (!MBuf)
return false;
if (auto Err = getBBClusterInfo(MBuf, ProgramBBClusterInfo, FuncAliasMap))
report_fatal_error(std::move(Err));
return false;
}
void BBSectionsPrepare::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
MachineFunctionPass::getAnalysisUsage(AU);
}
MachineFunctionPass *
llvm::createBBSectionsPreparePass(const MemoryBuffer *Buf) {
return new BBSectionsPrepare(Buf);
}