forked from OSchip/llvm-project
3143 lines
114 KiB
C++
3143 lines
114 KiB
C++
//===- llvm/lib/CodeGen/AsmPrinter/CodeViewDebug.cpp ----------------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for writing Microsoft CodeView debug info.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "CodeViewDebug.h"
|
|
#include "DwarfExpression.h"
|
|
#include "llvm/ADT/APSInt.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallString.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/TinyPtrVector.h"
|
|
#include "llvm/ADT/Triple.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/BinaryFormat/COFF.h"
|
|
#include "llvm/BinaryFormat/Dwarf.h"
|
|
#include "llvm/CodeGen/AsmPrinter.h"
|
|
#include "llvm/CodeGen/LexicalScopes.h"
|
|
#include "llvm/CodeGen/MachineFrameInfo.h"
|
|
#include "llvm/CodeGen/MachineFunction.h"
|
|
#include "llvm/CodeGen/MachineInstr.h"
|
|
#include "llvm/CodeGen/MachineModuleInfo.h"
|
|
#include "llvm/CodeGen/MachineOperand.h"
|
|
#include "llvm/CodeGen/TargetFrameLowering.h"
|
|
#include "llvm/CodeGen/TargetRegisterInfo.h"
|
|
#include "llvm/CodeGen/TargetSubtargetInfo.h"
|
|
#include "llvm/Config/llvm-config.h"
|
|
#include "llvm/DebugInfo/CodeView/CVTypeVisitor.h"
|
|
#include "llvm/DebugInfo/CodeView/CodeViewRecordIO.h"
|
|
#include "llvm/DebugInfo/CodeView/ContinuationRecordBuilder.h"
|
|
#include "llvm/DebugInfo/CodeView/DebugInlineeLinesSubsection.h"
|
|
#include "llvm/DebugInfo/CodeView/EnumTables.h"
|
|
#include "llvm/DebugInfo/CodeView/Line.h"
|
|
#include "llvm/DebugInfo/CodeView/SymbolRecord.h"
|
|
#include "llvm/DebugInfo/CodeView/TypeDumpVisitor.h"
|
|
#include "llvm/DebugInfo/CodeView/TypeRecord.h"
|
|
#include "llvm/DebugInfo/CodeView/TypeTableCollection.h"
|
|
#include "llvm/DebugInfo/CodeView/TypeVisitorCallbackPipeline.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/DebugInfoMetadata.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalValue.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/Metadata.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCSectionCOFF.h"
|
|
#include "llvm/MC/MCStreamer.h"
|
|
#include "llvm/MC/MCSymbol.h"
|
|
#include "llvm/Support/BinaryByteStream.h"
|
|
#include "llvm/Support/BinaryStreamReader.h"
|
|
#include "llvm/Support/BinaryStreamWriter.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/Error.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/FormatVariadic.h"
|
|
#include "llvm/Support/Path.h"
|
|
#include "llvm/Support/SMLoc.h"
|
|
#include "llvm/Support/ScopedPrinter.h"
|
|
#include "llvm/Target/TargetLoweringObjectFile.h"
|
|
#include "llvm/Target/TargetMachine.h"
|
|
#include <algorithm>
|
|
#include <cassert>
|
|
#include <cctype>
|
|
#include <cstddef>
|
|
#include <iterator>
|
|
#include <limits>
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::codeview;
|
|
|
|
namespace {
|
|
class CVMCAdapter : public CodeViewRecordStreamer {
|
|
public:
|
|
CVMCAdapter(MCStreamer &OS, TypeCollection &TypeTable)
|
|
: OS(&OS), TypeTable(TypeTable) {}
|
|
|
|
void emitBytes(StringRef Data) override { OS->emitBytes(Data); }
|
|
|
|
void emitIntValue(uint64_t Value, unsigned Size) override {
|
|
OS->emitIntValueInHex(Value, Size);
|
|
}
|
|
|
|
void emitBinaryData(StringRef Data) override { OS->emitBinaryData(Data); }
|
|
|
|
void AddComment(const Twine &T) override { OS->AddComment(T); }
|
|
|
|
void AddRawComment(const Twine &T) override { OS->emitRawComment(T); }
|
|
|
|
bool isVerboseAsm() override { return OS->isVerboseAsm(); }
|
|
|
|
std::string getTypeName(TypeIndex TI) override {
|
|
std::string TypeName;
|
|
if (!TI.isNoneType()) {
|
|
if (TI.isSimple())
|
|
TypeName = std::string(TypeIndex::simpleTypeName(TI));
|
|
else
|
|
TypeName = std::string(TypeTable.getTypeName(TI));
|
|
}
|
|
return TypeName;
|
|
}
|
|
|
|
private:
|
|
MCStreamer *OS = nullptr;
|
|
TypeCollection &TypeTable;
|
|
};
|
|
} // namespace
|
|
|
|
static CPUType mapArchToCVCPUType(Triple::ArchType Type) {
|
|
switch (Type) {
|
|
case Triple::ArchType::x86:
|
|
return CPUType::Pentium3;
|
|
case Triple::ArchType::x86_64:
|
|
return CPUType::X64;
|
|
case Triple::ArchType::thumb:
|
|
return CPUType::Thumb;
|
|
case Triple::ArchType::aarch64:
|
|
return CPUType::ARM64;
|
|
default:
|
|
report_fatal_error("target architecture doesn't map to a CodeView CPUType");
|
|
}
|
|
}
|
|
|
|
CodeViewDebug::CodeViewDebug(AsmPrinter *AP)
|
|
: DebugHandlerBase(AP), OS(*Asm->OutStreamer), TypeTable(Allocator) {
|
|
// If module doesn't have named metadata anchors or COFF debug section
|
|
// is not available, skip any debug info related stuff.
|
|
if (!MMI->getModule()->getNamedMetadata("llvm.dbg.cu") ||
|
|
!AP->getObjFileLowering().getCOFFDebugSymbolsSection()) {
|
|
Asm = nullptr;
|
|
MMI->setDebugInfoAvailability(false);
|
|
return;
|
|
}
|
|
// Tell MMI that we have debug info.
|
|
MMI->setDebugInfoAvailability(true);
|
|
|
|
TheCPU =
|
|
mapArchToCVCPUType(Triple(MMI->getModule()->getTargetTriple()).getArch());
|
|
|
|
collectGlobalVariableInfo();
|
|
|
|
// Check if we should emit type record hashes.
|
|
ConstantInt *GH = mdconst::extract_or_null<ConstantInt>(
|
|
MMI->getModule()->getModuleFlag("CodeViewGHash"));
|
|
EmitDebugGlobalHashes = GH && !GH->isZero();
|
|
}
|
|
|
|
StringRef CodeViewDebug::getFullFilepath(const DIFile *File) {
|
|
std::string &Filepath = FileToFilepathMap[File];
|
|
if (!Filepath.empty())
|
|
return Filepath;
|
|
|
|
StringRef Dir = File->getDirectory(), Filename = File->getFilename();
|
|
|
|
// If this is a Unix-style path, just use it as is. Don't try to canonicalize
|
|
// it textually because one of the path components could be a symlink.
|
|
if (Dir.startswith("/") || Filename.startswith("/")) {
|
|
if (llvm::sys::path::is_absolute(Filename, llvm::sys::path::Style::posix))
|
|
return Filename;
|
|
Filepath = std::string(Dir);
|
|
if (Dir.back() != '/')
|
|
Filepath += '/';
|
|
Filepath += Filename;
|
|
return Filepath;
|
|
}
|
|
|
|
// Clang emits directory and relative filename info into the IR, but CodeView
|
|
// operates on full paths. We could change Clang to emit full paths too, but
|
|
// that would increase the IR size and probably not needed for other users.
|
|
// For now, just concatenate and canonicalize the path here.
|
|
if (Filename.find(':') == 1)
|
|
Filepath = std::string(Filename);
|
|
else
|
|
Filepath = (Dir + "\\" + Filename).str();
|
|
|
|
// Canonicalize the path. We have to do it textually because we may no longer
|
|
// have access the file in the filesystem.
|
|
// First, replace all slashes with backslashes.
|
|
std::replace(Filepath.begin(), Filepath.end(), '/', '\\');
|
|
|
|
// Remove all "\.\" with "\".
|
|
size_t Cursor = 0;
|
|
while ((Cursor = Filepath.find("\\.\\", Cursor)) != std::string::npos)
|
|
Filepath.erase(Cursor, 2);
|
|
|
|
// Replace all "\XXX\..\" with "\". Don't try too hard though as the original
|
|
// path should be well-formatted, e.g. start with a drive letter, etc.
|
|
Cursor = 0;
|
|
while ((Cursor = Filepath.find("\\..\\", Cursor)) != std::string::npos) {
|
|
// Something's wrong if the path starts with "\..\", abort.
|
|
if (Cursor == 0)
|
|
break;
|
|
|
|
size_t PrevSlash = Filepath.rfind('\\', Cursor - 1);
|
|
if (PrevSlash == std::string::npos)
|
|
// Something's wrong, abort.
|
|
break;
|
|
|
|
Filepath.erase(PrevSlash, Cursor + 3 - PrevSlash);
|
|
// The next ".." might be following the one we've just erased.
|
|
Cursor = PrevSlash;
|
|
}
|
|
|
|
// Remove all duplicate backslashes.
|
|
Cursor = 0;
|
|
while ((Cursor = Filepath.find("\\\\", Cursor)) != std::string::npos)
|
|
Filepath.erase(Cursor, 1);
|
|
|
|
return Filepath;
|
|
}
|
|
|
|
unsigned CodeViewDebug::maybeRecordFile(const DIFile *F) {
|
|
StringRef FullPath = getFullFilepath(F);
|
|
unsigned NextId = FileIdMap.size() + 1;
|
|
auto Insertion = FileIdMap.insert(std::make_pair(FullPath, NextId));
|
|
if (Insertion.second) {
|
|
// We have to compute the full filepath and emit a .cv_file directive.
|
|
ArrayRef<uint8_t> ChecksumAsBytes;
|
|
FileChecksumKind CSKind = FileChecksumKind::None;
|
|
if (F->getChecksum()) {
|
|
std::string Checksum = fromHex(F->getChecksum()->Value);
|
|
void *CKMem = OS.getContext().allocate(Checksum.size(), 1);
|
|
memcpy(CKMem, Checksum.data(), Checksum.size());
|
|
ChecksumAsBytes = ArrayRef<uint8_t>(
|
|
reinterpret_cast<const uint8_t *>(CKMem), Checksum.size());
|
|
switch (F->getChecksum()->Kind) {
|
|
case DIFile::CSK_MD5:
|
|
CSKind = FileChecksumKind::MD5;
|
|
break;
|
|
case DIFile::CSK_SHA1:
|
|
CSKind = FileChecksumKind::SHA1;
|
|
break;
|
|
case DIFile::CSK_SHA256:
|
|
CSKind = FileChecksumKind::SHA256;
|
|
break;
|
|
}
|
|
}
|
|
bool Success = OS.EmitCVFileDirective(NextId, FullPath, ChecksumAsBytes,
|
|
static_cast<unsigned>(CSKind));
|
|
(void)Success;
|
|
assert(Success && ".cv_file directive failed");
|
|
}
|
|
return Insertion.first->second;
|
|
}
|
|
|
|
CodeViewDebug::InlineSite &
|
|
CodeViewDebug::getInlineSite(const DILocation *InlinedAt,
|
|
const DISubprogram *Inlinee) {
|
|
auto SiteInsertion = CurFn->InlineSites.insert({InlinedAt, InlineSite()});
|
|
InlineSite *Site = &SiteInsertion.first->second;
|
|
if (SiteInsertion.second) {
|
|
unsigned ParentFuncId = CurFn->FuncId;
|
|
if (const DILocation *OuterIA = InlinedAt->getInlinedAt())
|
|
ParentFuncId =
|
|
getInlineSite(OuterIA, InlinedAt->getScope()->getSubprogram())
|
|
.SiteFuncId;
|
|
|
|
Site->SiteFuncId = NextFuncId++;
|
|
OS.EmitCVInlineSiteIdDirective(
|
|
Site->SiteFuncId, ParentFuncId, maybeRecordFile(InlinedAt->getFile()),
|
|
InlinedAt->getLine(), InlinedAt->getColumn(), SMLoc());
|
|
Site->Inlinee = Inlinee;
|
|
InlinedSubprograms.insert(Inlinee);
|
|
getFuncIdForSubprogram(Inlinee);
|
|
}
|
|
return *Site;
|
|
}
|
|
|
|
static StringRef getPrettyScopeName(const DIScope *Scope) {
|
|
StringRef ScopeName = Scope->getName();
|
|
if (!ScopeName.empty())
|
|
return ScopeName;
|
|
|
|
switch (Scope->getTag()) {
|
|
case dwarf::DW_TAG_enumeration_type:
|
|
case dwarf::DW_TAG_class_type:
|
|
case dwarf::DW_TAG_structure_type:
|
|
case dwarf::DW_TAG_union_type:
|
|
return "<unnamed-tag>";
|
|
case dwarf::DW_TAG_namespace:
|
|
return "`anonymous namespace'";
|
|
}
|
|
|
|
return StringRef();
|
|
}
|
|
|
|
const DISubprogram *CodeViewDebug::collectParentScopeNames(
|
|
const DIScope *Scope, SmallVectorImpl<StringRef> &QualifiedNameComponents) {
|
|
const DISubprogram *ClosestSubprogram = nullptr;
|
|
while (Scope != nullptr) {
|
|
if (ClosestSubprogram == nullptr)
|
|
ClosestSubprogram = dyn_cast<DISubprogram>(Scope);
|
|
|
|
// If a type appears in a scope chain, make sure it gets emitted. The
|
|
// frontend will be responsible for deciding if this should be a forward
|
|
// declaration or a complete type.
|
|
if (const auto *Ty = dyn_cast<DICompositeType>(Scope))
|
|
DeferredCompleteTypes.push_back(Ty);
|
|
|
|
StringRef ScopeName = getPrettyScopeName(Scope);
|
|
if (!ScopeName.empty())
|
|
QualifiedNameComponents.push_back(ScopeName);
|
|
Scope = Scope->getScope();
|
|
}
|
|
return ClosestSubprogram;
|
|
}
|
|
|
|
static std::string formatNestedName(ArrayRef<StringRef> QualifiedNameComponents,
|
|
StringRef TypeName) {
|
|
std::string FullyQualifiedName;
|
|
for (StringRef QualifiedNameComponent :
|
|
llvm::reverse(QualifiedNameComponents)) {
|
|
FullyQualifiedName.append(std::string(QualifiedNameComponent));
|
|
FullyQualifiedName.append("::");
|
|
}
|
|
FullyQualifiedName.append(std::string(TypeName));
|
|
return FullyQualifiedName;
|
|
}
|
|
|
|
struct CodeViewDebug::TypeLoweringScope {
|
|
TypeLoweringScope(CodeViewDebug &CVD) : CVD(CVD) { ++CVD.TypeEmissionLevel; }
|
|
~TypeLoweringScope() {
|
|
// Don't decrement TypeEmissionLevel until after emitting deferred types, so
|
|
// inner TypeLoweringScopes don't attempt to emit deferred types.
|
|
if (CVD.TypeEmissionLevel == 1)
|
|
CVD.emitDeferredCompleteTypes();
|
|
--CVD.TypeEmissionLevel;
|
|
}
|
|
CodeViewDebug &CVD;
|
|
};
|
|
|
|
std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Scope,
|
|
StringRef Name) {
|
|
// Ensure types in the scope chain are emitted as soon as possible.
|
|
// This can create otherwise a situation where S_UDTs are emitted while
|
|
// looping in emitDebugInfoForUDTs.
|
|
TypeLoweringScope S(*this);
|
|
SmallVector<StringRef, 5> QualifiedNameComponents;
|
|
collectParentScopeNames(Scope, QualifiedNameComponents);
|
|
return formatNestedName(QualifiedNameComponents, Name);
|
|
}
|
|
|
|
std::string CodeViewDebug::getFullyQualifiedName(const DIScope *Ty) {
|
|
const DIScope *Scope = Ty->getScope();
|
|
return getFullyQualifiedName(Scope, getPrettyScopeName(Ty));
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::getScopeIndex(const DIScope *Scope) {
|
|
// No scope means global scope and that uses the zero index.
|
|
if (!Scope || isa<DIFile>(Scope))
|
|
return TypeIndex();
|
|
|
|
assert(!isa<DIType>(Scope) && "shouldn't make a namespace scope for a type");
|
|
|
|
// Check if we've already translated this scope.
|
|
auto I = TypeIndices.find({Scope, nullptr});
|
|
if (I != TypeIndices.end())
|
|
return I->second;
|
|
|
|
// Build the fully qualified name of the scope.
|
|
std::string ScopeName = getFullyQualifiedName(Scope);
|
|
StringIdRecord SID(TypeIndex(), ScopeName);
|
|
auto TI = TypeTable.writeLeafType(SID);
|
|
return recordTypeIndexForDINode(Scope, TI);
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::getFuncIdForSubprogram(const DISubprogram *SP) {
|
|
assert(SP);
|
|
|
|
// Check if we've already translated this subprogram.
|
|
auto I = TypeIndices.find({SP, nullptr});
|
|
if (I != TypeIndices.end())
|
|
return I->second;
|
|
|
|
// The display name includes function template arguments. Drop them to match
|
|
// MSVC.
|
|
StringRef DisplayName = SP->getName().split('<').first;
|
|
|
|
const DIScope *Scope = SP->getScope();
|
|
TypeIndex TI;
|
|
if (const auto *Class = dyn_cast_or_null<DICompositeType>(Scope)) {
|
|
// If the scope is a DICompositeType, then this must be a method. Member
|
|
// function types take some special handling, and require access to the
|
|
// subprogram.
|
|
TypeIndex ClassType = getTypeIndex(Class);
|
|
MemberFuncIdRecord MFuncId(ClassType, getMemberFunctionType(SP, Class),
|
|
DisplayName);
|
|
TI = TypeTable.writeLeafType(MFuncId);
|
|
} else {
|
|
// Otherwise, this must be a free function.
|
|
TypeIndex ParentScope = getScopeIndex(Scope);
|
|
FuncIdRecord FuncId(ParentScope, getTypeIndex(SP->getType()), DisplayName);
|
|
TI = TypeTable.writeLeafType(FuncId);
|
|
}
|
|
|
|
return recordTypeIndexForDINode(SP, TI);
|
|
}
|
|
|
|
static bool isNonTrivial(const DICompositeType *DCTy) {
|
|
return ((DCTy->getFlags() & DINode::FlagNonTrivial) == DINode::FlagNonTrivial);
|
|
}
|
|
|
|
static FunctionOptions
|
|
getFunctionOptions(const DISubroutineType *Ty,
|
|
const DICompositeType *ClassTy = nullptr,
|
|
StringRef SPName = StringRef("")) {
|
|
FunctionOptions FO = FunctionOptions::None;
|
|
const DIType *ReturnTy = nullptr;
|
|
if (auto TypeArray = Ty->getTypeArray()) {
|
|
if (TypeArray.size())
|
|
ReturnTy = TypeArray[0];
|
|
}
|
|
|
|
// Add CxxReturnUdt option to functions that return nontrivial record types
|
|
// or methods that return record types.
