llvm-project/clang/lib/Sema/SemaDeclAttr.cpp

6510 lines
232 KiB
C++

//===--- SemaDeclAttr.cpp - Declaration Attribute Handling ----------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements decl-related attribute processing.
//
//===----------------------------------------------------------------------===//
#include "clang/AST/ASTConsumer.h"
#include "clang/AST/ASTContext.h"
#include "clang/AST/ASTMutationListener.h"
#include "clang/AST/CXXInheritance.h"
#include "clang/AST/DeclCXX.h"
#include "clang/AST/DeclObjC.h"
#include "clang/AST/DeclTemplate.h"
#include "clang/AST/Expr.h"
#include "clang/AST/ExprCXX.h"
#include "clang/AST/Mangle.h"
#include "clang/Basic/CharInfo.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Basic/TargetInfo.h"
#include "clang/Lex/Preprocessor.h"
#include "clang/Sema/DeclSpec.h"
#include "clang/Sema/DelayedDiagnostic.h"
#include "clang/Sema/Initialization.h"
#include "clang/Sema/Lookup.h"
#include "clang/Sema/Scope.h"
#include "clang/Sema/SemaInternal.h"
#include "llvm/ADT/StringExtras.h"
#include "llvm/Support/MathExtras.h"
using namespace clang;
using namespace sema;
namespace AttributeLangSupport {
enum LANG {
C,
Cpp,
ObjC
};
} // end namespace AttributeLangSupport
//===----------------------------------------------------------------------===//
// Helper functions
//===----------------------------------------------------------------------===//
/// isFunctionOrMethod - Return true if the given decl has function
/// type (function or function-typed variable) or an Objective-C
/// method.
static bool isFunctionOrMethod(const Decl *D) {
return (D->getFunctionType() != nullptr) || isa<ObjCMethodDecl>(D);
}
/// \brief Return true if the given decl has function type (function or
/// function-typed variable) or an Objective-C method or a block.
static bool isFunctionOrMethodOrBlock(const Decl *D) {
return isFunctionOrMethod(D) || isa<BlockDecl>(D);
}
/// Return true if the given decl has a declarator that should have
/// been processed by Sema::GetTypeForDeclarator.
static bool hasDeclarator(const Decl *D) {
// In some sense, TypedefDecl really *ought* to be a DeclaratorDecl.
return isa<DeclaratorDecl>(D) || isa<BlockDecl>(D) || isa<TypedefNameDecl>(D) ||
isa<ObjCPropertyDecl>(D);
}
/// hasFunctionProto - Return true if the given decl has a argument
/// information. This decl should have already passed
/// isFunctionOrMethod or isFunctionOrMethodOrBlock.
static bool hasFunctionProto(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return isa<FunctionProtoType>(FnTy);
return isa<ObjCMethodDecl>(D) || isa<BlockDecl>(D);
}
/// getFunctionOrMethodNumParams - Return number of function or method
/// parameters. It is an error to call this on a K&R function (use
/// hasFunctionProto first).
static unsigned getFunctionOrMethodNumParams(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return cast<FunctionProtoType>(FnTy)->getNumParams();
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->getNumParams();
return cast<ObjCMethodDecl>(D)->param_size();
}
static QualType getFunctionOrMethodParamType(const Decl *D, unsigned Idx) {
if (const FunctionType *FnTy = D->getFunctionType())
return cast<FunctionProtoType>(FnTy)->getParamType(Idx);
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->getParamDecl(Idx)->getType();
return cast<ObjCMethodDecl>(D)->parameters()[Idx]->getType();
}
static SourceRange getFunctionOrMethodParamRange(const Decl *D, unsigned Idx) {
if (const auto *FD = dyn_cast<FunctionDecl>(D))
return FD->getParamDecl(Idx)->getSourceRange();
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->parameters()[Idx]->getSourceRange();
if (const auto *BD = dyn_cast<BlockDecl>(D))
return BD->getParamDecl(Idx)->getSourceRange();
return SourceRange();
}
static QualType getFunctionOrMethodResultType(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType())
return cast<FunctionType>(FnTy)->getReturnType();
return cast<ObjCMethodDecl>(D)->getReturnType();
}
static SourceRange getFunctionOrMethodResultSourceRange(const Decl *D) {
if (const auto *FD = dyn_cast<FunctionDecl>(D))
return FD->getReturnTypeSourceRange();
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
return MD->getReturnTypeSourceRange();
return SourceRange();
}
static bool isFunctionOrMethodVariadic(const Decl *D) {
if (const FunctionType *FnTy = D->getFunctionType()) {
const FunctionProtoType *proto = cast<FunctionProtoType>(FnTy);
return proto->isVariadic();
}
if (const BlockDecl *BD = dyn_cast<BlockDecl>(D))
return BD->isVariadic();
return cast<ObjCMethodDecl>(D)->isVariadic();
}
static bool isInstanceMethod(const Decl *D) {
if (const CXXMethodDecl *MethodDecl = dyn_cast<CXXMethodDecl>(D))
return MethodDecl->isInstance();
return false;
}
static inline bool isNSStringType(QualType T, ASTContext &Ctx) {
const ObjCObjectPointerType *PT = T->getAs<ObjCObjectPointerType>();
if (!PT)
return false;
ObjCInterfaceDecl *Cls = PT->getObjectType()->getInterface();
if (!Cls)
return false;
IdentifierInfo* ClsName = Cls->getIdentifier();
// FIXME: Should we walk the chain of classes?
return ClsName == &Ctx.Idents.get("NSString") ||
ClsName == &Ctx.Idents.get("NSMutableString");
}
static inline bool isCFStringType(QualType T, ASTContext &Ctx) {
const PointerType *PT = T->getAs<PointerType>();
if (!PT)
return false;
const RecordType *RT = PT->getPointeeType()->getAs<RecordType>();
if (!RT)
return false;
const RecordDecl *RD = RT->getDecl();
if (RD->getTagKind() != TTK_Struct)
return false;
return RD->getIdentifier() == &Ctx.Idents.get("__CFString");
}
static unsigned getNumAttributeArgs(const AttributeList &Attr) {
// FIXME: Include the type in the argument list.
return Attr.getNumArgs() + Attr.hasParsedType();
}
template <typename Compare>
static bool checkAttributeNumArgsImpl(Sema &S, const AttributeList &Attr,
unsigned Num, unsigned Diag,
Compare Comp) {
if (Comp(getNumAttributeArgs(Attr), Num)) {
S.Diag(Attr.getLoc(), Diag) << Attr.getName() << Num;
return false;
}
return true;
}
/// \brief Check if the attribute has exactly as many args as Num. May
/// output an error.
static bool checkAttributeNumArgs(Sema &S, const AttributeList &Attr,
unsigned Num) {
return checkAttributeNumArgsImpl(S, Attr, Num,
diag::err_attribute_wrong_number_arguments,
std::not_equal_to<unsigned>());
}
/// \brief Check if the attribute has at least as many args as Num. May
/// output an error.
static bool checkAttributeAtLeastNumArgs(Sema &S, const AttributeList &Attr,
unsigned Num) {
return checkAttributeNumArgsImpl(S, Attr, Num,
diag::err_attribute_too_few_arguments,
std::less<unsigned>());
}
/// \brief Check if the attribute has at most as many args as Num. May
/// output an error.
static bool checkAttributeAtMostNumArgs(Sema &S, const AttributeList &Attr,
unsigned Num) {
return checkAttributeNumArgsImpl(S, Attr, Num,
diag::err_attribute_too_many_arguments,
std::greater<unsigned>());
}
/// \brief If Expr is a valid integer constant, get the value of the integer
/// expression and return success or failure. May output an error.