|
|
if (auto *ReturnDCTy = dyn_cast_or_null<DICompositeType>(ReturnTy))
|
|
if (isNonTrivial(ReturnDCTy) || ClassTy)
|
|
FO |= FunctionOptions::CxxReturnUdt;
|
|
|
|
// DISubroutineType is unnamed. Use DISubprogram's i.e. SPName in comparison.
|
|
if (ClassTy && isNonTrivial(ClassTy) && SPName == ClassTy->getName()) {
|
|
FO |= FunctionOptions::Constructor;
|
|
|
|
// TODO: put the FunctionOptions::ConstructorWithVirtualBases flag.
|
|
|
|
}
|
|
return FO;
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::getMemberFunctionType(const DISubprogram *SP,
|
|
const DICompositeType *Class) {
|
|
// Always use the method declaration as the key for the function type. The
|
|
// method declaration contains the this adjustment.
|
|
if (SP->getDeclaration())
|
|
SP = SP->getDeclaration();
|
|
assert(!SP->getDeclaration() && "should use declaration as key");
|
|
|
|
// Key the MemberFunctionRecord into the map as {SP, Class}. It won't collide
|
|
// with the MemberFuncIdRecord, which is keyed in as {SP, nullptr}.
|
|
auto I = TypeIndices.find({SP, Class});
|
|
if (I != TypeIndices.end())
|
|
return I->second;
|
|
|
|
// Make sure complete type info for the class is emitted *after* the member
|
|
// function type, as the complete class type is likely to reference this
|
|
// member function type.
|
|
TypeLoweringScope S(*this);
|
|
const bool IsStaticMethod = (SP->getFlags() & DINode::FlagStaticMember) != 0;
|
|
|
|
FunctionOptions FO = getFunctionOptions(SP->getType(), Class, SP->getName());
|
|
TypeIndex TI = lowerTypeMemberFunction(
|
|
SP->getType(), Class, SP->getThisAdjustment(), IsStaticMethod, FO);
|
|
return recordTypeIndexForDINode(SP, TI, Class);
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::recordTypeIndexForDINode(const DINode *Node,
|
|
TypeIndex TI,
|
|
const DIType *ClassTy) {
|
|
auto InsertResult = TypeIndices.insert({{Node, ClassTy}, TI});
|
|
(void)InsertResult;
|
|
assert(InsertResult.second && "DINode was already assigned a type index");
|
|
return TI;
|
|
}
|
|
|
|
unsigned CodeViewDebug::getPointerSizeInBytes() {
|
|
return MMI->getModule()->getDataLayout().getPointerSizeInBits() / 8;
|
|
}
|
|
|
|
void CodeViewDebug::recordLocalVariable(LocalVariable &&Var,
|
|
const LexicalScope *LS) {
|
|
if (const DILocation *InlinedAt = LS->getInlinedAt()) {
|
|
// This variable was inlined. Associate it with the InlineSite.
|
|
const DISubprogram *Inlinee = Var.DIVar->getScope()->getSubprogram();
|
|
InlineSite &Site = getInlineSite(InlinedAt, Inlinee);
|
|
Site.InlinedLocals.emplace_back(Var);
|
|
} else {
|
|
// This variable goes into the corresponding lexical scope.
|
|
ScopeVariables[LS].emplace_back(Var);
|
|
}
|
|
}
|
|
|
|
static void addLocIfNotPresent(SmallVectorImpl<const DILocation *> &Locs,
|
|
const DILocation *Loc) {
|
|
if (!llvm::is_contained(Locs, Loc))
|
|
Locs.push_back(Loc);
|
|
}
|
|
|
|
void CodeViewDebug::maybeRecordLocation(const DebugLoc &DL,
|
|
const MachineFunction *MF) {
|
|
// Skip this instruction if it has the same location as the previous one.
|
|
if (!DL || DL == PrevInstLoc)
|
|
return;
|
|
|
|
const DIScope *Scope = DL.get()->getScope();
|
|
if (!Scope)
|
|
return;
|
|
|
|
// Skip this line if it is longer than the maximum we can record.
|
|
LineInfo LI(DL.getLine(), DL.getLine(), /*IsStatement=*/true);
|
|
if (LI.getStartLine() != DL.getLine() || LI.isAlwaysStepInto() ||
|
|
LI.isNeverStepInto())
|
|
return;
|
|
|
|
ColumnInfo CI(DL.getCol(), /*EndColumn=*/0);
|
|
if (CI.getStartColumn() != DL.getCol())
|
|
return;
|
|
|
|
if (!CurFn->HaveLineInfo)
|
|
CurFn->HaveLineInfo = true;
|
|
unsigned FileId = 0;
|
|
if (PrevInstLoc.get() && PrevInstLoc->getFile() == DL->getFile())
|
|
FileId = CurFn->LastFileId;
|
|
else
|
|
FileId = CurFn->LastFileId = maybeRecordFile(DL->getFile());
|
|
PrevInstLoc = DL;
|
|
|
|
unsigned FuncId = CurFn->FuncId;
|
|
if (const DILocation *SiteLoc = DL->getInlinedAt()) {
|
|
const DILocation *Loc = DL.get();
|
|
|
|
// If this location was actually inlined from somewhere else, give it the ID
|
|
// of the inline call site.
|
|
FuncId =
|
|
getInlineSite(SiteLoc, Loc->getScope()->getSubprogram()).SiteFuncId;
|
|
|
|
// Ensure we have links in the tree of inline call sites.
|
|
bool FirstLoc = true;
|
|
while ((SiteLoc = Loc->getInlinedAt())) {
|
|
InlineSite &Site =
|
|
getInlineSite(SiteLoc, Loc->getScope()->getSubprogram());
|
|
if (!FirstLoc)
|
|
addLocIfNotPresent(Site.ChildSites, Loc);
|
|
FirstLoc = false;
|
|
Loc = SiteLoc;
|
|
}
|
|
addLocIfNotPresent(CurFn->ChildSites, Loc);
|
|
}
|
|
|
|
OS.emitCVLocDirective(FuncId, FileId, DL.getLine(), DL.getCol(),
|
|
/*PrologueEnd=*/false, /*IsStmt=*/false,
|
|
DL->getFilename(), SMLoc());
|
|
}
|
|
|
|
void CodeViewDebug::emitCodeViewMagicVersion() {
|
|
OS.emitValueToAlignment(4);
|
|
OS.AddComment("Debug section magic");
|
|
OS.emitInt32(COFF::DEBUG_SECTION_MAGIC);
|
|
}
|
|
|
|
void CodeViewDebug::endModule() {
|
|
if (!Asm || !MMI->hasDebugInfo())
|
|
return;
|
|
|
|
assert(Asm != nullptr);
|
|
|
|
// The COFF .debug$S section consists of several subsections, each starting
|
|
// with a 4-byte control code (e.g. 0xF1, 0xF2, etc) and then a 4-byte length
|
|
// of the payload followed by the payload itself. The subsections are 4-byte
|
|
// aligned.
|
|
|
|
// Use the generic .debug$S section, and make a subsection for all the inlined
|
|
// subprograms.
|
|
switchToDebugSectionForSymbol(nullptr);
|
|
|
|
MCSymbol *CompilerInfo = beginCVSubsection(DebugSubsectionKind::Symbols);
|
|
emitCompilerInformation();
|
|
endCVSubsection(CompilerInfo);
|
|
|
|
emitInlineeLinesSubsection();
|
|
|
|
// Emit per-function debug information.
|
|
for (auto &P : FnDebugInfo)
|
|
if (!P.first->isDeclarationForLinker())
|
|
emitDebugInfoForFunction(P.first, *P.second);
|
|
|
|
// Emit global variable debug information.
|
|
setCurrentSubprogram(nullptr);
|
|
emitDebugInfoForGlobals();
|
|
|
|
// Emit retained types.
|
|
emitDebugInfoForRetainedTypes();
|
|
|
|
// Switch back to the generic .debug$S section after potentially processing
|
|
// comdat symbol sections.
|
|
switchToDebugSectionForSymbol(nullptr);
|
|
|
|
// Emit UDT records for any types used by global variables.
|
|
if (!GlobalUDTs.empty()) {
|
|
MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
|
|
emitDebugInfoForUDTs(GlobalUDTs);
|
|
endCVSubsection(SymbolsEnd);
|
|
}
|
|
|
|
// This subsection holds a file index to offset in string table table.
|
|
OS.AddComment("File index to string table offset subsection");
|
|
OS.emitCVFileChecksumsDirective();
|
|
|
|
// This subsection holds the string table.
|
|
OS.AddComment("String table");
|
|
OS.emitCVStringTableDirective();
|
|
|
|
// Emit S_BUILDINFO, which points to LF_BUILDINFO. Put this in its own symbol
|
|
// subsection in the generic .debug$S section at the end. There is no
|
|
// particular reason for this ordering other than to match MSVC.
|
|
emitBuildInfo();
|
|
|
|
// Emit type information and hashes last, so that any types we translate while
|
|
// emitting function info are included.
|
|
emitTypeInformation();
|
|
|
|
if (EmitDebugGlobalHashes)
|
|
emitTypeGlobalHashes();
|
|
|
|
clear();
|
|
}
|
|
|
|
static void
|
|
emitNullTerminatedSymbolName(MCStreamer &OS, StringRef S,
|
|
unsigned MaxFixedRecordLength = 0xF00) {
|
|
// The maximum CV record length is 0xFF00. Most of the strings we emit appear
|
|
// after a fixed length portion of the record. The fixed length portion should
|
|
// always be less than 0xF00 (3840) bytes, so truncate the string so that the
|
|
// overall record size is less than the maximum allowed.
|
|
SmallString<32> NullTerminatedString(
|
|
S.take_front(MaxRecordLength - MaxFixedRecordLength - 1));
|
|
NullTerminatedString.push_back('\0');
|
|
OS.emitBytes(NullTerminatedString);
|
|
}
|
|
|
|
void CodeViewDebug::emitTypeInformation() {
|
|
if (TypeTable.empty())
|
|
return;
|
|
|
|
// Start the .debug$T or .debug$P section with 0x4.
|
|
OS.SwitchSection(Asm->getObjFileLowering().getCOFFDebugTypesSection());
|
|
emitCodeViewMagicVersion();
|
|
|
|
TypeTableCollection Table(TypeTable.records());
|
|
TypeVisitorCallbackPipeline Pipeline;
|
|
|
|
// To emit type record using Codeview MCStreamer adapter
|
|
CVMCAdapter CVMCOS(OS, Table);
|
|
TypeRecordMapping typeMapping(CVMCOS);
|
|
Pipeline.addCallbackToPipeline(typeMapping);
|
|
|
|
Optional<TypeIndex> B = Table.getFirst();
|
|
while (B) {
|
|
// This will fail if the record data is invalid.
|
|
CVType Record = Table.getType(*B);
|
|
|
|
Error E = codeview::visitTypeRecord(Record, *B, Pipeline);
|
|
|
|
if (E) {
|
|
logAllUnhandledErrors(std::move(E), errs(), "error: ");
|
|
llvm_unreachable("produced malformed type record");
|
|
}
|
|
|
|
B = Table.getNext(*B);
|
|
}
|
|
}
|
|
|
|
void CodeViewDebug::emitTypeGlobalHashes() {
|
|
if (TypeTable.empty())
|
|
return;
|
|
|
|
// Start the .debug$H section with the version and hash algorithm, currently
|
|
// hardcoded to version 0, SHA1.
|
|
OS.SwitchSection(Asm->getObjFileLowering().getCOFFGlobalTypeHashesSection());
|
|
|
|
OS.emitValueToAlignment(4);
|
|
OS.AddComment("Magic");
|
|
OS.emitInt32(COFF::DEBUG_HASHES_SECTION_MAGIC);
|
|
OS.AddComment("Section Version");
|
|
OS.emitInt16(0);
|
|
OS.AddComment("Hash Algorithm");
|
|
OS.emitInt16(uint16_t(GlobalTypeHashAlg::SHA1_8));
|
|
|
|
TypeIndex TI(TypeIndex::FirstNonSimpleIndex);
|
|
for (const auto &GHR : TypeTable.hashes()) {
|
|
if (OS.isVerboseAsm()) {
|
|
// Emit an EOL-comment describing which TypeIndex this hash corresponds
|
|
// to, as well as the stringified SHA1 hash.
|
|
SmallString<32> Comment;
|
|
raw_svector_ostream CommentOS(Comment);
|
|
CommentOS << formatv("{0:X+} [{1}]", TI.getIndex(), GHR);
|
|
OS.AddComment(Comment);
|
|
++TI;
|
|
}
|
|
assert(GHR.Hash.size() == 8);
|
|
StringRef S(reinterpret_cast<const char *>(GHR.Hash.data()),
|
|
GHR.Hash.size());
|
|
OS.emitBinaryData(S);
|
|
}
|
|
}
|
|
|
|
static SourceLanguage MapDWLangToCVLang(unsigned DWLang) {
|
|
switch (DWLang) {
|
|
case dwarf::DW_LANG_C:
|
|
case dwarf::DW_LANG_C89:
|
|
case dwarf::DW_LANG_C99:
|
|
case dwarf::DW_LANG_C11:
|
|
case dwarf::DW_LANG_ObjC:
|
|
return SourceLanguage::C;
|
|
case dwarf::DW_LANG_C_plus_plus:
|
|
case dwarf::DW_LANG_C_plus_plus_03:
|
|
case dwarf::DW_LANG_C_plus_plus_11:
|
|
case dwarf::DW_LANG_C_plus_plus_14:
|
|
return SourceLanguage::Cpp;
|
|
case dwarf::DW_LANG_Fortran77:
|
|
case dwarf::DW_LANG_Fortran90:
|
|
case dwarf::DW_LANG_Fortran03:
|
|
case dwarf::DW_LANG_Fortran08:
|
|
return SourceLanguage::Fortran;
|
|
case dwarf::DW_LANG_Pascal83:
|
|
return SourceLanguage::Pascal;
|
|
case dwarf::DW_LANG_Cobol74:
|
|
case dwarf::DW_LANG_Cobol85:
|
|
return SourceLanguage::Cobol;
|
|
case dwarf::DW_LANG_Java:
|
|
return SourceLanguage::Java;
|
|
case dwarf::DW_LANG_D:
|
|
return SourceLanguage::D;
|
|
case dwarf::DW_LANG_Swift:
|
|
return SourceLanguage::Swift;
|
|
default:
|
|
// There's no CodeView representation for this language, and CV doesn't
|
|
// have an "unknown" option for the language field, so we'll use MASM,
|
|
// as it's very low level.
|
|
return SourceLanguage::Masm;
|
|
}
|
|
}
|
|
|
|
namespace {
|
|
struct Version {
|
|
int Part[4];
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
// Takes a StringRef like "clang 4.0.0.0 (other nonsense 123)" and parses out
|
|
// the version number.
|
|
static Version parseVersion(StringRef Name) {
|
|
Version V = {{0}};
|
|
int N = 0;
|
|
for (const char C : Name) {
|
|
if (isdigit(C)) {
|
|
V.Part[N] *= 10;
|
|
V.Part[N] += C - '0';
|
|
} else if (C == '.') {
|
|
++N;
|
|
if (N >= 4)
|
|
return V;
|
|
} else if (N > 0)
|
|
return V;
|
|
}
|
|
return V;
|
|
}
|
|
|
|
void CodeViewDebug::emitCompilerInformation() {
|
|
MCSymbol *CompilerEnd = beginSymbolRecord(SymbolKind::S_COMPILE3);
|
|
uint32_t Flags = 0;
|
|
|
|
NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
|
|
const MDNode *Node = *CUs->operands().begin();
|
|
const auto *CU = cast<DICompileUnit>(Node);
|
|
|
|
// The low byte of the flags indicates the source language.
|
|
Flags = MapDWLangToCVLang(CU->getSourceLanguage());
|
|
// TODO: Figure out which other flags need to be set.
|
|
|
|
OS.AddComment("Flags and language");
|
|
OS.emitInt32(Flags);
|
|
|
|
OS.AddComment("CPUType");
|
|
OS.emitInt16(static_cast<uint64_t>(TheCPU));
|
|
|
|
StringRef CompilerVersion = CU->getProducer();
|
|
Version FrontVer = parseVersion(CompilerVersion);
|
|
OS.AddComment("Frontend version");
|
|
for (int N = 0; N < 4; ++N)
|
|
OS.emitInt16(FrontVer.Part[N]);
|
|
|
|
// Some Microsoft tools, like Binscope, expect a backend version number of at
|
|
// least 8.something, so we'll coerce the LLVM version into a form that
|
|
// guarantees it'll be big enough without really lying about the version.
|
|
int Major = 1000 * LLVM_VERSION_MAJOR +
|
|
10 * LLVM_VERSION_MINOR +
|
|
LLVM_VERSION_PATCH;
|
|
// Clamp it for builds that use unusually large version numbers.
|
|
Major = std::min<int>(Major, std::numeric_limits<uint16_t>::max());
|
|
Version BackVer = {{ Major, 0, 0, 0 }};
|
|
OS.AddComment("Backend version");
|
|
for (int N = 0; N < 4; ++N)
|
|
OS.emitInt16(BackVer.Part[N]);
|
|
|
|
OS.AddComment("Null-terminated compiler version string");
|
|
emitNullTerminatedSymbolName(OS, CompilerVersion);
|
|
|
|
endSymbolRecord(CompilerEnd);
|
|
}
|
|
|
|
static TypeIndex getStringIdTypeIdx(GlobalTypeTableBuilder &TypeTable,
|
|
StringRef S) {
|
|
StringIdRecord SIR(TypeIndex(0x0), S);
|
|
return TypeTable.writeLeafType(SIR);
|
|
}
|
|
|
|
void CodeViewDebug::emitBuildInfo() {
|
|
// First, make LF_BUILDINFO. It's a sequence of strings with various bits of
|
|
// build info. The known prefix is:
|
|
// - Absolute path of current directory
|
|
// - Compiler path
|
|
// - Main source file path, relative to CWD or absolute
|
|
// - Type server PDB file
|
|
// - Canonical compiler command line
|
|
// If frontend and backend compilation are separated (think llc or LTO), it's
|
|
// not clear if the compiler path should refer to the executable for the
|
|
// frontend or the backend. Leave it blank for now.
|
|
TypeIndex BuildInfoArgs[BuildInfoRecord::MaxArgs] = {};
|
|
NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
|
|
const MDNode *Node = *CUs->operands().begin(); // FIXME: Multiple CUs.
|
|
const auto *CU = cast<DICompileUnit>(Node);
|
|
const DIFile *MainSourceFile = CU->getFile();
|
|
BuildInfoArgs[BuildInfoRecord::CurrentDirectory] =
|
|
getStringIdTypeIdx(TypeTable, MainSourceFile->getDirectory());
|
|
BuildInfoArgs[BuildInfoRecord::SourceFile] =
|
|
getStringIdTypeIdx(TypeTable, MainSourceFile->getFilename());
|
|
// FIXME: Path to compiler and command line. PDB is intentionally blank unless
|
|
// we implement /Zi type servers.
|
|
BuildInfoRecord BIR(BuildInfoArgs);
|
|
TypeIndex BuildInfoIndex = TypeTable.writeLeafType(BIR);
|
|
|
|
// Make a new .debug$S subsection for the S_BUILDINFO record, which points
|
|
// from the module symbols into the type stream.
|
|
MCSymbol *BISubsecEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
|
|
MCSymbol *BIEnd = beginSymbolRecord(SymbolKind::S_BUILDINFO);
|
|
OS.AddComment("LF_BUILDINFO index");
|
|
OS.emitInt32(BuildInfoIndex.getIndex());
|
|
endSymbolRecord(BIEnd);
|
|
endCVSubsection(BISubsecEnd);
|
|
}
|
|
|
|
void CodeViewDebug::emitInlineeLinesSubsection() {
|
|
if (InlinedSubprograms.empty())
|
|
return;
|
|
|
|
OS.AddComment("Inlinee lines subsection");
|
|
MCSymbol *InlineEnd = beginCVSubsection(DebugSubsectionKind::InlineeLines);
|
|
|
|
// We emit the checksum info for files. This is used by debuggers to
|
|
// determine if a pdb matches the source before loading it. Visual Studio,
|
|
// for instance, will display a warning that the breakpoints are not valid if
|
|
// the pdb does not match the source.
|
|
OS.AddComment("Inlinee lines signature");
|
|
OS.emitInt32(unsigned(InlineeLinesSignature::Normal));
|
|
|
|
for (const DISubprogram *SP : InlinedSubprograms) {
|
|
assert(TypeIndices.count({SP, nullptr}));
|
|
TypeIndex InlineeIdx = TypeIndices[{SP, nullptr}];
|
|
|
|
OS.AddBlankLine();
|
|
unsigned FileId = maybeRecordFile(SP->getFile());
|
|
OS.AddComment("Inlined function " + SP->getName() + " starts at " +
|
|
SP->getFilename() + Twine(':') + Twine(SP->getLine()));
|
|
OS.AddBlankLine();
|
|
OS.AddComment("Type index of inlined function");
|
|
OS.emitInt32(InlineeIdx.getIndex());
|
|
OS.AddComment("Offset into filechecksum table");
|
|
OS.emitCVFileChecksumOffsetDirective(FileId);
|
|
OS.AddComment("Starting line number");
|
|
OS.emitInt32(SP->getLine());
|
|
}
|
|
|
|
endCVSubsection(InlineEnd);
|
|
}
|
|
|
|
void CodeViewDebug::emitInlinedCallSite(const FunctionInfo &FI,
|
|
const DILocation *InlinedAt,
|
|
const InlineSite &Site) {
|
|
assert(TypeIndices.count({Site.Inlinee, nullptr}));
|
|
TypeIndex InlineeIdx = TypeIndices[{Site.Inlinee, nullptr}];
|
|
|
|
// SymbolRecord
|
|
MCSymbol *InlineEnd = beginSymbolRecord(SymbolKind::S_INLINESITE);
|
|
|
|
OS.AddComment("PtrParent");
|
|
OS.emitInt32(0);
|
|
OS.AddComment("PtrEnd");
|
|
OS.emitInt32(0);
|
|
OS.AddComment("Inlinee type index");
|
|
OS.emitInt32(InlineeIdx.getIndex());
|
|
|
|
unsigned FileId = maybeRecordFile(Site.Inlinee->getFile());
|
|
unsigned StartLineNum = Site.Inlinee->getLine();
|
|
|
|
OS.emitCVInlineLinetableDirective(Site.SiteFuncId, FileId, StartLineNum,
|
|
FI.Begin, FI.End);
|
|
|
|
endSymbolRecord(InlineEnd);
|
|
|
|
emitLocalVariableList(FI, Site.InlinedLocals);
|
|
|
|
// Recurse on child inlined call sites before closing the scope.
|
|
for (const DILocation *ChildSite : Site.ChildSites) {
|
|
auto I = FI.InlineSites.find(ChildSite);
|
|
assert(I != FI.InlineSites.end() &&
|
|
"child site not in function inline site map");
|
|
emitInlinedCallSite(FI, ChildSite, I->second);
|
|
}
|
|
|
|
// Close the scope.
|
|
emitEndSymbolRecord(SymbolKind::S_INLINESITE_END);
|
|
}
|
|
|
|
void CodeViewDebug::switchToDebugSectionForSymbol(const MCSymbol *GVSym) {
|
|
// If we have a symbol, it may be in a section that is COMDAT. If so, find the
|
|
// comdat key. A section may be comdat because of -ffunction-sections or
|
|
// because it is comdat in the IR.
|
|
MCSectionCOFF *GVSec =
|
|
GVSym ? dyn_cast<MCSectionCOFF>(&GVSym->getSection()) : nullptr;
|
|
const MCSymbol *KeySym = GVSec ? GVSec->getCOMDATSymbol() : nullptr;
|
|
|
|
MCSectionCOFF *DebugSec = cast<MCSectionCOFF>(
|
|
Asm->getObjFileLowering().getCOFFDebugSymbolsSection());
|
|
DebugSec = OS.getContext().getAssociativeCOFFSection(DebugSec, KeySym);
|
|
|
|
OS.SwitchSection(DebugSec);
|
|
|
|
// Emit the magic version number if this is the first time we've switched to
|
|
// this section.
|
|
if (ComdatDebugSections.insert(DebugSec).second)
|
|
emitCodeViewMagicVersion();
|
|
}
|
|
|
|
// Emit an S_THUNK32/S_END symbol pair for a thunk routine.
|
|
// The only supported thunk ordinal is currently the standard type.
|
|
void CodeViewDebug::emitDebugInfoForThunk(const Function *GV,
|
|
FunctionInfo &FI,
|
|
const MCSymbol *Fn) {
|
|
std::string FuncName =
|
|
std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
|
|
const ThunkOrdinal ordinal = ThunkOrdinal::Standard; // Only supported kind.
|
|
|
|
OS.AddComment("Symbol subsection for " + Twine(FuncName));
|
|
MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
|
|
|
|
// Emit S_THUNK32
|
|
MCSymbol *ThunkRecordEnd = beginSymbolRecord(SymbolKind::S_THUNK32);
|
|
OS.AddComment("PtrParent");
|
|
OS.emitInt32(0);
|
|
OS.AddComment("PtrEnd");
|
|
OS.emitInt32(0);
|
|
OS.AddComment("PtrNext");
|
|
OS.emitInt32(0);
|
|
OS.AddComment("Thunk section relative address");
|
|
OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
|
|
OS.AddComment("Thunk section index");
|
|
OS.EmitCOFFSectionIndex(Fn);
|
|
OS.AddComment("Code size");
|
|
OS.emitAbsoluteSymbolDiff(FI.End, Fn, 2);
|
|
OS.AddComment("Ordinal");
|
|
OS.emitInt8(unsigned(ordinal));
|
|
OS.AddComment("Function name");
|
|
emitNullTerminatedSymbolName(OS, FuncName);
|
|
// Additional fields specific to the thunk ordinal would go here.
|
|
endSymbolRecord(ThunkRecordEnd);
|
|
|
|
// Local variables/inlined routines are purposely omitted here. The point of
|
|
// marking this as a thunk is so Visual Studio will NOT stop in this routine.
|
|
|
|
// Emit S_PROC_ID_END
|
|
emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
|
|
|
|
endCVSubsection(SymbolsEnd);
|
|
}
|
|
|
|
void CodeViewDebug::emitDebugInfoForFunction(const Function *GV,
|
|
FunctionInfo &FI) {
|
|
// For each function there is a separate subsection which holds the PC to
|
|
// file:line table.
|
|
const MCSymbol *Fn = Asm->getSymbol(GV);
|
|
assert(Fn);
|
|
|
|
// Switch to the to a comdat section, if appropriate.
|
|
switchToDebugSectionForSymbol(Fn);
|
|
|
|
std::string FuncName;
|
|
auto *SP = GV->getSubprogram();
|
|
assert(SP);
|
|
setCurrentSubprogram(SP);
|
|
|
|
if (SP->isThunk()) {
|
|
emitDebugInfoForThunk(GV, FI, Fn);
|
|
return;
|
|
}
|
|
|
|
// If we have a display name, build the fully qualified name by walking the
|
|
// chain of scopes.
|
|
if (!SP->getName().empty())
|
|
FuncName = getFullyQualifiedName(SP->getScope(), SP->getName());
|
|
|
|
// If our DISubprogram name is empty, use the mangled name.
|
|
if (FuncName.empty())
|
|
FuncName = std::string(GlobalValue::dropLLVMManglingEscape(GV->getName()));
|
|
|
|
// Emit FPO data, but only on 32-bit x86. No other platforms use it.
|
|
if (Triple(MMI->getModule()->getTargetTriple()).getArch() == Triple::x86)
|
|
OS.EmitCVFPOData(Fn);
|
|
|
|
// Emit a symbol subsection, required by VS2012+ to find function boundaries.
|
|
OS.AddComment("Symbol subsection for " + Twine(FuncName));
|
|
MCSymbol *SymbolsEnd = beginCVSubsection(DebugSubsectionKind::Symbols);
|
|
{
|
|
SymbolKind ProcKind = GV->hasLocalLinkage() ? SymbolKind::S_LPROC32_ID
|
|
: SymbolKind::S_GPROC32_ID;
|
|
MCSymbol *ProcRecordEnd = beginSymbolRecord(ProcKind);
|
|
|
|
// These fields are filled in by tools like CVPACK which run after the fact.
|
|
OS.AddComment("PtrParent");
|
|
OS.emitInt32(0);
|
|
OS.AddComment("PtrEnd");
|
|
OS.emitInt32(0);
|
|
OS.AddComment("PtrNext");
|
|
OS.emitInt32(0);
|
|
// This is the important bit that tells the debugger where the function
|
|
// code is located and what's its size:
|
|
OS.AddComment("Code size");
|
|
OS.emitAbsoluteSymbolDiff(FI.End, Fn, 4);
|
|
OS.AddComment("Offset after prologue");
|
|
OS.emitInt32(0);
|
|
OS.AddComment("Offset before epilogue");
|
|
OS.emitInt32(0);
|
|
OS.AddComment("Function type index");
|
|
OS.emitInt32(getFuncIdForSubprogram(GV->getSubprogram()).getIndex());
|
|
OS.AddComment("Function section relative address");
|
|
OS.EmitCOFFSecRel32(Fn, /*Offset=*/0);
|
|
OS.AddComment("Function section index");
|
|
OS.EmitCOFFSectionIndex(Fn);
|
|
OS.AddComment("Flags");
|
|
OS.emitInt8(0);
|
|
// Emit the function display name as a null-terminated string.
|
|
OS.AddComment("Function name");
|
|
// Truncate the name so we won't overflow the record length field.
|
|
emitNullTerminatedSymbolName(OS, FuncName);
|
|
endSymbolRecord(ProcRecordEnd);
|
|
|
|
MCSymbol *FrameProcEnd = beginSymbolRecord(SymbolKind::S_FRAMEPROC);
|
|
// Subtract out the CSR size since MSVC excludes that and we include it.
|
|
OS.AddComment("FrameSize");
|
|
OS.emitInt32(FI.FrameSize - FI.CSRSize);
|
|
OS.AddComment("Padding");
|
|
OS.emitInt32(0);
|
|
OS.AddComment("Offset of padding");
|
|
OS.emitInt32(0);
|
|
OS.AddComment("Bytes of callee saved registers");
|
|
OS.emitInt32(FI.CSRSize);
|
|
OS.AddComment("Exception handler offset");
|
|
OS.emitInt32(0);
|
|
OS.AddComment("Exception handler section");
|
|
OS.emitInt16(0);
|
|
OS.AddComment("Flags (defines frame register)");
|
|
OS.emitInt32(uint32_t(FI.FrameProcOpts));
|
|
endSymbolRecord(FrameProcEnd);
|
|
|
|
emitLocalVariableList(FI, FI.Locals);
|
|
emitGlobalVariableList(FI.Globals);
|
|
emitLexicalBlockList(FI.ChildBlocks, FI);
|
|
|
|
// Emit inlined call site information. Only emit functions inlined directly
|
|
// into the parent function. We'll emit the other sites recursively as part
|
|
// of their parent inline site.
|
|
for (const DILocation *InlinedAt : FI.ChildSites) {
|
|
auto I = FI.InlineSites.find(InlinedAt);
|
|
assert(I != FI.InlineSites.end() &&
|
|
"child site not in function inline site map");
|
|
emitInlinedCallSite(FI, InlinedAt, I->second);
|
|
}
|
|
|
|
for (auto Annot : FI.Annotations) {
|
|
MCSymbol *Label = Annot.first;
|
|
MDTuple *Strs = cast<MDTuple>(Annot.second);
|
|
MCSymbol *AnnotEnd = beginSymbolRecord(SymbolKind::S_ANNOTATION);
|
|
OS.EmitCOFFSecRel32(Label, /*Offset=*/0);
|
|
// FIXME: Make sure we don't overflow the max record size.
|
|
OS.EmitCOFFSectionIndex(Label);
|
|
OS.emitInt16(Strs->getNumOperands());
|
|
for (Metadata *MD : Strs->operands()) {
|
|
// MDStrings are null terminated, so we can do EmitBytes and get the
|
|
// nice .asciz directive.
|
|
StringRef Str = cast<MDString>(MD)->getString();
|
|
assert(Str.data()[Str.size()] == '\0' && "non-nullterminated MDString");
|
|
OS.emitBytes(StringRef(Str.data(), Str.size() + 1));
|
|
}
|
|
endSymbolRecord(AnnotEnd);
|
|
}
|
|
|
|
for (auto HeapAllocSite : FI.HeapAllocSites) {
|
|
const MCSymbol *BeginLabel = std::get<0>(HeapAllocSite);
|
|
const MCSymbol *EndLabel = std::get<1>(HeapAllocSite);
|
|
const DIType *DITy = std::get<2>(HeapAllocSite);
|
|
MCSymbol *HeapAllocEnd = beginSymbolRecord(SymbolKind::S_HEAPALLOCSITE);
|
|
OS.AddComment("Call site offset");
|
|
OS.EmitCOFFSecRel32(BeginLabel, /*Offset=*/0);
|
|
OS.AddComment("Call site section index");
|
|
OS.EmitCOFFSectionIndex(BeginLabel);
|
|
OS.AddComment("Call instruction length");
|
|
OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
|
|
OS.AddComment("Type index");
|
|
OS.emitInt32(getCompleteTypeIndex(DITy).getIndex());
|
|
endSymbolRecord(HeapAllocEnd);
|
|
}
|
|
|
|
if (SP != nullptr)
|
|
emitDebugInfoForUDTs(LocalUDTs);
|
|
|
|
// We're done with this function.
|
|
emitEndSymbolRecord(SymbolKind::S_PROC_ID_END);
|
|
}
|
|
endCVSubsection(SymbolsEnd);
|
|
|
|
// We have an assembler directive that takes care of the whole line table.
|
|
OS.emitCVLinetableDirective(FI.FuncId, Fn, FI.End);
|
|
}
|
|
|
|
CodeViewDebug::LocalVarDefRange
|
|
CodeViewDebug::createDefRangeMem(uint16_t CVRegister, int Offset) {
|
|
LocalVarDefRange DR;
|
|
DR.InMemory = -1;
|
|
DR.DataOffset = Offset;
|
|
assert(DR.DataOffset == Offset && "truncation");
|
|
DR.IsSubfield = 0;
|
|
DR.StructOffset = 0;
|
|
DR.CVRegister = CVRegister;
|
|
return DR;
|
|
}
|
|
|
|
void CodeViewDebug::collectVariableInfoFromMFTable(
|
|
DenseSet<InlinedEntity> &Processed) {
|
|
const MachineFunction &MF = *Asm->MF;
|
|
const TargetSubtargetInfo &TSI = MF.getSubtarget();
|
|
const TargetFrameLowering *TFI = TSI.getFrameLowering();
|
|
const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
|
|
|
|
for (const MachineFunction::VariableDbgInfo &VI : MF.getVariableDbgInfo()) {
|
|
if (!VI.Var)
|
|
continue;
|
|
assert(VI.Var->isValidLocationForIntrinsic(VI.Loc) &&
|
|
"Expected inlined-at fields to agree");
|
|
|
|
Processed.insert(InlinedEntity(VI.Var, VI.Loc->getInlinedAt()));
|
|
LexicalScope *Scope = LScopes.findLexicalScope(VI.Loc);
|
|
|
|
// If variable scope is not found then skip this variable.
|
|
if (!Scope)
|
|
continue;
|
|
|
|
// If the variable has an attached offset expression, extract it.
|
|
// FIXME: Try to handle DW_OP_deref as well.
|
|
int64_t ExprOffset = 0;
|
|
bool Deref = false;
|
|
if (VI.Expr) {
|
|
// If there is one DW_OP_deref element, use offset of 0 and keep going.
|
|
if (VI.Expr->getNumElements() == 1 &&
|
|
VI.Expr->getElement(0) == llvm::dwarf::DW_OP_deref)
|
|
Deref = true;
|
|
else if (!VI.Expr->extractIfOffset(ExprOffset))
|
|
continue;
|
|
}
|
|
|
|
// Get the frame register used and the offset.
|
|
Register FrameReg;
|
|
int FrameOffset = TFI->getFrameIndexReference(*Asm->MF, VI.Slot, FrameReg);
|
|
uint16_t CVReg = TRI->getCodeViewRegNum(FrameReg);
|
|
|
|
// Calculate the label ranges.