static bool checkUInt32Argument(Sema &S, const AttributeList &Attr,
const Expr *Expr, uint32_t &Val,
unsigned Idx = UINT_MAX) {
llvm::APSInt I(32);
if (Expr->isTypeDependent() || Expr->isValueDependent() ||
!Expr->isIntegerConstantExpr(I, S.Context)) {
if (Idx != UINT_MAX)
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << Idx << AANT_ArgumentIntegerConstant
<< Expr->getSourceRange();
else
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentIntegerConstant
<< Expr->getSourceRange();
return false;
}
if (!I.isIntN(32)) {
S.Diag(Expr->getExprLoc(), diag::err_ice_too_large)
<< I.toString(10, false) << 32 << /* Unsigned */ 1;
return false;
}
Val = (uint32_t)I.getZExtValue();
return true;
}
/// \brief Diagnose mutually exclusive attributes when present on a given
/// declaration. Returns true if diagnosed.
template <typename AttrTy>
static bool checkAttrMutualExclusion(Sema &S, Decl *D, SourceRange Range,
IdentifierInfo *Ident) {
if (AttrTy *A = D->getAttr<AttrTy>()) {
S.Diag(Range.getBegin(), diag::err_attributes_are_not_compatible) << Ident
<< A;
S.Diag(A->getLocation(), diag::note_conflicting_attribute);
return true;
}
return false;
}
/// \brief Check if IdxExpr is a valid parameter index for a function or
/// instance method D. May output an error.
///
/// \returns true if IdxExpr is a valid index.
static bool checkFunctionOrMethodParameterIndex(Sema &S, const Decl *D,
const AttributeList &Attr,
unsigned AttrArgNum,
const Expr *IdxExpr,
uint64_t &Idx) {
assert(isFunctionOrMethodOrBlock(D));
// In C++ the implicit 'this' function parameter also counts.
// Parameters are counted from one.
bool HP = hasFunctionProto(D);
bool HasImplicitThisParam = isInstanceMethod(D);
bool IV = HP && isFunctionOrMethodVariadic(D);
unsigned NumParams =
(HP ? getFunctionOrMethodNumParams(D) : 0) + HasImplicitThisParam;
llvm::APSInt IdxInt;
if (IdxExpr->isTypeDependent() || IdxExpr->isValueDependent() ||
!IdxExpr->isIntegerConstantExpr(IdxInt, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << AttrArgNum << AANT_ArgumentIntegerConstant
<< IdxExpr->getSourceRange();
return false;
}
Idx = IdxInt.getLimitedValue();
if (Idx < 1 || (!IV && Idx > NumParams)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< Attr.getName() << AttrArgNum << IdxExpr->getSourceRange();
return false;
}
Idx--; // Convert to zero-based.
if (HasImplicitThisParam) {
if (Idx == 0) {
S.Diag(Attr.getLoc(),
diag::err_attribute_invalid_implicit_this_argument)
<< Attr.getName() << IdxExpr->getSourceRange();
return false;
}
--Idx;
}
return true;
}
/// \brief Check if the argument \p ArgNum of \p Attr is a ASCII string literal.
/// If not emit an error and return false. If the argument is an identifier it
/// will emit an error with a fixit hint and treat it as if it was a string
/// literal.
bool Sema::checkStringLiteralArgumentAttr(const AttributeList &Attr,
unsigned ArgNum, StringRef &Str,
SourceLocation *ArgLocation) {
// Look for identifiers. If we have one emit a hint to fix it to a literal.
if (Attr.isArgIdent(ArgNum)) {
IdentifierLoc *Loc = Attr.getArgAsIdent(ArgNum);
Diag(Loc->Loc, diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentString
<< FixItHint::CreateInsertion(Loc->Loc, "\"")
<< FixItHint::CreateInsertion(getLocForEndOfToken(Loc->Loc), "\"");
Str = Loc->Ident->getName();
if (ArgLocation)
*ArgLocation = Loc->Loc;
return true;
}
// Now check for an actual string literal.