|
|
LocalVarDefRange DefRange =
|
|
createDefRangeMem(CVReg, FrameOffset + ExprOffset);
|
|
|
|
for (const InsnRange &Range : Scope->getRanges()) {
|
|
const MCSymbol *Begin = getLabelBeforeInsn(Range.first);
|
|
const MCSymbol *End = getLabelAfterInsn(Range.second);
|
|
End = End ? End : Asm->getFunctionEnd();
|
|
DefRange.Ranges.emplace_back(Begin, End);
|
|
}
|
|
|
|
LocalVariable Var;
|
|
Var.DIVar = VI.Var;
|
|
Var.DefRanges.emplace_back(std::move(DefRange));
|
|
if (Deref)
|
|
Var.UseReferenceType = true;
|
|
|
|
recordLocalVariable(std::move(Var), Scope);
|
|
}
|
|
}
|
|
|
|
static bool canUseReferenceType(const DbgVariableLocation &Loc) {
|
|
return !Loc.LoadChain.empty() && Loc.LoadChain.back() == 0;
|
|
}
|
|
|
|
static bool needsReferenceType(const DbgVariableLocation &Loc) {
|
|
return Loc.LoadChain.size() == 2 && Loc.LoadChain.back() == 0;
|
|
}
|
|
|
|
void CodeViewDebug::calculateRanges(
|
|
LocalVariable &Var, const DbgValueHistoryMap::Entries &Entries) {
|
|
const TargetRegisterInfo *TRI = Asm->MF->getSubtarget().getRegisterInfo();
|
|
|
|
// Calculate the definition ranges.
|
|
for (auto I = Entries.begin(), E = Entries.end(); I != E; ++I) {
|
|
const auto &Entry = *I;
|
|
if (!Entry.isDbgValue())
|
|
continue;
|
|
const MachineInstr *DVInst = Entry.getInstr();
|
|
assert(DVInst->isDebugValue() && "Invalid History entry");
|
|
// FIXME: Find a way to represent constant variables, since they are
|
|
// relatively common.
|
|
Optional<DbgVariableLocation> Location =
|
|
DbgVariableLocation::extractFromMachineInstruction(*DVInst);
|
|
if (!Location)
|
|
continue;
|
|
|
|
// CodeView can only express variables in register and variables in memory
|
|
// at a constant offset from a register. However, for variables passed
|
|
// indirectly by pointer, it is common for that pointer to be spilled to a
|
|
// stack location. For the special case of one offseted load followed by a
|
|
// zero offset load (a pointer spilled to the stack), we change the type of
|
|
// the local variable from a value type to a reference type. This tricks the
|
|
// debugger into doing the load for us.
|
|
if (Var.UseReferenceType) {
|
|
// We're using a reference type. Drop the last zero offset load.
|
|
if (canUseReferenceType(*Location))
|
|
Location->LoadChain.pop_back();
|
|
else
|
|
continue;
|
|
} else if (needsReferenceType(*Location)) {
|
|
// This location can't be expressed without switching to a reference type.
|
|
// Start over using that.
|
|
Var.UseReferenceType = true;
|
|
Var.DefRanges.clear();
|
|
calculateRanges(Var, Entries);
|
|
return;
|
|
}
|
|
|
|
// We can only handle a register or an offseted load of a register.
|
|
if (Location->Register == 0 || Location->LoadChain.size() > 1)
|
|
continue;
|
|
{
|
|
LocalVarDefRange DR;
|
|
DR.CVRegister = TRI->getCodeViewRegNum(Location->Register);
|
|
DR.InMemory = !Location->LoadChain.empty();
|
|
DR.DataOffset =
|
|
!Location->LoadChain.empty() ? Location->LoadChain.back() : 0;
|
|
if (Location->FragmentInfo) {
|
|
DR.IsSubfield = true;
|
|
DR.StructOffset = Location->FragmentInfo->OffsetInBits / 8;
|
|
} else {
|
|
DR.IsSubfield = false;
|
|
DR.StructOffset = 0;
|
|
}
|
|
|
|
if (Var.DefRanges.empty() ||
|
|
Var.DefRanges.back().isDifferentLocation(DR)) {
|
|
Var.DefRanges.emplace_back(std::move(DR));
|
|
}
|
|
}
|
|
|
|
// Compute the label range.
|
|
const MCSymbol *Begin = getLabelBeforeInsn(Entry.getInstr());
|
|
const MCSymbol *End;
|
|
if (Entry.getEndIndex() != DbgValueHistoryMap::NoEntry) {
|
|
auto &EndingEntry = Entries[Entry.getEndIndex()];
|
|
End = EndingEntry.isDbgValue()
|
|
? getLabelBeforeInsn(EndingEntry.getInstr())
|
|
: getLabelAfterInsn(EndingEntry.getInstr());
|
|
} else
|
|
End = Asm->getFunctionEnd();
|
|
|
|
// If the last range end is our begin, just extend the last range.
|
|
// Otherwise make a new range.
|
|
SmallVectorImpl<std::pair<const MCSymbol *, const MCSymbol *>> &R =
|
|
Var.DefRanges.back().Ranges;
|
|
if (!R.empty() && R.back().second == Begin)
|
|
R.back().second = End;
|
|
else
|
|
R.emplace_back(Begin, End);
|
|
|
|
// FIXME: Do more range combining.
|
|
}
|
|
}
|
|
|
|
void CodeViewDebug::collectVariableInfo(const DISubprogram *SP) {
|
|
DenseSet<InlinedEntity> Processed;
|
|
// Grab the variable info that was squirreled away in the MMI side-table.
|
|
collectVariableInfoFromMFTable(Processed);
|
|
|
|
for (const auto &I : DbgValues) {
|
|
InlinedEntity IV = I.first;
|
|
if (Processed.count(IV))
|
|
continue;
|
|
const DILocalVariable *DIVar = cast<DILocalVariable>(IV.first);
|
|
const DILocation *InlinedAt = IV.second;
|
|
|
|
// Instruction ranges, specifying where IV is accessible.
|
|
const auto &Entries = I.second;
|
|
|
|
LexicalScope *Scope = nullptr;
|
|
if (InlinedAt)
|
|
Scope = LScopes.findInlinedScope(DIVar->getScope(), InlinedAt);
|
|
else
|
|
Scope = LScopes.findLexicalScope(DIVar->getScope());
|
|
// If variable scope is not found then skip this variable.
|
|
if (!Scope)
|
|
continue;
|
|
|
|
LocalVariable Var;
|
|
Var.DIVar = DIVar;
|
|
|
|
calculateRanges(Var, Entries);
|
|
recordLocalVariable(std::move(Var), Scope);
|
|
}
|
|
}
|
|
|
|
void CodeViewDebug::beginFunctionImpl(const MachineFunction *MF) {
|
|
const TargetSubtargetInfo &TSI = MF->getSubtarget();
|
|
const TargetRegisterInfo *TRI = TSI.getRegisterInfo();
|
|
const MachineFrameInfo &MFI = MF->getFrameInfo();
|
|
const Function &GV = MF->getFunction();
|
|
auto Insertion = FnDebugInfo.insert({&GV, std::make_unique<FunctionInfo>()});
|
|
assert(Insertion.second && "function already has info");
|
|
CurFn = Insertion.first->second.get();
|
|
CurFn->FuncId = NextFuncId++;
|
|
CurFn->Begin = Asm->getFunctionBegin();
|
|
|
|
// The S_FRAMEPROC record reports the stack size, and how many bytes of
|
|
// callee-saved registers were used. For targets that don't use a PUSH
|
|
// instruction (AArch64), this will be zero.
|
|
CurFn->CSRSize = MFI.getCVBytesOfCalleeSavedRegisters();
|
|
CurFn->FrameSize = MFI.getStackSize();
|
|
CurFn->OffsetAdjustment = MFI.getOffsetAdjustment();
|
|
CurFn->HasStackRealignment = TRI->needsStackRealignment(*MF);
|
|
|
|
// For this function S_FRAMEPROC record, figure out which codeview register
|
|
// will be the frame pointer.
|
|
CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::None; // None.
|
|
CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::None; // None.
|
|
if (CurFn->FrameSize > 0) {
|
|
if (!TSI.getFrameLowering()->hasFP(*MF)) {
|
|
CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
|
|
CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::StackPtr;
|
|
} else {
|
|
// If there is an FP, parameters are always relative to it.
|
|
CurFn->EncodedParamFramePtrReg = EncodedFramePtrReg::FramePtr;
|
|
if (CurFn->HasStackRealignment) {
|
|
// If the stack needs realignment, locals are relative to SP or VFRAME.
|
|
CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::StackPtr;
|
|
} else {
|
|
// Otherwise, locals are relative to EBP, and we probably have VLAs or
|
|
// other stack adjustments.
|
|
CurFn->EncodedLocalFramePtrReg = EncodedFramePtrReg::FramePtr;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Compute other frame procedure options.
|
|
FrameProcedureOptions FPO = FrameProcedureOptions::None;
|
|
if (MFI.hasVarSizedObjects())
|
|
FPO |= FrameProcedureOptions::HasAlloca;
|
|
if (MF->exposesReturnsTwice())
|
|
FPO |= FrameProcedureOptions::HasSetJmp;
|
|
// FIXME: Set HasLongJmp if we ever track that info.
|
|
if (MF->hasInlineAsm())
|
|
FPO |= FrameProcedureOptions::HasInlineAssembly;
|
|
if (GV.hasPersonalityFn()) {
|
|
if (isAsynchronousEHPersonality(
|
|
classifyEHPersonality(GV.getPersonalityFn())))
|
|
FPO |= FrameProcedureOptions::HasStructuredExceptionHandling;
|
|
else
|
|
FPO |= FrameProcedureOptions::HasExceptionHandling;
|
|
}
|
|
if (GV.hasFnAttribute(Attribute::InlineHint))
|
|
FPO |= FrameProcedureOptions::MarkedInline;
|
|
if (GV.hasFnAttribute(Attribute::Naked))
|
|
FPO |= FrameProcedureOptions::Naked;
|
|
if (MFI.hasStackProtectorIndex())
|
|
FPO |= FrameProcedureOptions::SecurityChecks;
|
|
FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedLocalFramePtrReg) << 14U);
|
|
FPO |= FrameProcedureOptions(uint32_t(CurFn->EncodedParamFramePtrReg) << 16U);
|
|
if (Asm->TM.getOptLevel() != CodeGenOpt::None &&
|
|
!GV.hasOptSize() && !GV.hasOptNone())
|
|
FPO |= FrameProcedureOptions::OptimizedForSpeed;
|
|
// FIXME: Set GuardCfg when it is implemented.
|
|
CurFn->FrameProcOpts = FPO;
|
|
|
|
OS.EmitCVFuncIdDirective(CurFn->FuncId);
|
|
|
|
// Find the end of the function prolog. First known non-DBG_VALUE and
|
|
// non-frame setup location marks the beginning of the function body.
|
|
// FIXME: is there a simpler a way to do this? Can we just search
|
|
// for the first instruction of the function, not the last of the prolog?
|
|
DebugLoc PrologEndLoc;
|
|
bool EmptyPrologue = true;
|
|
for (const auto &MBB : *MF) {
|
|
for (const auto &MI : MBB) {
|
|
if (!MI.isMetaInstruction() && !MI.getFlag(MachineInstr::FrameSetup) &&
|
|
MI.getDebugLoc()) {
|
|
PrologEndLoc = MI.getDebugLoc();
|
|
break;
|
|
} else if (!MI.isMetaInstruction()) {
|
|
EmptyPrologue = false;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Record beginning of function if we have a non-empty prologue.
|
|
if (PrologEndLoc && !EmptyPrologue) {
|
|
DebugLoc FnStartDL = PrologEndLoc.getFnDebugLoc();
|
|
maybeRecordLocation(FnStartDL, MF);
|
|
}
|
|
|
|
// Find heap alloc sites and emit labels around them.
|
|
for (const auto &MBB : *MF) {
|
|
for (const auto &MI : MBB) {
|
|
if (MI.getHeapAllocMarker()) {
|
|
requestLabelBeforeInsn(&MI);
|
|
requestLabelAfterInsn(&MI);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
static bool shouldEmitUdt(const DIType *T) {
|
|
if (!T)
|
|
return false;
|
|
|
|
// MSVC does not emit UDTs for typedefs that are scoped to classes.
|
|
if (T->getTag() == dwarf::DW_TAG_typedef) {
|
|
if (DIScope *Scope = T->getScope()) {
|
|
switch (Scope->getTag()) {
|
|
case dwarf::DW_TAG_structure_type:
|
|
case dwarf::DW_TAG_class_type:
|
|
case dwarf::DW_TAG_union_type:
|
|
return false;
|
|
}
|
|
}
|
|
}
|
|
|
|
while (true) {
|
|
if (!T || T->isForwardDecl())
|
|
return false;
|
|
|
|
const DIDerivedType *DT = dyn_cast<DIDerivedType>(T);
|
|
if (!DT)
|
|
return true;
|
|
T = DT->getBaseType();
|
|
}
|
|
return true;
|
|
}
|
|
|
|
void CodeViewDebug::addToUDTs(const DIType *Ty) {
|
|
// Don't record empty UDTs.
|
|
if (Ty->getName().empty())
|
|
return;
|
|
if (!shouldEmitUdt(Ty))
|
|
return;
|
|
|
|
SmallVector<StringRef, 5> ParentScopeNames;
|
|
const DISubprogram *ClosestSubprogram =
|
|
collectParentScopeNames(Ty->getScope(), ParentScopeNames);
|
|
|
|
std::string FullyQualifiedName =
|
|
formatNestedName(ParentScopeNames, getPrettyScopeName(Ty));
|
|
|
|
if (ClosestSubprogram == nullptr) {
|
|
GlobalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
|
|
} else if (ClosestSubprogram == CurrentSubprogram) {
|
|
LocalUDTs.emplace_back(std::move(FullyQualifiedName), Ty);
|
|
}
|
|
|
|
// TODO: What if the ClosestSubprogram is neither null or the current
|
|
// subprogram? Currently, the UDT just gets dropped on the floor.
|
|
//
|
|
// The current behavior is not desirable. To get maximal fidelity, we would
|
|
// need to perform all type translation before beginning emission of .debug$S
|
|
// and then make LocalUDTs a member of FunctionInfo
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerType(const DIType *Ty, const DIType *ClassTy) {
|
|
// Generic dispatch for lowering an unknown type.
|
|
switch (Ty->getTag()) {
|
|
case dwarf::DW_TAG_array_type:
|
|
return lowerTypeArray(cast<DICompositeType>(Ty));
|
|
case dwarf::DW_TAG_typedef:
|
|
return lowerTypeAlias(cast<DIDerivedType>(Ty));
|
|
case dwarf::DW_TAG_base_type:
|
|
return lowerTypeBasic(cast<DIBasicType>(Ty));
|
|
case dwarf::DW_TAG_pointer_type:
|
|
if (cast<DIDerivedType>(Ty)->getName() == "__vtbl_ptr_type")
|
|
return lowerTypeVFTableShape(cast<DIDerivedType>(Ty));
|
|
LLVM_FALLTHROUGH;
|
|
case dwarf::DW_TAG_reference_type:
|
|
case dwarf::DW_TAG_rvalue_reference_type:
|
|
return lowerTypePointer(cast<DIDerivedType>(Ty));
|
|
case dwarf::DW_TAG_ptr_to_member_type:
|
|
return lowerTypeMemberPointer(cast<DIDerivedType>(Ty));
|
|
case dwarf::DW_TAG_restrict_type:
|
|
case dwarf::DW_TAG_const_type:
|
|
case dwarf::DW_TAG_volatile_type:
|
|
// TODO: add support for DW_TAG_atomic_type here
|
|
return lowerTypeModifier(cast<DIDerivedType>(Ty));
|
|
case dwarf::DW_TAG_subroutine_type:
|
|
if (ClassTy) {
|
|
// The member function type of a member function pointer has no
|
|
// ThisAdjustment.
|
|
return lowerTypeMemberFunction(cast<DISubroutineType>(Ty), ClassTy,
|
|
/*ThisAdjustment=*/0,
|
|
/*IsStaticMethod=*/false);
|
|
}
|
|
return lowerTypeFunction(cast<DISubroutineType>(Ty));
|
|
case dwarf::DW_TAG_enumeration_type:
|
|
return lowerTypeEnum(cast<DICompositeType>(Ty));
|
|
case dwarf::DW_TAG_class_type:
|
|
case dwarf::DW_TAG_structure_type:
|
|
return lowerTypeClass(cast<DICompositeType>(Ty));
|
|
case dwarf::DW_TAG_union_type:
|
|
return lowerTypeUnion(cast<DICompositeType>(Ty));
|
|
case dwarf::DW_TAG_unspecified_type:
|
|
if (Ty->getName() == "decltype(nullptr)")
|
|
return TypeIndex::NullptrT();
|
|
return TypeIndex::None();
|
|
default:
|
|
// Use the null type index.
|
|
return TypeIndex();
|
|
}
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerTypeAlias(const DIDerivedType *Ty) {
|
|
TypeIndex UnderlyingTypeIndex = getTypeIndex(Ty->getBaseType());
|
|
StringRef TypeName = Ty->getName();
|
|
|
|
addToUDTs(Ty);
|
|
|
|
if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::Int32Long) &&
|
|
TypeName == "HRESULT")
|
|
return TypeIndex(SimpleTypeKind::HResult);
|
|
if (UnderlyingTypeIndex == TypeIndex(SimpleTypeKind::UInt16Short) &&
|
|
TypeName == "wchar_t")
|
|
return TypeIndex(SimpleTypeKind::WideCharacter);
|
|
|
|
return UnderlyingTypeIndex;
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerTypeArray(const DICompositeType *Ty) {
|
|
const DIType *ElementType = Ty->getBaseType();
|
|
TypeIndex ElementTypeIndex = getTypeIndex(ElementType);
|
|
// IndexType is size_t, which depends on the bitness of the target.
|
|
TypeIndex IndexType = getPointerSizeInBytes() == 8
|
|
? TypeIndex(SimpleTypeKind::UInt64Quad)
|
|
: TypeIndex(SimpleTypeKind::UInt32Long);
|
|
|
|
uint64_t ElementSize = getBaseTypeSize(ElementType) / 8;
|
|
|
|
// Add subranges to array type.
|
|
DINodeArray Elements = Ty->getElements();
|
|
for (int i = Elements.size() - 1; i >= 0; --i) {
|
|
const DINode *Element = Elements[i];
|
|
assert(Element->getTag() == dwarf::DW_TAG_subrange_type);
|
|
|
|
const DISubrange *Subrange = cast<DISubrange>(Element);
|
|
assert(!Subrange->getRawLowerBound() &&
|
|
"codeview doesn't support subranges with lower bounds");
|
|
int64_t Count = -1;
|
|
if (auto *CI = Subrange->getCount().dyn_cast<ConstantInt*>())
|
|
Count = CI->getSExtValue();
|
|
|
|
// Forward declarations of arrays without a size and VLAs use a count of -1.
|
|
// Emit a count of zero in these cases to match what MSVC does for arrays
|
|
// without a size. MSVC doesn't support VLAs, so it's not clear what we
|
|
// should do for them even if we could distinguish them.
|
|
if (Count == -1)
|
|
Count = 0;
|
|
|
|
// Update the element size and element type index for subsequent subranges.
|
|
ElementSize *= Count;
|
|
|
|
// If this is the outermost array, use the size from the array. It will be
|
|
// more accurate if we had a VLA or an incomplete element type size.
|
|
uint64_t ArraySize =
|
|
(i == 0 && ElementSize == 0) ? Ty->getSizeInBits() / 8 : ElementSize;
|
|
|
|
StringRef Name = (i == 0) ? Ty->getName() : "";
|
|
ArrayRecord AR(ElementTypeIndex, IndexType, ArraySize, Name);
|
|
ElementTypeIndex = TypeTable.writeLeafType(AR);
|
|
}
|
|
|
|
return ElementTypeIndex;
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerTypeBasic(const DIBasicType *Ty) {
|
|
TypeIndex Index;
|
|
dwarf::TypeKind Kind;
|
|
uint32_t ByteSize;
|
|
|
|
Kind = static_cast<dwarf::TypeKind>(Ty->getEncoding());
|
|
ByteSize = Ty->getSizeInBits() / 8;
|
|
|
|
SimpleTypeKind STK = SimpleTypeKind::None;
|
|
switch (Kind) {
|
|
case dwarf::DW_ATE_address:
|
|
// FIXME: Translate
|
|
break;
|
|
case dwarf::DW_ATE_boolean:
|
|
switch (ByteSize) {
|
|
case 1: STK = SimpleTypeKind::Boolean8; break;
|
|
case 2: STK = SimpleTypeKind::Boolean16; break;
|
|
case 4: STK = SimpleTypeKind::Boolean32; break;
|
|
case 8: STK = SimpleTypeKind::Boolean64; break;
|
|
case 16: STK = SimpleTypeKind::Boolean128; break;
|
|
}
|
|
break;
|
|
case dwarf::DW_ATE_complex_float:
|
|
switch (ByteSize) {
|
|
case 2: STK = SimpleTypeKind::Complex16; break;
|
|
case 4: STK = SimpleTypeKind::Complex32; break;
|
|
case 8: STK = SimpleTypeKind::Complex64; break;
|
|
case 10: STK = SimpleTypeKind::Complex80; break;
|
|
case 16: STK = SimpleTypeKind::Complex128; break;
|
|
}
|
|
break;
|
|
case dwarf::DW_ATE_float:
|
|
switch (ByteSize) {
|
|
case 2: STK = SimpleTypeKind::Float16; break;
|
|
case 4: STK = SimpleTypeKind::Float32; break;
|
|
case 6: STK = SimpleTypeKind::Float48; break;
|
|
case 8: STK = SimpleTypeKind::Float64; break;
|
|
case 10: STK = SimpleTypeKind::Float80; break;
|
|
case 16: STK = SimpleTypeKind::Float128; break;
|
|
}
|
|
break;
|
|
case dwarf::DW_ATE_signed:
|
|
switch (ByteSize) {
|
|
case 1: STK = SimpleTypeKind::SignedCharacter; break;
|
|
case 2: STK = SimpleTypeKind::Int16Short; break;
|
|
case 4: STK = SimpleTypeKind::Int32; break;
|
|
case 8: STK = SimpleTypeKind::Int64Quad; break;
|
|
case 16: STK = SimpleTypeKind::Int128Oct; break;
|
|
}
|
|
break;
|
|
case dwarf::DW_ATE_unsigned:
|
|
switch (ByteSize) {
|
|
case 1: STK = SimpleTypeKind::UnsignedCharacter; break;
|
|
case 2: STK = SimpleTypeKind::UInt16Short; break;
|
|
case 4: STK = SimpleTypeKind::UInt32; break;
|
|
case 8: STK = SimpleTypeKind::UInt64Quad; break;
|
|
case 16: STK = SimpleTypeKind::UInt128Oct; break;
|
|
}
|
|
break;
|
|
case dwarf::DW_ATE_UTF:
|
|
switch (ByteSize) {
|
|
case 2: STK = SimpleTypeKind::Character16; break;
|
|
case 4: STK = SimpleTypeKind::Character32; break;
|
|
}
|
|
break;
|
|
case dwarf::DW_ATE_signed_char:
|
|
if (ByteSize == 1)
|
|
STK = SimpleTypeKind::SignedCharacter;
|
|
break;
|
|
case dwarf::DW_ATE_unsigned_char:
|
|
if (ByteSize == 1)
|
|
STK = SimpleTypeKind::UnsignedCharacter;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
|
|
// Apply some fixups based on the source-level type name.
|
|
if (STK == SimpleTypeKind::Int32 && Ty->getName() == "long int")
|
|
STK = SimpleTypeKind::Int32Long;
|
|
if (STK == SimpleTypeKind::UInt32 && Ty->getName() == "long unsigned int")
|
|
STK = SimpleTypeKind::UInt32Long;
|
|
if (STK == SimpleTypeKind::UInt16Short &&
|
|
(Ty->getName() == "wchar_t" || Ty->getName() == "__wchar_t"))
|
|
STK = SimpleTypeKind::WideCharacter;
|
|
if ((STK == SimpleTypeKind::SignedCharacter ||
|
|
STK == SimpleTypeKind::UnsignedCharacter) &&
|
|
Ty->getName() == "char")
|
|
STK = SimpleTypeKind::NarrowCharacter;
|
|
|
|
return TypeIndex(STK);
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerTypePointer(const DIDerivedType *Ty,
|
|
PointerOptions PO) {
|
|
TypeIndex PointeeTI = getTypeIndex(Ty->getBaseType());
|
|
|
|
// Pointers to simple types without any options can use SimpleTypeMode, rather
|
|
// than having a dedicated pointer type record.
|
|
if (PointeeTI.isSimple() && PO == PointerOptions::None &&
|
|
PointeeTI.getSimpleMode() == SimpleTypeMode::Direct &&
|
|
Ty->getTag() == dwarf::DW_TAG_pointer_type) {
|
|
SimpleTypeMode Mode = Ty->getSizeInBits() == 64
|
|
? SimpleTypeMode::NearPointer64
|
|
: SimpleTypeMode::NearPointer32;
|
|
return TypeIndex(PointeeTI.getSimpleKind(), Mode);
|
|
}
|
|
|
|
PointerKind PK =
|
|
Ty->getSizeInBits() == 64 ? PointerKind::Near64 : PointerKind::Near32;
|
|
PointerMode PM = PointerMode::Pointer;
|
|
switch (Ty->getTag()) {
|
|
default: llvm_unreachable("not a pointer tag type");
|
|
case dwarf::DW_TAG_pointer_type:
|
|
PM = PointerMode::Pointer;
|
|
break;
|
|
case dwarf::DW_TAG_reference_type:
|
|
PM = PointerMode::LValueReference;
|
|
break;
|
|
case dwarf::DW_TAG_rvalue_reference_type:
|
|
PM = PointerMode::RValueReference;
|
|
break;
|
|
}
|
|
|
|
if (Ty->isObjectPointer())
|
|
PO |= PointerOptions::Const;
|
|
|
|
PointerRecord PR(PointeeTI, PK, PM, PO, Ty->getSizeInBits() / 8);
|
|
return TypeTable.writeLeafType(PR);
|
|
}
|
|
|
|
static PointerToMemberRepresentation
|
|
translatePtrToMemberRep(unsigned SizeInBytes, bool IsPMF, unsigned Flags) {
|
|
// SizeInBytes being zero generally implies that the member pointer type was
|
|
// incomplete, which can happen if it is part of a function prototype. In this
|
|
// case, use the unknown model instead of the general model.
|
|
if (IsPMF) {
|
|
switch (Flags & DINode::FlagPtrToMemberRep) {
|
|
case 0:
|
|
return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
|
|
: PointerToMemberRepresentation::GeneralFunction;
|
|
case DINode::FlagSingleInheritance:
|
|
return PointerToMemberRepresentation::SingleInheritanceFunction;
|
|
case DINode::FlagMultipleInheritance:
|
|
return PointerToMemberRepresentation::MultipleInheritanceFunction;
|
|
case DINode::FlagVirtualInheritance:
|
|
return PointerToMemberRepresentation::VirtualInheritanceFunction;
|
|
}
|
|
} else {
|
|
switch (Flags & DINode::FlagPtrToMemberRep) {
|
|
case 0:
|
|
return SizeInBytes == 0 ? PointerToMemberRepresentation::Unknown
|
|
: PointerToMemberRepresentation::GeneralData;
|
|
case DINode::FlagSingleInheritance:
|
|
return PointerToMemberRepresentation::SingleInheritanceData;
|
|
case DINode::FlagMultipleInheritance:
|
|
return PointerToMemberRepresentation::MultipleInheritanceData;
|
|
case DINode::FlagVirtualInheritance:
|
|
return PointerToMemberRepresentation::VirtualInheritanceData;
|
|
}
|
|
}
|
|
llvm_unreachable("invalid ptr to member representation");
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerTypeMemberPointer(const DIDerivedType *Ty,
|
|
PointerOptions PO) {
|
|
assert(Ty->getTag() == dwarf::DW_TAG_ptr_to_member_type);
|
|
bool IsPMF = isa<DISubroutineType>(Ty->getBaseType());
|
|
TypeIndex ClassTI = getTypeIndex(Ty->getClassType());
|
|
TypeIndex PointeeTI =
|
|
getTypeIndex(Ty->getBaseType(), IsPMF ? Ty->getClassType() : nullptr);
|
|
PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
|
|
: PointerKind::Near32;
|
|
PointerMode PM = IsPMF ? PointerMode::PointerToMemberFunction
|
|
: PointerMode::PointerToDataMember;
|
|
|
|
assert(Ty->getSizeInBits() / 8 <= 0xff && "pointer size too big");
|
|
uint8_t SizeInBytes = Ty->getSizeInBits() / 8;
|
|
MemberPointerInfo MPI(
|
|
ClassTI, translatePtrToMemberRep(SizeInBytes, IsPMF, Ty->getFlags()));
|
|
PointerRecord PR(PointeeTI, PK, PM, PO, SizeInBytes, MPI);
|
|
return TypeTable.writeLeafType(PR);
|
|
}
|
|
|
|
/// Given a DWARF calling convention, get the CodeView equivalent. If we don't
|
|
/// have a translation, use the NearC convention.
|
|
static CallingConvention dwarfCCToCodeView(unsigned DwarfCC) {
|
|
switch (DwarfCC) {
|
|
case dwarf::DW_CC_normal: return CallingConvention::NearC;
|
|
case dwarf::DW_CC_BORLAND_msfastcall: return CallingConvention::NearFast;
|
|
case dwarf::DW_CC_BORLAND_thiscall: return CallingConvention::ThisCall;
|
|
case dwarf::DW_CC_BORLAND_stdcall: return CallingConvention::NearStdCall;
|
|
case dwarf::DW_CC_BORLAND_pascal: return CallingConvention::NearPascal;
|
|
case dwarf::DW_CC_LLVM_vectorcall: return CallingConvention::NearVector;
|
|
}
|
|
return CallingConvention::NearC;
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerTypeModifier(const DIDerivedType *Ty) {
|
|
ModifierOptions Mods = ModifierOptions::None;
|
|
PointerOptions PO = PointerOptions::None;
|
|
bool IsModifier = true;
|
|
const DIType *BaseTy = Ty;
|
|
while (IsModifier && BaseTy) {
|
|
// FIXME: Need to add DWARF tags for __unaligned and _Atomic
|
|
switch (BaseTy->getTag()) {
|
|
case dwarf::DW_TAG_const_type:
|
|
Mods |= ModifierOptions::Const;
|
|
PO |= PointerOptions::Const;
|
|
break;
|
|
case dwarf::DW_TAG_volatile_type:
|
|
Mods |= ModifierOptions::Volatile;
|
|
PO |= PointerOptions::Volatile;
|
|
break;
|
|
case dwarf::DW_TAG_restrict_type:
|
|
// Only pointer types be marked with __restrict. There is no known flag
|
|
// for __restrict in LF_MODIFIER records.
|
|
PO |= PointerOptions::Restrict;
|
|
break;
|
|
default:
|
|
IsModifier = false;
|
|
break;
|
|
}
|
|
if (IsModifier)
|
|
BaseTy = cast<DIDerivedType>(BaseTy)->getBaseType();
|
|
}
|
|
|
|
// Check if the inner type will use an LF_POINTER record. If so, the
|
|
// qualifiers will go in the LF_POINTER record. This comes up for types like
|
|
// 'int *const' and 'int *__restrict', not the more common cases like 'const
|
|
// char *'.
|
|
if (BaseTy) {
|
|
switch (BaseTy->getTag()) {
|
|
case dwarf::DW_TAG_pointer_type:
|
|
case dwarf::DW_TAG_reference_type:
|
|
case dwarf::DW_TAG_rvalue_reference_type:
|
|
return lowerTypePointer(cast<DIDerivedType>(BaseTy), PO);
|
|
case dwarf::DW_TAG_ptr_to_member_type:
|
|
return lowerTypeMemberPointer(cast<DIDerivedType>(BaseTy), PO);
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
TypeIndex ModifiedTI = getTypeIndex(BaseTy);
|
|
|
|
// Return the base type index if there aren't any modifiers. For example, the
|
|
// metadata could contain restrict wrappers around non-pointer types.
|
|
if (Mods == ModifierOptions::None)
|
|
return ModifiedTI;
|
|
|
|
ModifierRecord MR(ModifiedTI, Mods);
|
|
return TypeTable.writeLeafType(MR);
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerTypeFunction(const DISubroutineType *Ty) {
|
|
SmallVector<TypeIndex, 8> ReturnAndArgTypeIndices;
|
|
for (const DIType *ArgType : Ty->getTypeArray())
|
|
ReturnAndArgTypeIndices.push_back(getTypeIndex(ArgType));
|
|
|
|
// MSVC uses type none for variadic argument.
|
|
if (ReturnAndArgTypeIndices.size() > 1 &&
|
|
ReturnAndArgTypeIndices.back() == TypeIndex::Void()) {
|
|
ReturnAndArgTypeIndices.back() = TypeIndex::None();
|
|
}
|
|
TypeIndex ReturnTypeIndex = TypeIndex::Void();
|
|
ArrayRef<TypeIndex> ArgTypeIndices = None;
|
|
if (!ReturnAndArgTypeIndices.empty()) {
|
|
auto ReturnAndArgTypesRef = makeArrayRef(ReturnAndArgTypeIndices);
|
|
ReturnTypeIndex = ReturnAndArgTypesRef.front();
|
|
ArgTypeIndices = ReturnAndArgTypesRef.drop_front();
|
|
}
|
|
|
|
ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
|
|
TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
|
|
|
|
CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
|
|
|
|
FunctionOptions FO = getFunctionOptions(Ty);
|
|
ProcedureRecord Procedure(ReturnTypeIndex, CC, FO, ArgTypeIndices.size(),
|
|
ArgListIndex);
|
|
return TypeTable.writeLeafType(Procedure);
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerTypeMemberFunction(const DISubroutineType *Ty,
|
|
const DIType *ClassTy,
|
|
int ThisAdjustment,
|
|
bool IsStaticMethod,
|
|
FunctionOptions FO) {
|
|
// Lower the containing class type.
|
|
TypeIndex ClassType = getTypeIndex(ClassTy);
|
|
|
|
DITypeRefArray ReturnAndArgs = Ty->getTypeArray();
|
|
|
|
unsigned Index = 0;
|
|
SmallVector<TypeIndex, 8> ArgTypeIndices;
|
|
TypeIndex ReturnTypeIndex = TypeIndex::Void();
|
|
if (ReturnAndArgs.size() > Index) {
|
|
ReturnTypeIndex = getTypeIndex(ReturnAndArgs[Index++]);
|
|
}
|
|
|
|
// If the first argument is a pointer type and this isn't a static method,
|
|
// treat it as the special 'this' parameter, which is encoded separately from
|
|
// the arguments.
|
|
TypeIndex ThisTypeIndex;
|
|
if (!IsStaticMethod && ReturnAndArgs.size() > Index) {
|
|
if (const DIDerivedType *PtrTy =
|
|
dyn_cast_or_null<DIDerivedType>(ReturnAndArgs[Index])) {
|
|
if (PtrTy->getTag() == dwarf::DW_TAG_pointer_type) {
|
|
ThisTypeIndex = getTypeIndexForThisPtr(PtrTy, Ty);
|
|
Index++;
|
|
}
|
|
}
|
|
}
|
|
|
|
while (Index < ReturnAndArgs.size())
|
|
ArgTypeIndices.push_back(getTypeIndex(ReturnAndArgs[Index++]));
|
|
|
|
// MSVC uses type none for variadic argument.
|
|
if (!ArgTypeIndices.empty() && ArgTypeIndices.back() == TypeIndex::Void())
|
|
ArgTypeIndices.back() = TypeIndex::None();
|
|
|
|
ArgListRecord ArgListRec(TypeRecordKind::ArgList, ArgTypeIndices);
|
|
TypeIndex ArgListIndex = TypeTable.writeLeafType(ArgListRec);
|
|
|
|
CallingConvention CC = dwarfCCToCodeView(Ty->getCC());
|
|
|
|
MemberFunctionRecord MFR(ReturnTypeIndex, ClassType, ThisTypeIndex, CC, FO,
|
|
ArgTypeIndices.size(), ArgListIndex, ThisAdjustment);
|
|
return TypeTable.writeLeafType(MFR);
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerTypeVFTableShape(const DIDerivedType *Ty) {
|
|
unsigned VSlotCount =
|
|
Ty->getSizeInBits() / (8 * Asm->MAI->getCodePointerSize());
|
|
SmallVector<VFTableSlotKind, 4> Slots(VSlotCount, VFTableSlotKind::Near);
|
|
|
|
VFTableShapeRecord VFTSR(Slots);
|
|
return TypeTable.writeLeafType(VFTSR);
|
|
}
|
|
|
|
static MemberAccess translateAccessFlags(unsigned RecordTag, unsigned Flags) {
|
|
switch (Flags & DINode::FlagAccessibility) {
|
|
case DINode::FlagPrivate: return MemberAccess::Private;
|
|
case DINode::FlagPublic: return MemberAccess::Public;
|
|
case DINode::FlagProtected: return MemberAccess::Protected;
|
|
case 0:
|
|
// If there was no explicit access control, provide the default for the tag.
|
|
return RecordTag == dwarf::DW_TAG_class_type ? MemberAccess::Private
|
|
: MemberAccess::Public;
|
|
}
|
|
llvm_unreachable("access flags are exclusive");
|
|
}
|
|
|
|
static MethodOptions translateMethodOptionFlags(const DISubprogram *SP) {
|
|
if (SP->isArtificial())
|
|
return MethodOptions::CompilerGenerated;
|
|
|
|
// FIXME: Handle other MethodOptions.