Expr *ArgExpr = Attr.getArgAsExpr(ArgNum);
StringLiteral *Literal = dyn_cast<StringLiteral>(ArgExpr->IgnoreParenCasts());
if (ArgLocation)
*ArgLocation = ArgExpr->getLocStart();
if (!Literal || !Literal->isAscii()) {
Diag(ArgExpr->getLocStart(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentString;
return false;
}
Str = Literal->getString();
return true;
}
/// \brief Applies the given attribute to the Decl without performing any
/// additional semantic checking.
template <typename AttrType>
static void handleSimpleAttribute(Sema &S, Decl *D,
const AttributeList &Attr) {
D->addAttr(::new (S.Context) AttrType(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
template <typename AttrType>
static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
const AttributeList &Attr) {
handleSimpleAttribute<AttrType>(S, D, Attr);
}
/// \brief Applies the given attribute to the Decl so long as the Decl doesn't
/// already have one of the given incompatible attributes.
template <typename AttrType, typename IncompatibleAttrType,
typename... IncompatibleAttrTypes>
static void handleSimpleAttributeWithExclusions(Sema &S, Decl *D,
const AttributeList &Attr) {
if (checkAttrMutualExclusion<IncompatibleAttrType>(S, D, Attr.getRange(),
Attr.getName()))
return;
handleSimpleAttributeWithExclusions<AttrType, IncompatibleAttrTypes...>(S, D,
Attr);
}
/// \brief Check if the passed-in expression is of type int or bool.
static bool isIntOrBool(Expr *Exp) {
QualType QT = Exp->getType();
return QT->isBooleanType() || QT->isIntegerType();
}
// Check to see if the type is a smart pointer of some kind. We assume
// it's a smart pointer if it defines both operator-> and operator*.
static bool threadSafetyCheckIsSmartPointer(Sema &S, const RecordType* RT) {
DeclContextLookupResult Res1 = RT->getDecl()->lookup(
S.Context.DeclarationNames.getCXXOperatorName(OO_Star));
if (Res1.empty())
return false;
DeclContextLookupResult Res2 = RT->getDecl()->lookup(
S.Context.DeclarationNames.getCXXOperatorName(OO_Arrow));
if (Res2.empty())
return false;
return true;
}
/// \brief Check if passed in Decl is a pointer type.
/// Note that this function may produce an error message.
/// \return true if the Decl is a pointer type; false otherwise
static bool threadSafetyCheckIsPointer(Sema &S, const Decl *D,
const AttributeList &Attr) {
const ValueDecl *vd = cast<ValueDecl>(D);
QualType QT = vd->getType();
if (QT->isAnyPointerType())
return true;
if (const RecordType *RT = QT->getAs<RecordType>()) {
// If it's an incomplete type, it could be a smart pointer; skip it.
// (We don't want to force template instantiation if we can avoid it,
// since that would alter the order in which templates are instantiated.)
if (RT->isIncompleteType())
return true;
if (threadSafetyCheckIsSmartPointer(S, RT))
return true;
}
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_pointer)
<< Attr.getName() << QT;
return false;
}
/// \brief Checks that the passed in QualType either is of RecordType or points
/// to RecordType. Returns the relevant RecordType, null if it does not exit.
static const RecordType *getRecordType(QualType QT) {
if (const RecordType *RT = QT->getAs<RecordType>())
return RT;
// Now check if we point to record type.
if (const PointerType *PT = QT->getAs<PointerType>())
return PT->getPointeeType()->getAs<RecordType>();
return nullptr;
}
static bool checkRecordTypeForCapability(Sema &S, QualType Ty) {
const RecordType *RT = getRecordType(Ty);
if (!RT)
return false;
// Don't check for the capability if the class hasn't been defined yet.
if (RT->isIncompleteType())
return true;
// Allow smart pointers to be used as capability objects.
// FIXME -- Check the type that the smart pointer points to.
if (threadSafetyCheckIsSmartPointer(S, RT))
return true;
// Check if the record itself has a capability.