|
|
|
|
return MethodOptions::None;
|
|
}
|
|
|
|
static MethodKind translateMethodKindFlags(const DISubprogram *SP,
|
|
bool Introduced) {
|
|
if (SP->getFlags() & DINode::FlagStaticMember)
|
|
return MethodKind::Static;
|
|
|
|
switch (SP->getVirtuality()) {
|
|
case dwarf::DW_VIRTUALITY_none:
|
|
break;
|
|
case dwarf::DW_VIRTUALITY_virtual:
|
|
return Introduced ? MethodKind::IntroducingVirtual : MethodKind::Virtual;
|
|
case dwarf::DW_VIRTUALITY_pure_virtual:
|
|
return Introduced ? MethodKind::PureIntroducingVirtual
|
|
: MethodKind::PureVirtual;
|
|
default:
|
|
llvm_unreachable("unhandled virtuality case");
|
|
}
|
|
|
|
return MethodKind::Vanilla;
|
|
}
|
|
|
|
static TypeRecordKind getRecordKind(const DICompositeType *Ty) {
|
|
switch (Ty->getTag()) {
|
|
case dwarf::DW_TAG_class_type: return TypeRecordKind::Class;
|
|
case dwarf::DW_TAG_structure_type: return TypeRecordKind::Struct;
|
|
}
|
|
llvm_unreachable("unexpected tag");
|
|
}
|
|
|
|
/// Return ClassOptions that should be present on both the forward declaration
|
|
/// and the defintion of a tag type.
|
|
static ClassOptions getCommonClassOptions(const DICompositeType *Ty) {
|
|
ClassOptions CO = ClassOptions::None;
|
|
|
|
// MSVC always sets this flag, even for local types. Clang doesn't always
|
|
// appear to give every type a linkage name, which may be problematic for us.
|
|
// FIXME: Investigate the consequences of not following them here.
|
|
if (!Ty->getIdentifier().empty())
|
|
CO |= ClassOptions::HasUniqueName;
|
|
|
|
// Put the Nested flag on a type if it appears immediately inside a tag type.
|
|
// Do not walk the scope chain. Do not attempt to compute ContainsNestedClass
|
|
// here. That flag is only set on definitions, and not forward declarations.
|
|
const DIScope *ImmediateScope = Ty->getScope();
|
|
if (ImmediateScope && isa<DICompositeType>(ImmediateScope))
|
|
CO |= ClassOptions::Nested;
|
|
|
|
// Put the Scoped flag on function-local types. MSVC puts this flag for enum
|
|
// type only when it has an immediate function scope. Clang never puts enums
|
|
// inside DILexicalBlock scopes. Enum types, as generated by clang, are
|
|
// always in function, class, or file scopes.
|
|
if (Ty->getTag() == dwarf::DW_TAG_enumeration_type) {
|
|
if (ImmediateScope && isa<DISubprogram>(ImmediateScope))
|
|
CO |= ClassOptions::Scoped;
|
|
} else {
|
|
for (const DIScope *Scope = ImmediateScope; Scope != nullptr;
|
|
Scope = Scope->getScope()) {
|
|
if (isa<DISubprogram>(Scope)) {
|
|
CO |= ClassOptions::Scoped;
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
return CO;
|
|
}
|
|
|
|
void CodeViewDebug::addUDTSrcLine(const DIType *Ty, TypeIndex TI) {
|
|
switch (Ty->getTag()) {
|
|
case dwarf::DW_TAG_class_type:
|
|
case dwarf::DW_TAG_structure_type:
|
|
case dwarf::DW_TAG_union_type:
|
|
case dwarf::DW_TAG_enumeration_type:
|
|
break;
|
|
default:
|
|
return;
|
|
}
|
|
|
|
if (const auto *File = Ty->getFile()) {
|
|
StringIdRecord SIDR(TypeIndex(0x0), getFullFilepath(File));
|
|
TypeIndex SIDI = TypeTable.writeLeafType(SIDR);
|
|
|
|
UdtSourceLineRecord USLR(TI, SIDI, Ty->getLine());
|
|
TypeTable.writeLeafType(USLR);
|
|
}
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerTypeEnum(const DICompositeType *Ty) {
|
|
ClassOptions CO = getCommonClassOptions(Ty);
|
|
TypeIndex FTI;
|
|
unsigned EnumeratorCount = 0;
|
|
|
|
if (Ty->isForwardDecl()) {
|
|
CO |= ClassOptions::ForwardReference;
|
|
} else {
|
|
ContinuationRecordBuilder ContinuationBuilder;
|
|
ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
|
|
for (const DINode *Element : Ty->getElements()) {
|
|
// We assume that the frontend provides all members in source declaration
|
|
// order, which is what MSVC does.
|
|
if (auto *Enumerator = dyn_cast_or_null<DIEnumerator>(Element)) {
|
|
EnumeratorRecord ER(MemberAccess::Public,
|
|
APSInt(Enumerator->getValue(), true),
|
|
Enumerator->getName());
|
|
ContinuationBuilder.writeMemberType(ER);
|
|
EnumeratorCount++;
|
|
}
|
|
}
|
|
FTI = TypeTable.insertRecord(ContinuationBuilder);
|
|
}
|
|
|
|
std::string FullName = getFullyQualifiedName(Ty);
|
|
|
|
EnumRecord ER(EnumeratorCount, CO, FTI, FullName, Ty->getIdentifier(),
|
|
getTypeIndex(Ty->getBaseType()));
|
|
TypeIndex EnumTI = TypeTable.writeLeafType(ER);
|
|
|
|
addUDTSrcLine(Ty, EnumTI);
|
|
|
|
return EnumTI;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// ClassInfo
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
struct llvm::ClassInfo {
|
|
struct MemberInfo {
|
|
const DIDerivedType *MemberTypeNode;
|
|
uint64_t BaseOffset;
|
|
};
|
|
// [MemberInfo]
|
|
using MemberList = std::vector<MemberInfo>;
|
|
|
|
using MethodsList = TinyPtrVector<const DISubprogram *>;
|
|
// MethodName -> MethodsList
|
|
using MethodsMap = MapVector<MDString *, MethodsList>;
|
|
|
|
/// Base classes.
|
|
std::vector<const DIDerivedType *> Inheritance;
|
|
|
|
/// Direct members.
|
|
MemberList Members;
|
|
// Direct overloaded methods gathered by name.
|
|
MethodsMap Methods;
|
|
|
|
TypeIndex VShapeTI;
|
|
|
|
std::vector<const DIType *> NestedTypes;
|
|
};
|
|
|
|
void CodeViewDebug::clear() {
|
|
assert(CurFn == nullptr);
|
|
FileIdMap.clear();
|
|
FnDebugInfo.clear();
|
|
FileToFilepathMap.clear();
|
|
LocalUDTs.clear();
|
|
GlobalUDTs.clear();
|
|
TypeIndices.clear();
|
|
CompleteTypeIndices.clear();
|
|
ScopeGlobals.clear();
|
|
}
|
|
|
|
void CodeViewDebug::collectMemberInfo(ClassInfo &Info,
|
|
const DIDerivedType *DDTy) {
|
|
if (!DDTy->getName().empty()) {
|
|
Info.Members.push_back({DDTy, 0});
|
|
return;
|
|
}
|
|
|
|
// An unnamed member may represent a nested struct or union. Attempt to
|
|
// interpret the unnamed member as a DICompositeType possibly wrapped in
|
|
// qualifier types. Add all the indirect fields to the current record if that
|
|
// succeeds, and drop the member if that fails.
|
|
assert((DDTy->getOffsetInBits() % 8) == 0 && "Unnamed bitfield member!");
|
|
uint64_t Offset = DDTy->getOffsetInBits();
|
|
const DIType *Ty = DDTy->getBaseType();
|
|
bool FullyResolved = false;
|
|
while (!FullyResolved) {
|
|
switch (Ty->getTag()) {
|
|
case dwarf::DW_TAG_const_type:
|
|
case dwarf::DW_TAG_volatile_type:
|
|
// FIXME: we should apply the qualifier types to the indirect fields
|
|
// rather than dropping them.
|
|
Ty = cast<DIDerivedType>(Ty)->getBaseType();
|
|
break;
|
|
default:
|
|
FullyResolved = true;
|
|
break;
|
|
}
|
|
}
|
|
|
|
const DICompositeType *DCTy = dyn_cast<DICompositeType>(Ty);
|
|
if (!DCTy)
|
|
return;
|
|
|
|
ClassInfo NestedInfo = collectClassInfo(DCTy);
|
|
for (const ClassInfo::MemberInfo &IndirectField : NestedInfo.Members)
|
|
Info.Members.push_back(
|
|
{IndirectField.MemberTypeNode, IndirectField.BaseOffset + Offset});
|
|
}
|
|
|
|
ClassInfo CodeViewDebug::collectClassInfo(const DICompositeType *Ty) {
|
|
ClassInfo Info;
|
|
// Add elements to structure type.
|
|
DINodeArray Elements = Ty->getElements();
|
|
for (auto *Element : Elements) {
|
|
// We assume that the frontend provides all members in source declaration
|
|
// order, which is what MSVC does.
|
|
if (!Element)
|
|
continue;
|
|
if (auto *SP = dyn_cast<DISubprogram>(Element)) {
|
|
Info.Methods[SP->getRawName()].push_back(SP);
|
|
} else if (auto *DDTy = dyn_cast<DIDerivedType>(Element)) {
|
|
if (DDTy->getTag() == dwarf::DW_TAG_member) {
|
|
collectMemberInfo(Info, DDTy);
|
|
} else if (DDTy->getTag() == dwarf::DW_TAG_inheritance) {
|
|
Info.Inheritance.push_back(DDTy);
|
|
} else if (DDTy->getTag() == dwarf::DW_TAG_pointer_type &&
|
|
DDTy->getName() == "__vtbl_ptr_type") {
|
|
Info.VShapeTI = getTypeIndex(DDTy);
|
|
} else if (DDTy->getTag() == dwarf::DW_TAG_typedef) {
|
|
Info.NestedTypes.push_back(DDTy);
|
|
} else if (DDTy->getTag() == dwarf::DW_TAG_friend) {
|
|
// Ignore friend members. It appears that MSVC emitted info about
|
|
// friends in the past, but modern versions do not.
|
|
}
|
|
} else if (auto *Composite = dyn_cast<DICompositeType>(Element)) {
|
|
Info.NestedTypes.push_back(Composite);
|
|
}
|
|
// Skip other unrecognized kinds of elements.
|
|
}
|
|
return Info;
|
|
}
|
|
|
|
static bool shouldAlwaysEmitCompleteClassType(const DICompositeType *Ty) {
|
|
// This routine is used by lowerTypeClass and lowerTypeUnion to determine
|
|
// if a complete type should be emitted instead of a forward reference.
|
|
return Ty->getName().empty() && Ty->getIdentifier().empty() &&
|
|
!Ty->isForwardDecl();
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerTypeClass(const DICompositeType *Ty) {
|
|
// Emit the complete type for unnamed structs. C++ classes with methods
|
|
// which have a circular reference back to the class type are expected to
|
|
// be named by the front-end and should not be "unnamed". C unnamed
|
|
// structs should not have circular references.
|
|
if (shouldAlwaysEmitCompleteClassType(Ty)) {
|
|
// If this unnamed complete type is already in the process of being defined
|
|
// then the description of the type is malformed and cannot be emitted
|
|
// into CodeView correctly so report a fatal error.
|
|
auto I = CompleteTypeIndices.find(Ty);
|
|
if (I != CompleteTypeIndices.end() && I->second == TypeIndex())
|
|
report_fatal_error("cannot debug circular reference to unnamed type");
|
|
return getCompleteTypeIndex(Ty);
|
|
}
|
|
|
|
// First, construct the forward decl. Don't look into Ty to compute the
|
|
// forward decl options, since it might not be available in all TUs.
|
|
TypeRecordKind Kind = getRecordKind(Ty);
|
|
ClassOptions CO =
|
|
ClassOptions::ForwardReference | getCommonClassOptions(Ty);
|
|
std::string FullName = getFullyQualifiedName(Ty);
|
|
ClassRecord CR(Kind, 0, CO, TypeIndex(), TypeIndex(), TypeIndex(), 0,
|
|
FullName, Ty->getIdentifier());
|
|
TypeIndex FwdDeclTI = TypeTable.writeLeafType(CR);
|
|
if (!Ty->isForwardDecl())
|
|
DeferredCompleteTypes.push_back(Ty);
|
|
return FwdDeclTI;
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerCompleteTypeClass(const DICompositeType *Ty) {
|
|
// Construct the field list and complete type record.
|
|
TypeRecordKind Kind = getRecordKind(Ty);
|
|
ClassOptions CO = getCommonClassOptions(Ty);
|
|
TypeIndex FieldTI;
|
|
TypeIndex VShapeTI;
|
|
unsigned FieldCount;
|
|
bool ContainsNestedClass;
|
|
std::tie(FieldTI, VShapeTI, FieldCount, ContainsNestedClass) =
|
|
lowerRecordFieldList(Ty);
|
|
|
|
if (ContainsNestedClass)
|
|
CO |= ClassOptions::ContainsNestedClass;
|
|
|
|
// MSVC appears to set this flag by searching any destructor or method with
|
|
// FunctionOptions::Constructor among the emitted members. Clang AST has all
|
|
// the members, however special member functions are not yet emitted into
|
|
// debug information. For now checking a class's non-triviality seems enough.
|
|
// FIXME: not true for a nested unnamed struct.
|
|
if (isNonTrivial(Ty))
|
|
CO |= ClassOptions::HasConstructorOrDestructor;
|
|
|
|
std::string FullName = getFullyQualifiedName(Ty);
|
|
|
|
uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
|
|
|
|
ClassRecord CR(Kind, FieldCount, CO, FieldTI, TypeIndex(), VShapeTI,
|
|
SizeInBytes, FullName, Ty->getIdentifier());
|
|
TypeIndex ClassTI = TypeTable.writeLeafType(CR);
|
|
|
|
addUDTSrcLine(Ty, ClassTI);
|
|
|
|
addToUDTs(Ty);
|
|
|
|
return ClassTI;
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerTypeUnion(const DICompositeType *Ty) {
|
|
// Emit the complete type for unnamed unions.
|
|
if (shouldAlwaysEmitCompleteClassType(Ty))
|
|
return getCompleteTypeIndex(Ty);
|
|
|
|
ClassOptions CO =
|
|
ClassOptions::ForwardReference | getCommonClassOptions(Ty);
|
|
std::string FullName = getFullyQualifiedName(Ty);
|
|
UnionRecord UR(0, CO, TypeIndex(), 0, FullName, Ty->getIdentifier());
|
|
TypeIndex FwdDeclTI = TypeTable.writeLeafType(UR);
|
|
if (!Ty->isForwardDecl())
|
|
DeferredCompleteTypes.push_back(Ty);
|
|
return FwdDeclTI;
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::lowerCompleteTypeUnion(const DICompositeType *Ty) {
|
|
ClassOptions CO = ClassOptions::Sealed | getCommonClassOptions(Ty);
|
|
TypeIndex FieldTI;
|
|
unsigned FieldCount;
|
|
bool ContainsNestedClass;
|
|
std::tie(FieldTI, std::ignore, FieldCount, ContainsNestedClass) =
|
|
lowerRecordFieldList(Ty);
|
|
|
|
if (ContainsNestedClass)
|
|
CO |= ClassOptions::ContainsNestedClass;
|
|
|
|
uint64_t SizeInBytes = Ty->getSizeInBits() / 8;
|
|
std::string FullName = getFullyQualifiedName(Ty);
|
|
|
|
UnionRecord UR(FieldCount, CO, FieldTI, SizeInBytes, FullName,
|
|
Ty->getIdentifier());
|
|
TypeIndex UnionTI = TypeTable.writeLeafType(UR);
|
|
|
|
addUDTSrcLine(Ty, UnionTI);
|
|
|
|
addToUDTs(Ty);
|
|
|
|
return UnionTI;
|
|
}
|
|
|
|
std::tuple<TypeIndex, TypeIndex, unsigned, bool>
|
|
CodeViewDebug::lowerRecordFieldList(const DICompositeType *Ty) {
|
|
// Manually count members. MSVC appears to count everything that generates a
|
|
// field list record. Each individual overload in a method overload group
|
|
// contributes to this count, even though the overload group is a single field
|
|
// list record.
|
|
unsigned MemberCount = 0;
|
|
ClassInfo Info = collectClassInfo(Ty);
|
|
ContinuationRecordBuilder ContinuationBuilder;
|
|
ContinuationBuilder.begin(ContinuationRecordKind::FieldList);
|
|
|
|
// Create base classes.
|
|
for (const DIDerivedType *I : Info.Inheritance) {
|
|
if (I->getFlags() & DINode::FlagVirtual) {
|
|
// Virtual base.
|
|
unsigned VBPtrOffset = I->getVBPtrOffset();
|
|
// FIXME: Despite the accessor name, the offset is really in bytes.
|
|
unsigned VBTableIndex = I->getOffsetInBits() / 4;
|
|
auto RecordKind = (I->getFlags() & DINode::FlagIndirectVirtualBase) == DINode::FlagIndirectVirtualBase
|
|
? TypeRecordKind::IndirectVirtualBaseClass
|
|
: TypeRecordKind::VirtualBaseClass;
|
|
VirtualBaseClassRecord VBCR(
|
|
RecordKind, translateAccessFlags(Ty->getTag(), I->getFlags()),
|
|
getTypeIndex(I->getBaseType()), getVBPTypeIndex(), VBPtrOffset,
|
|
VBTableIndex);
|
|
|
|
ContinuationBuilder.writeMemberType(VBCR);
|
|
MemberCount++;
|
|
} else {
|
|
assert(I->getOffsetInBits() % 8 == 0 &&
|
|
"bases must be on byte boundaries");
|
|
BaseClassRecord BCR(translateAccessFlags(Ty->getTag(), I->getFlags()),
|
|
getTypeIndex(I->getBaseType()),
|
|
I->getOffsetInBits() / 8);
|
|
ContinuationBuilder.writeMemberType(BCR);
|
|
MemberCount++;
|
|
}
|
|
}
|
|
|
|
// Create members.
|
|
for (ClassInfo::MemberInfo &MemberInfo : Info.Members) {
|
|
const DIDerivedType *Member = MemberInfo.MemberTypeNode;
|
|
TypeIndex MemberBaseType = getTypeIndex(Member->getBaseType());
|
|
StringRef MemberName = Member->getName();
|
|
MemberAccess Access =
|
|
translateAccessFlags(Ty->getTag(), Member->getFlags());
|
|
|
|
if (Member->isStaticMember()) {
|
|
StaticDataMemberRecord SDMR(Access, MemberBaseType, MemberName);
|
|
ContinuationBuilder.writeMemberType(SDMR);
|
|
MemberCount++;
|
|
continue;
|
|
}
|
|
|
|
// Virtual function pointer member.
|
|
if ((Member->getFlags() & DINode::FlagArtificial) &&
|
|
Member->getName().startswith("_vptr$")) {
|
|
VFPtrRecord VFPR(getTypeIndex(Member->getBaseType()));
|
|
ContinuationBuilder.writeMemberType(VFPR);
|
|
MemberCount++;
|
|
continue;
|
|
}
|
|
|
|
// Data member.
|
|
uint64_t MemberOffsetInBits =
|
|
Member->getOffsetInBits() + MemberInfo.BaseOffset;
|
|
if (Member->isBitField()) {
|
|
uint64_t StartBitOffset = MemberOffsetInBits;
|
|
if (const auto *CI =
|
|
dyn_cast_or_null<ConstantInt>(Member->getStorageOffsetInBits())) {
|
|
MemberOffsetInBits = CI->getZExtValue() + MemberInfo.BaseOffset;
|
|
}
|
|
StartBitOffset -= MemberOffsetInBits;
|
|
BitFieldRecord BFR(MemberBaseType, Member->getSizeInBits(),
|
|
StartBitOffset);
|
|
MemberBaseType = TypeTable.writeLeafType(BFR);
|
|
}
|
|
uint64_t MemberOffsetInBytes = MemberOffsetInBits / 8;
|
|
DataMemberRecord DMR(Access, MemberBaseType, MemberOffsetInBytes,
|
|
MemberName);
|
|
ContinuationBuilder.writeMemberType(DMR);
|
|
MemberCount++;
|
|
}
|
|
|
|
// Create methods
|
|
for (auto &MethodItr : Info.Methods) {
|
|
StringRef Name = MethodItr.first->getString();
|
|
|
|
std::vector<OneMethodRecord> Methods;
|
|
for (const DISubprogram *SP : MethodItr.second) {
|
|
TypeIndex MethodType = getMemberFunctionType(SP, Ty);
|
|
bool Introduced = SP->getFlags() & DINode::FlagIntroducedVirtual;
|
|
|
|
unsigned VFTableOffset = -1;
|
|
if (Introduced)
|
|
VFTableOffset = SP->getVirtualIndex() * getPointerSizeInBytes();
|
|
|
|
Methods.push_back(OneMethodRecord(
|
|
MethodType, translateAccessFlags(Ty->getTag(), SP->getFlags()),
|
|
translateMethodKindFlags(SP, Introduced),
|
|
translateMethodOptionFlags(SP), VFTableOffset, Name));
|
|
MemberCount++;
|
|
}
|
|
assert(!Methods.empty() && "Empty methods map entry");
|
|
if (Methods.size() == 1)
|
|
ContinuationBuilder.writeMemberType(Methods[0]);
|
|
else {
|
|
// FIXME: Make this use its own ContinuationBuilder so that
|
|
// MethodOverloadList can be split correctly.
|
|
MethodOverloadListRecord MOLR(Methods);
|
|
TypeIndex MethodList = TypeTable.writeLeafType(MOLR);
|
|
|
|
OverloadedMethodRecord OMR(Methods.size(), MethodList, Name);
|
|
ContinuationBuilder.writeMemberType(OMR);
|
|
}
|
|
}
|
|
|
|
// Create nested classes.
|
|
for (const DIType *Nested : Info.NestedTypes) {
|
|
NestedTypeRecord R(getTypeIndex(Nested), Nested->getName());
|
|
ContinuationBuilder.writeMemberType(R);
|
|
MemberCount++;
|
|
}
|
|
|
|
TypeIndex FieldTI = TypeTable.insertRecord(ContinuationBuilder);
|
|
return std::make_tuple(FieldTI, Info.VShapeTI, MemberCount,
|
|
!Info.NestedTypes.empty());
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::getVBPTypeIndex() {
|
|
if (!VBPType.getIndex()) {
|
|
// Make a 'const int *' type.
|
|
ModifierRecord MR(TypeIndex::Int32(), ModifierOptions::Const);
|
|
TypeIndex ModifiedTI = TypeTable.writeLeafType(MR);
|
|
|
|
PointerKind PK = getPointerSizeInBytes() == 8 ? PointerKind::Near64
|
|
: PointerKind::Near32;
|
|
PointerMode PM = PointerMode::Pointer;
|
|
PointerOptions PO = PointerOptions::None;
|
|
PointerRecord PR(ModifiedTI, PK, PM, PO, getPointerSizeInBytes());
|
|
VBPType = TypeTable.writeLeafType(PR);
|
|
}
|
|
|
|
return VBPType;
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::getTypeIndex(const DIType *Ty, const DIType *ClassTy) {
|
|
// The null DIType is the void type. Don't try to hash it.
|
|
if (!Ty)
|
|
return TypeIndex::Void();
|
|
|
|
// Check if we've already translated this type. Don't try to do a
|
|
// get-or-create style insertion that caches the hash lookup across the
|
|
// lowerType call. It will update the TypeIndices map.
|
|
auto I = TypeIndices.find({Ty, ClassTy});
|
|
if (I != TypeIndices.end())
|
|
return I->second;
|
|
|
|
TypeLoweringScope S(*this);
|
|
TypeIndex TI = lowerType(Ty, ClassTy);
|
|
return recordTypeIndexForDINode(Ty, TI, ClassTy);
|
|
}
|
|
|
|
codeview::TypeIndex
|
|
CodeViewDebug::getTypeIndexForThisPtr(const DIDerivedType *PtrTy,
|
|
const DISubroutineType *SubroutineTy) {
|
|
assert(PtrTy->getTag() == dwarf::DW_TAG_pointer_type &&
|
|
"this type must be a pointer type");
|
|
|
|
PointerOptions Options = PointerOptions::None;
|
|
if (SubroutineTy->getFlags() & DINode::DIFlags::FlagLValueReference)
|
|
Options = PointerOptions::LValueRefThisPointer;
|
|
else if (SubroutineTy->getFlags() & DINode::DIFlags::FlagRValueReference)
|
|
Options = PointerOptions::RValueRefThisPointer;
|
|
|
|
// Check if we've already translated this type. If there is no ref qualifier
|
|
// on the function then we look up this pointer type with no associated class
|
|
// so that the TypeIndex for the this pointer can be shared with the type
|
|
// index for other pointers to this class type. If there is a ref qualifier
|
|
// then we lookup the pointer using the subroutine as the parent type.
|
|
auto I = TypeIndices.find({PtrTy, SubroutineTy});
|
|
if (I != TypeIndices.end())
|
|
return I->second;
|
|
|
|
TypeLoweringScope S(*this);
|
|
TypeIndex TI = lowerTypePointer(PtrTy, Options);
|
|
return recordTypeIndexForDINode(PtrTy, TI, SubroutineTy);
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::getTypeIndexForReferenceTo(const DIType *Ty) {
|
|
PointerRecord PR(getTypeIndex(Ty),
|
|
getPointerSizeInBytes() == 8 ? PointerKind::Near64
|
|
: PointerKind::Near32,
|
|
PointerMode::LValueReference, PointerOptions::None,
|
|
Ty->getSizeInBits() / 8);
|
|
return TypeTable.writeLeafType(PR);
|
|
}
|
|
|
|
TypeIndex CodeViewDebug::getCompleteTypeIndex(const DIType *Ty) {
|
|
// The null DIType is the void type. Don't try to hash it.
|
|
if (!Ty)
|
|
return TypeIndex::Void();
|
|
|
|
// Look through typedefs when getting the complete type index. Call
|
|
// getTypeIndex on the typdef to ensure that any UDTs are accumulated and are
|
|
// emitted only once.
|
|
if (Ty->getTag() == dwarf::DW_TAG_typedef)
|
|
(void)getTypeIndex(Ty);
|
|
while (Ty->getTag() == dwarf::DW_TAG_typedef)
|
|
Ty = cast<DIDerivedType>(Ty)->getBaseType();
|
|
|
|
// If this is a non-record type, the complete type index is the same as the
|
|
// normal type index. Just call getTypeIndex.
|
|
switch (Ty->getTag()) {
|
|
case dwarf::DW_TAG_class_type:
|
|
case dwarf::DW_TAG_structure_type:
|
|
case dwarf::DW_TAG_union_type:
|
|
break;
|
|
default:
|
|
return getTypeIndex(Ty);
|
|
}
|
|
|
|
const auto *CTy = cast<DICompositeType>(Ty);
|
|
|
|
TypeLoweringScope S(*this);
|
|
|
|
// Make sure the forward declaration is emitted first. It's unclear if this
|
|
// is necessary, but MSVC does it, and we should follow suit until we can show
|
|
// otherwise.
|
|
// We only emit a forward declaration for named types.
|
|
if (!CTy->getName().empty() || !CTy->getIdentifier().empty()) {
|
|
TypeIndex FwdDeclTI = getTypeIndex(CTy);
|
|
|
|
// Just use the forward decl if we don't have complete type info. This
|
|
// might happen if the frontend is using modules and expects the complete
|
|
// definition to be emitted elsewhere.
|
|
if (CTy->isForwardDecl())
|
|
return FwdDeclTI;
|
|
}
|
|
|
|
// Check if we've already translated the complete record type.
|
|
// Insert the type with a null TypeIndex to signify that the type is currently
|
|
// being lowered.
|
|
auto InsertResult = CompleteTypeIndices.insert({CTy, TypeIndex()});
|
|
if (!InsertResult.second)
|
|
return InsertResult.first->second;
|
|
|
|
TypeIndex TI;
|
|
switch (CTy->getTag()) {
|
|
case dwarf::DW_TAG_class_type:
|
|
case dwarf::DW_TAG_structure_type:
|
|
TI = lowerCompleteTypeClass(CTy);
|
|
break;
|
|
case dwarf::DW_TAG_union_type:
|
|
TI = lowerCompleteTypeUnion(CTy);
|
|
break;
|
|
default:
|
|
llvm_unreachable("not a record");
|
|
}
|
|
|
|
// Update the type index associated with this CompositeType. This cannot
|
|
// use the 'InsertResult' iterator above because it is potentially
|
|
// invalidated by map insertions which can occur while lowering the class
|
|
// type above.
|
|
CompleteTypeIndices[CTy] = TI;
|
|
return TI;
|
|
}
|
|
|
|
/// Emit all the deferred complete record types. Try to do this in FIFO order,
|
|
/// and do this until fixpoint, as each complete record type typically
|
|
/// references
|
|
/// many other record types.
|
|
void CodeViewDebug::emitDeferredCompleteTypes() {
|
|
SmallVector<const DICompositeType *, 4> TypesToEmit;
|
|
while (!DeferredCompleteTypes.empty()) {
|
|
std::swap(DeferredCompleteTypes, TypesToEmit);
|
|
for (const DICompositeType *RecordTy : TypesToEmit)
|
|
getCompleteTypeIndex(RecordTy);
|
|
TypesToEmit.clear();
|
|
}
|
|
}
|
|
|
|
void CodeViewDebug::emitLocalVariableList(const FunctionInfo &FI,
|
|
ArrayRef<LocalVariable> Locals) {
|
|
// Get the sorted list of parameters and emit them first.
|
|
SmallVector<const LocalVariable *, 6> Params;
|
|
for (const LocalVariable &L : Locals)
|
|
if (L.DIVar->isParameter())
|
|
Params.push_back(&L);
|
|
llvm::sort(Params, [](const LocalVariable *L, const LocalVariable *R) {
|
|
return L->DIVar->getArg() < R->DIVar->getArg();
|
|
});
|
|
for (const LocalVariable *L : Params)
|
|
emitLocalVariable(FI, *L);
|
|
|
|
// Next emit all non-parameters in the order that we found them.
|
|
for (const LocalVariable &L : Locals)
|
|
if (!L.DIVar->isParameter())
|
|
emitLocalVariable(FI, L);
|
|
}
|
|
|
|
void CodeViewDebug::emitLocalVariable(const FunctionInfo &FI,
|
|
const LocalVariable &Var) {
|
|
// LocalSym record, see SymbolRecord.h for more info.
|
|
MCSymbol *LocalEnd = beginSymbolRecord(SymbolKind::S_LOCAL);
|
|
|
|
LocalSymFlags Flags = LocalSymFlags::None;
|
|
if (Var.DIVar->isParameter())
|
|
Flags |= LocalSymFlags::IsParameter;
|
|
if (Var.DefRanges.empty())
|
|
Flags |= LocalSymFlags::IsOptimizedOut;
|
|
|
|
OS.AddComment("TypeIndex");
|
|
TypeIndex TI = Var.UseReferenceType
|
|
? getTypeIndexForReferenceTo(Var.DIVar->getType())
|
|
: getCompleteTypeIndex(Var.DIVar->getType());
|
|
OS.emitInt32(TI.getIndex());
|
|
OS.AddComment("Flags");
|
|
OS.emitInt16(static_cast<uint16_t>(Flags));
|
|
// Truncate the name so we won't overflow the record length field.
|
|
emitNullTerminatedSymbolName(OS, Var.DIVar->getName());
|
|
endSymbolRecord(LocalEnd);
|
|
|
|
// Calculate the on disk prefix of the appropriate def range record. The
|
|
// records and on disk formats are described in SymbolRecords.h. BytePrefix
|
|
// should be big enough to hold all forms without memory allocation.
|
|
SmallString<20> BytePrefix;
|
|
for (const LocalVarDefRange &DefRange : Var.DefRanges) {
|
|
BytePrefix.clear();
|
|
if (DefRange.InMemory) {
|
|
int Offset = DefRange.DataOffset;
|
|
unsigned Reg = DefRange.CVRegister;
|
|
|
|
// 32-bit x86 call sequences often use PUSH instructions, which disrupt
|
|
// ESP-relative offsets. Use the virtual frame pointer, VFRAME or $T0,
|
|
// instead. In frames without stack realignment, $T0 will be the CFA.
|
|
if (RegisterId(Reg) == RegisterId::ESP) {
|
|
Reg = unsigned(RegisterId::VFRAME);
|
|
Offset += FI.OffsetAdjustment;
|
|
}
|
|
|
|
// If we can use the chosen frame pointer for the frame and this isn't a
|
|
// sliced aggregate, use the smaller S_DEFRANGE_FRAMEPOINTER_REL record.
|
|
// Otherwise, use S_DEFRANGE_REGISTER_REL.
|
|
EncodedFramePtrReg EncFP = encodeFramePtrReg(RegisterId(Reg), TheCPU);
|
|
if (!DefRange.IsSubfield && EncFP != EncodedFramePtrReg::None &&
|
|
(bool(Flags & LocalSymFlags::IsParameter)
|
|
? (EncFP == FI.EncodedParamFramePtrReg)
|
|
: (EncFP == FI.EncodedLocalFramePtrReg))) {
|
|
DefRangeFramePointerRelHeader DRHdr;
|
|
DRHdr.Offset = Offset;
|
|
OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
|
|
} else {
|
|
uint16_t RegRelFlags = 0;
|
|
if (DefRange.IsSubfield) {
|
|
RegRelFlags = DefRangeRegisterRelSym::IsSubfieldFlag |
|
|
(DefRange.StructOffset
|
|
<< DefRangeRegisterRelSym::OffsetInParentShift);
|
|
}
|
|
DefRangeRegisterRelHeader DRHdr;
|
|
DRHdr.Register = Reg;
|
|
DRHdr.Flags = RegRelFlags;
|
|
DRHdr.BasePointerOffset = Offset;
|
|
OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
|
|
}
|
|
} else {
|
|
assert(DefRange.DataOffset == 0 && "unexpected offset into register");
|
|
if (DefRange.IsSubfield) {
|
|
DefRangeSubfieldRegisterHeader DRHdr;
|
|
DRHdr.Register = DefRange.CVRegister;
|
|
DRHdr.MayHaveNoName = 0;
|
|
DRHdr.OffsetInParent = DefRange.StructOffset;
|
|
OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
|
|
} else {
|
|
DefRangeRegisterHeader DRHdr;
|
|
DRHdr.Register = DefRange.CVRegister;
|
|
DRHdr.MayHaveNoName = 0;
|
|
OS.emitCVDefRangeDirective(DefRange.Ranges, DRHdr);
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeViewDebug::emitLexicalBlockList(ArrayRef<LexicalBlock *> Blocks,
|
|
const FunctionInfo& FI) {
|
|
for (LexicalBlock *Block : Blocks)
|
|
emitLexicalBlock(*Block, FI);
|
|
}
|
|
|
|
/// Emit an S_BLOCK32 and S_END record pair delimiting the contents of a
|
|
/// lexical block scope.
|
|
void CodeViewDebug::emitLexicalBlock(const LexicalBlock &Block,
|
|
const FunctionInfo& FI) {
|
|
MCSymbol *RecordEnd = beginSymbolRecord(SymbolKind::S_BLOCK32);
|
|
OS.AddComment("PtrParent");
|
|
OS.emitInt32(0); // PtrParent
|
|
OS.AddComment("PtrEnd");
|
|
OS.emitInt32(0); // PtrEnd
|
|
OS.AddComment("Code size");
|
|
OS.emitAbsoluteSymbolDiff(Block.End, Block.Begin, 4); // Code Size
|
|
OS.AddComment("Function section relative address");
|
|
OS.EmitCOFFSecRel32(Block.Begin, /*Offset=*/0); // Func Offset
|
|
OS.AddComment("Function section index");
|
|
OS.EmitCOFFSectionIndex(FI.Begin); // Func Symbol
|
|
OS.AddComment("Lexical block name");
|
|
emitNullTerminatedSymbolName(OS, Block.Name); // Name
|
|
endSymbolRecord(RecordEnd);
|
|
|
|
// Emit variables local to this lexical block.
|
|
emitLocalVariableList(FI, Block.Locals);
|
|
emitGlobalVariableList(Block.Globals);
|
|
|
|
// Emit lexical blocks contained within this block.
|
|
emitLexicalBlockList(Block.Children, FI);
|
|
|
|
// Close the lexical block scope.
|
|
emitEndSymbolRecord(SymbolKind::S_END);
|
|
}
|
|
|
|
/// Convenience routine for collecting lexical block information for a list
|
|
/// of lexical scopes.
|
|
void CodeViewDebug::collectLexicalBlockInfo(
|
|
SmallVectorImpl<LexicalScope *> &Scopes,
|
|
SmallVectorImpl<LexicalBlock *> &Blocks,
|
|
SmallVectorImpl<LocalVariable> &Locals,
|
|
SmallVectorImpl<CVGlobalVariable> &Globals) {
|
|
for (LexicalScope *Scope : Scopes)
|
|
collectLexicalBlockInfo(*Scope, Blocks, Locals, Globals);
|
|
}
|
|
|
|
/// Populate the lexical blocks and local variable lists of the parent with
|
|
/// information about the specified lexical scope.
|
|
void CodeViewDebug::collectLexicalBlockInfo(
|
|
LexicalScope &Scope,
|
|
SmallVectorImpl<LexicalBlock *> &ParentBlocks,
|
|
SmallVectorImpl<LocalVariable> &ParentLocals,
|
|
SmallVectorImpl<CVGlobalVariable> &ParentGlobals) {
|
|
if (Scope.isAbstractScope())
|
|
return;
|
|
|
|
// Gather information about the lexical scope including local variables,
|
|
// global variables, and address ranges.