RecordDecl *RD = RT->getDecl();
if (RD->hasAttr<CapabilityAttr>())
return true;
// Else check if any base classes have a capability.
if (CXXRecordDecl *CRD = dyn_cast<CXXRecordDecl>(RD)) {
CXXBasePaths BPaths(false, false);
if (CRD->lookupInBases([](const CXXBaseSpecifier *BS, CXXBasePath &) {
const auto *Type = BS->getType()->getAs<RecordType>();
return Type->getDecl()->hasAttr<CapabilityAttr>();
}, BPaths))
return true;
}
return false;
}
static bool checkTypedefTypeForCapability(QualType Ty) {
const auto *TD = Ty->getAs<TypedefType>();
if (!TD)
return false;
TypedefNameDecl *TN = TD->getDecl();
if (!TN)
return false;
return TN->hasAttr<CapabilityAttr>();
}
static bool typeHasCapability(Sema &S, QualType Ty) {
if (checkTypedefTypeForCapability(Ty))
return true;
if (checkRecordTypeForCapability(S, Ty))
return true;
return false;
}
static bool isCapabilityExpr(Sema &S, const Expr *Ex) {
// Capability expressions are simple expressions involving the boolean logic
// operators &&, || or !, a simple DeclRefExpr, CastExpr or a ParenExpr. Once
// a DeclRefExpr is found, its type should be checked to determine whether it
// is a capability or not.
if (const auto *E = dyn_cast<DeclRefExpr>(Ex))
return typeHasCapability(S, E->getType());
else if (const auto *E = dyn_cast<CastExpr>(Ex))
return isCapabilityExpr(S, E->getSubExpr());
else if (const auto *E = dyn_cast<ParenExpr>(Ex))
return isCapabilityExpr(S, E->getSubExpr());
else if (const auto *E = dyn_cast<UnaryOperator>(Ex)) {
if (E->getOpcode() == UO_LNot)
return isCapabilityExpr(S, E->getSubExpr());
return false;
} else if (const auto *E = dyn_cast<BinaryOperator>(Ex)) {
if (E->getOpcode() == BO_LAnd || E->getOpcode() == BO_LOr)
return isCapabilityExpr(S, E->getLHS()) &&
isCapabilityExpr(S, E->getRHS());
return false;
}
return false;
}
/// \brief Checks that all attribute arguments, starting from Sidx, resolve to
/// a capability object.
/// \param Sidx The attribute argument index to start checking with.
/// \param ParamIdxOk Whether an argument can be indexing into a function
/// parameter list.
static void checkAttrArgsAreCapabilityObjs(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVectorImpl<Expr *> &Args,
int Sidx = 0,
bool ParamIdxOk = false) {
for (unsigned Idx = Sidx; Idx < Attr.getNumArgs(); ++Idx) {
Expr *ArgExp = Attr.getArgAsExpr(Idx);
if (ArgExp->isTypeDependent()) {
// FIXME -- need to check this again on template instantiation
Args.push_back(ArgExp);
continue;
}
if (StringLiteral *StrLit = dyn_cast<StringLiteral>(ArgExp)) {
if (StrLit->getLength() == 0 ||
(StrLit->isAscii() && StrLit->getString() == StringRef("*"))) {
// Pass empty strings to the analyzer without warnings.
// Treat "*" as the universal lock.
Args.push_back(ArgExp);
continue;
}
// We allow constant strings to be used as a placeholder for expressions
// that are not valid C++ syntax, but warn that they are ignored.