|
|
bool IgnoreScope = false;
|
|
auto LI = ScopeVariables.find(&Scope);
|
|
SmallVectorImpl<LocalVariable> *Locals =
|
|
LI != ScopeVariables.end() ? &LI->second : nullptr;
|
|
auto GI = ScopeGlobals.find(Scope.getScopeNode());
|
|
SmallVectorImpl<CVGlobalVariable> *Globals =
|
|
GI != ScopeGlobals.end() ? GI->second.get() : nullptr;
|
|
const DILexicalBlock *DILB = dyn_cast<DILexicalBlock>(Scope.getScopeNode());
|
|
const SmallVectorImpl<InsnRange> &Ranges = Scope.getRanges();
|
|
|
|
// Ignore lexical scopes which do not contain variables.
|
|
if (!Locals && !Globals)
|
|
IgnoreScope = true;
|
|
|
|
// Ignore lexical scopes which are not lexical blocks.
|
|
if (!DILB)
|
|
IgnoreScope = true;
|
|
|
|
// Ignore scopes which have too many address ranges to represent in the
|
|
// current CodeView format or do not have a valid address range.
|
|
//
|
|
// For lexical scopes with multiple address ranges you may be tempted to
|
|
// construct a single range covering every instruction where the block is
|
|
// live and everything in between. Unfortunately, Visual Studio only
|
|
// displays variables from the first matching lexical block scope. If the
|
|
// first lexical block contains exception handling code or cold code which
|
|
// is moved to the bottom of the routine creating a single range covering
|
|
// nearly the entire routine, then it will hide all other lexical blocks
|
|
// and the variables they contain.
|
|
if (Ranges.size() != 1 || !getLabelAfterInsn(Ranges.front().second))
|
|
IgnoreScope = true;
|
|
|
|
if (IgnoreScope) {
|
|
// This scope can be safely ignored and eliminating it will reduce the
|
|
// size of the debug information. Be sure to collect any variable and scope
|
|
// information from the this scope or any of its children and collapse them
|
|
// into the parent scope.
|
|
if (Locals)
|
|
ParentLocals.append(Locals->begin(), Locals->end());
|
|
if (Globals)
|
|
ParentGlobals.append(Globals->begin(), Globals->end());
|
|
collectLexicalBlockInfo(Scope.getChildren(),
|
|
ParentBlocks,
|
|
ParentLocals,
|
|
ParentGlobals);
|
|
return;
|
|
}
|
|
|
|
// Create a new CodeView lexical block for this lexical scope. If we've
|
|
// seen this DILexicalBlock before then the scope tree is malformed and
|
|
// we can handle this gracefully by not processing it a second time.
|
|
auto BlockInsertion = CurFn->LexicalBlocks.insert({DILB, LexicalBlock()});
|
|
if (!BlockInsertion.second)
|
|
return;
|
|
|
|
// Create a lexical block containing the variables and collect the the
|
|
// lexical block information for the children.
|
|
const InsnRange &Range = Ranges.front();
|
|
assert(Range.first && Range.second);
|
|
LexicalBlock &Block = BlockInsertion.first->second;
|
|
Block.Begin = getLabelBeforeInsn(Range.first);
|
|
Block.End = getLabelAfterInsn(Range.second);
|
|
assert(Block.Begin && "missing label for scope begin");
|
|
assert(Block.End && "missing label for scope end");
|
|
Block.Name = DILB->getName();
|
|
if (Locals)
|
|
Block.Locals = std::move(*Locals);
|
|
if (Globals)
|
|
Block.Globals = std::move(*Globals);
|
|
ParentBlocks.push_back(&Block);
|
|
collectLexicalBlockInfo(Scope.getChildren(),
|
|
Block.Children,
|
|
Block.Locals,
|
|
Block.Globals);
|
|
}
|
|
|
|
void CodeViewDebug::endFunctionImpl(const MachineFunction *MF) {
|
|
const Function &GV = MF->getFunction();
|
|
assert(FnDebugInfo.count(&GV));
|
|
assert(CurFn == FnDebugInfo[&GV].get());
|
|
|
|
collectVariableInfo(GV.getSubprogram());
|
|
|
|
// Build the lexical block structure to emit for this routine.
|
|
if (LexicalScope *CFS = LScopes.getCurrentFunctionScope())
|
|
collectLexicalBlockInfo(*CFS,
|
|
CurFn->ChildBlocks,
|
|
CurFn->Locals,
|
|
CurFn->Globals);
|
|
|
|
// Clear the scope and variable information from the map which will not be
|
|
// valid after we have finished processing this routine. This also prepares
|
|
// the map for the subsequent routine.
|
|
ScopeVariables.clear();
|
|
|
|
// Don't emit anything if we don't have any line tables.
|
|
// Thunks are compiler-generated and probably won't have source correlation.
|
|
if (!CurFn->HaveLineInfo && !GV.getSubprogram()->isThunk()) {
|
|
FnDebugInfo.erase(&GV);
|
|
CurFn = nullptr;
|
|
return;
|
|
}
|
|
|
|
// Find heap alloc sites and add to list.
|
|
for (const auto &MBB : *MF) {
|
|
for (const auto &MI : MBB) {
|
|
if (MDNode *MD = MI.getHeapAllocMarker()) {
|
|
CurFn->HeapAllocSites.push_back(std::make_tuple(getLabelBeforeInsn(&MI),
|
|
getLabelAfterInsn(&MI),
|
|
dyn_cast<DIType>(MD)));
|
|
}
|
|
}
|
|
}
|
|
|
|
CurFn->Annotations = MF->getCodeViewAnnotations();
|
|
|
|
CurFn->End = Asm->getFunctionEnd();
|
|
|
|
CurFn = nullptr;
|
|
}
|
|
|
|
// Usable locations are valid with non-zero line numbers. A line number of zero
|
|
// corresponds to optimized code that doesn't have a distinct source location.
|
|
// In this case, we try to use the previous or next source location depending on
|
|
// the context.
|
|
static bool isUsableDebugLoc(DebugLoc DL) {
|
|
return DL && DL.getLine() != 0;
|
|
}
|
|
|
|
void CodeViewDebug::beginInstruction(const MachineInstr *MI) {
|
|
DebugHandlerBase::beginInstruction(MI);
|
|
|
|
// Ignore DBG_VALUE and DBG_LABEL locations and function prologue.
|
|
if (!Asm || !CurFn || MI->isDebugInstr() ||
|
|
MI->getFlag(MachineInstr::FrameSetup))
|
|
return;
|
|
|
|
// If the first instruction of a new MBB has no location, find the first
|
|
// instruction with a location and use that.
|
|
DebugLoc DL = MI->getDebugLoc();
|
|
if (!isUsableDebugLoc(DL) && MI->getParent() != PrevInstBB) {
|
|
for (const auto &NextMI : *MI->getParent()) {
|
|
if (NextMI.isDebugInstr())
|
|
continue;
|
|
DL = NextMI.getDebugLoc();
|
|
if (isUsableDebugLoc(DL))
|
|
break;
|
|
}
|
|
// FIXME: Handle the case where the BB has no valid locations. This would
|
|
// probably require doing a real dataflow analysis.
|
|
}
|
|
PrevInstBB = MI->getParent();
|
|
|
|
// If we still don't have a debug location, don't record a location.
|
|
if (!isUsableDebugLoc(DL))
|
|
return;
|
|
|
|
maybeRecordLocation(DL, Asm->MF);
|
|
}
|
|
|
|
MCSymbol *CodeViewDebug::beginCVSubsection(DebugSubsectionKind Kind) {
|
|
MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
|
|
*EndLabel = MMI->getContext().createTempSymbol();
|
|
OS.emitInt32(unsigned(Kind));
|
|
OS.AddComment("Subsection size");
|
|
OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 4);
|
|
OS.emitLabel(BeginLabel);
|
|
return EndLabel;
|
|
}
|
|
|
|
void CodeViewDebug::endCVSubsection(MCSymbol *EndLabel) {
|
|
OS.emitLabel(EndLabel);
|
|
// Every subsection must be aligned to a 4-byte boundary.
|
|
OS.emitValueToAlignment(4);
|
|
}
|
|
|
|
static StringRef getSymbolName(SymbolKind SymKind) {
|
|
for (const EnumEntry<SymbolKind> &EE : getSymbolTypeNames())
|
|
if (EE.Value == SymKind)
|
|
return EE.Name;
|
|
return "";
|
|
}
|
|
|
|
MCSymbol *CodeViewDebug::beginSymbolRecord(SymbolKind SymKind) {
|
|
MCSymbol *BeginLabel = MMI->getContext().createTempSymbol(),
|
|
*EndLabel = MMI->getContext().createTempSymbol();
|
|
OS.AddComment("Record length");
|
|
OS.emitAbsoluteSymbolDiff(EndLabel, BeginLabel, 2);
|
|
OS.emitLabel(BeginLabel);
|
|
if (OS.isVerboseAsm())
|
|
OS.AddComment("Record kind: " + getSymbolName(SymKind));
|
|
OS.emitInt16(unsigned(SymKind));
|
|
return EndLabel;
|
|
}
|
|
|
|
void CodeViewDebug::endSymbolRecord(MCSymbol *SymEnd) {
|
|
// MSVC does not pad out symbol records to four bytes, but LLVM does to avoid
|
|
// an extra copy of every symbol record in LLD. This increases object file
|
|
// size by less than 1% in the clang build, and is compatible with the Visual
|
|
// C++ linker.
|
|
OS.emitValueToAlignment(4);
|
|
OS.emitLabel(SymEnd);
|
|
}
|
|
|
|
void CodeViewDebug::emitEndSymbolRecord(SymbolKind EndKind) {
|
|
OS.AddComment("Record length");
|
|
OS.emitInt16(2);
|
|
if (OS.isVerboseAsm())
|
|
OS.AddComment("Record kind: " + getSymbolName(EndKind));
|
|
OS.emitInt16(uint16_t(EndKind)); // Record Kind
|
|
}
|
|
|
|
void CodeViewDebug::emitDebugInfoForUDTs(
|
|
const std::vector<std::pair<std::string, const DIType *>> &UDTs) {
|
|
#ifndef NDEBUG
|
|
size_t OriginalSize = UDTs.size();
|
|
#endif
|
|
for (const auto &UDT : UDTs) {
|
|
const DIType *T = UDT.second;
|
|
assert(shouldEmitUdt(T));
|
|
MCSymbol *UDTRecordEnd = beginSymbolRecord(SymbolKind::S_UDT);
|
|
OS.AddComment("Type");
|
|
OS.emitInt32(getCompleteTypeIndex(T).getIndex());
|
|
assert(OriginalSize == UDTs.size() &&
|
|
"getCompleteTypeIndex found new UDTs!");
|
|
emitNullTerminatedSymbolName(OS, UDT.first);
|
|
endSymbolRecord(UDTRecordEnd);
|
|
}
|
|
}
|
|
|
|
void CodeViewDebug::collectGlobalVariableInfo() {
|
|
DenseMap<const DIGlobalVariableExpression *, const GlobalVariable *>
|
|
GlobalMap;
|
|
for (const GlobalVariable &GV : MMI->getModule()->globals()) {
|
|
SmallVector<DIGlobalVariableExpression *, 1> GVEs;
|
|
GV.getDebugInfo(GVEs);
|
|
for (const auto *GVE : GVEs)
|
|
GlobalMap[GVE] = &GV;
|
|
}
|
|
|
|
NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
|
|
for (const MDNode *Node : CUs->operands()) {
|
|
const auto *CU = cast<DICompileUnit>(Node);
|
|
for (const auto *GVE : CU->getGlobalVariables()) {
|
|
const DIGlobalVariable *DIGV = GVE->getVariable();
|
|
const DIExpression *DIE = GVE->getExpression();
|
|
|
|
// Emit constant global variables in a global symbol section.
|
|
if (GlobalMap.count(GVE) == 0 && DIE->isConstant()) {
|
|
CVGlobalVariable CVGV = {DIGV, DIE};
|
|
GlobalVariables.emplace_back(std::move(CVGV));
|
|
}
|
|
|
|
const auto *GV = GlobalMap.lookup(GVE);
|
|
if (!GV || GV->isDeclarationForLinker())
|
|
continue;
|
|
|
|
DIScope *Scope = DIGV->getScope();
|
|
SmallVector<CVGlobalVariable, 1> *VariableList;
|
|
if (Scope && isa<DILocalScope>(Scope)) {
|
|
// Locate a global variable list for this scope, creating one if
|
|
// necessary.
|
|
auto Insertion = ScopeGlobals.insert(
|
|
{Scope, std::unique_ptr<GlobalVariableList>()});
|
|
if (Insertion.second)
|
|
Insertion.first->second = std::make_unique<GlobalVariableList>();
|
|
VariableList = Insertion.first->second.get();
|
|
} else if (GV->hasComdat())
|
|
// Emit this global variable into a COMDAT section.
|
|
VariableList = &ComdatVariables;
|
|
else
|
|
// Emit this global variable in a single global symbol section.
|
|
VariableList = &GlobalVariables;
|
|
CVGlobalVariable CVGV = {DIGV, GV};
|
|
VariableList->emplace_back(std::move(CVGV));
|
|
}
|
|
}
|
|
}
|
|
|
|
void CodeViewDebug::emitDebugInfoForGlobals() {
|
|
// First, emit all globals that are not in a comdat in a single symbol
|
|
// substream. MSVC doesn't like it if the substream is empty, so only open
|
|
// it if we have at least one global to emit.
|
|
switchToDebugSectionForSymbol(nullptr);
|
|
if (!GlobalVariables.empty()) {
|
|
OS.AddComment("Symbol subsection for globals");
|
|
MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
|
|
emitGlobalVariableList(GlobalVariables);
|
|
endCVSubsection(EndLabel);
|
|
}
|
|
|
|
// Second, emit each global that is in a comdat into its own .debug$S
|
|
// section along with its own symbol substream.
|
|
for (const CVGlobalVariable &CVGV : ComdatVariables) {
|
|
const GlobalVariable *GV = CVGV.GVInfo.get<const GlobalVariable *>();
|
|
MCSymbol *GVSym = Asm->getSymbol(GV);
|
|
OS.AddComment("Symbol subsection for " +
|
|
Twine(GlobalValue::dropLLVMManglingEscape(GV->getName())));
|
|
switchToDebugSectionForSymbol(GVSym);
|
|
MCSymbol *EndLabel = beginCVSubsection(DebugSubsectionKind::Symbols);
|
|
// FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
|
|
emitDebugInfoForGlobal(CVGV);
|
|
endCVSubsection(EndLabel);
|
|
}
|
|
}
|
|
|
|
void CodeViewDebug::emitDebugInfoForRetainedTypes() {
|
|
NamedMDNode *CUs = MMI->getModule()->getNamedMetadata("llvm.dbg.cu");
|
|
for (const MDNode *Node : CUs->operands()) {
|
|
for (auto *Ty : cast<DICompileUnit>(Node)->getRetainedTypes()) {
|
|
if (DIType *RT = dyn_cast<DIType>(Ty)) {
|
|
getTypeIndex(RT);
|
|
// FIXME: Add to global/local DTU list.
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
// Emit each global variable in the specified array.
|
|
void CodeViewDebug::emitGlobalVariableList(ArrayRef<CVGlobalVariable> Globals) {
|
|
for (const CVGlobalVariable &CVGV : Globals) {
|
|
// FIXME: emitDebugInfoForGlobal() doesn't handle DIExpressions.
|
|
emitDebugInfoForGlobal(CVGV);
|
|
}
|
|
}
|
|
|
|
void CodeViewDebug::emitDebugInfoForGlobal(const CVGlobalVariable &CVGV) {
|
|
const DIGlobalVariable *DIGV = CVGV.DIGV;
|
|
|
|
const DIScope *Scope = DIGV->getScope();
|
|
// For static data members, get the scope from the declaration.
|
|
if (const auto *MemberDecl = dyn_cast_or_null<DIDerivedType>(
|
|
DIGV->getRawStaticDataMemberDeclaration()))
|
|
Scope = MemberDecl->getScope();
|
|
std::string QualifiedName = getFullyQualifiedName(Scope, DIGV->getName());
|
|
|
|
if (const GlobalVariable *GV =
|
|
CVGV.GVInfo.dyn_cast<const GlobalVariable *>()) {
|
|
// DataSym record, see SymbolRecord.h for more info. Thread local data
|
|
// happens to have the same format as global data.
|
|
MCSymbol *GVSym = Asm->getSymbol(GV);
|
|
SymbolKind DataSym = GV->isThreadLocal()
|
|
? (DIGV->isLocalToUnit() ? SymbolKind::S_LTHREAD32
|
|
: SymbolKind::S_GTHREAD32)
|
|
: (DIGV->isLocalToUnit() ? SymbolKind::S_LDATA32
|
|
: SymbolKind::S_GDATA32);
|
|
MCSymbol *DataEnd = beginSymbolRecord(DataSym);
|
|
OS.AddComment("Type");
|
|
OS.emitInt32(getCompleteTypeIndex(DIGV->getType()).getIndex());
|
|
OS.AddComment("DataOffset");
|
|
OS.EmitCOFFSecRel32(GVSym, /*Offset=*/0);
|
|
OS.AddComment("Segment");
|
|
OS.EmitCOFFSectionIndex(GVSym);
|
|
OS.AddComment("Name");
|
|
const unsigned LengthOfDataRecord = 12;
|
|
emitNullTerminatedSymbolName(OS, QualifiedName, LengthOfDataRecord);
|
|
endSymbolRecord(DataEnd);
|
|
} else {
|
|
const DIExpression *DIE = CVGV.GVInfo.get<const DIExpression *>();
|
|
assert(DIE->isConstant() &&
|
|
"Global constant variables must contain a constant expression.");
|
|
uint64_t Val = DIE->getElement(1);
|
|
|
|
MCSymbol *SConstantEnd = beginSymbolRecord(SymbolKind::S_CONSTANT);
|
|
OS.AddComment("Type");
|
|
OS.emitInt32(getTypeIndex(DIGV->getType()).getIndex());
|
|
OS.AddComment("Value");
|
|
|
|
// Encoded integers shouldn't need more than 10 bytes.
|
|
uint8_t data[10];
|
|
BinaryStreamWriter Writer(data, llvm::support::endianness::little);
|
|
CodeViewRecordIO IO(Writer);
|
|
cantFail(IO.mapEncodedInteger(Val));
|
|
StringRef SRef((char *)data, Writer.getOffset());
|
|
OS.emitBinaryData(SRef);
|
|
|
|
OS.AddComment("Name");
|
|
emitNullTerminatedSymbolName(OS, QualifiedName);
|
|
endSymbolRecord(SConstantEnd);
|
|
}
|
|
}
|