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_ignored) <<
Attr.getName();
Args.push_back(ArgExp);
continue;
}
QualType ArgTy = ArgExp->getType();
// A pointer to member expression of the form &MyClass::mu is treated
// specially -- we need to look at the type of the member.
if (UnaryOperator *UOp = dyn_cast<UnaryOperator>(ArgExp))
if (UOp->getOpcode() == UO_AddrOf)
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(UOp->getSubExpr()))
if (DRE->getDecl()->isCXXInstanceMember())
ArgTy = DRE->getDecl()->getType();
// First see if we can just cast to record type, or pointer to record type.
const RecordType *RT = getRecordType(ArgTy);
// Now check if we index into a record type function param.
if(!RT && ParamIdxOk) {
FunctionDecl *FD = dyn_cast<FunctionDecl>(D);
IntegerLiteral *IL = dyn_cast<IntegerLiteral>(ArgExp);
if(FD && IL) {
unsigned int NumParams = FD->getNumParams();
llvm::APInt ArgValue = IL->getValue();
uint64_t ParamIdxFromOne = ArgValue.getZExtValue();
uint64_t ParamIdxFromZero = ParamIdxFromOne - 1;
if(!ArgValue.isStrictlyPositive() || ParamIdxFromOne > NumParams) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_range)
<< Attr.getName() << Idx + 1 << NumParams;
continue;
}
ArgTy = FD->getParamDecl(ParamIdxFromZero)->getType();
}
}
// If the type does not have a capability, see if the components of the
// expression have capabilities. This allows for writing C code where the
// capability may be on the type, and the expression is a capability
// boolean logic expression. Eg) requires_capability(A || B && !C)
if (!typeHasCapability(S, ArgTy) && !isCapabilityExpr(S, ArgExp))
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_argument_not_lockable)
<< Attr.getName() << ArgTy;
Args.push_back(ArgExp);
}
}
//===----------------------------------------------------------------------===//
// Attribute Implementations
//===----------------------------------------------------------------------===//
static void handlePtGuardedVarAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!threadSafetyCheckIsPointer(S, D, Attr))
return;
D->addAttr(::new (S.Context)
PtGuardedVarAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static bool checkGuardedByAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr,
Expr* &Arg) {
SmallVector<Expr*, 1> Args;
// check that all arguments are lockable objects
checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
unsigned Size = Args.size();
if (Size != 1)
return false;
Arg = Args[0];
return true;
}
static void handleGuardedByAttr(Sema &S, Decl *D, const AttributeList &Attr) {
Expr *Arg = nullptr;
if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
return;
D->addAttr(::new (S.Context) GuardedByAttr(Attr.getRange(), S.Context, Arg,
Attr.getAttributeSpellingListIndex()));
}
static void handlePtGuardedByAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
Expr *Arg = nullptr;
if (!checkGuardedByAttrCommon(S, D, Attr, Arg))
return;
if (!threadSafetyCheckIsPointer(S, D, Attr))
return;
D->addAttr(::new (S.Context) PtGuardedByAttr(Attr.getRange(),
S.Context, Arg,
Attr.getAttributeSpellingListIndex()));
}
static bool checkAcquireOrderAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVectorImpl<Expr *> &Args) {
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return false;
// Check that this attribute only applies to lockable types.
QualType QT = cast<ValueDecl>(D)->getType();
if (!QT->isDependentType() && !typeHasCapability(S, QT)) {
S.Diag(Attr.getLoc(), diag::warn_thread_attribute_decl_not_lockable)
<< Attr.getName();
return false;
}
// Check that all arguments are lockable objects.
checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
if (Args.empty())
return false;
return true;
}
static void handleAcquiredAfterAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
AcquiredAfterAttr(Attr.getRange(), S.Context,
StartArg, Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleAcquiredBeforeAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkAcquireOrderAttrCommon(S, D, Attr, Args))
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
AcquiredBeforeAttr(Attr.getRange(), S.Context,
StartArg, Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static bool checkLockFunAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVectorImpl<Expr *> &Args) {
// zero or more arguments ok
// check that all arguments are lockable objects
checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, /*ParamIdxOk=*/true);
return true;
}
static void handleAssertSharedLockAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkLockFunAttrCommon(S, D, Attr, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? nullptr : &Args[0];
D->addAttr(::new (S.Context)
AssertSharedLockAttr(Attr.getRange(), S.Context, StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static void handleAssertExclusiveLockAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkLockFunAttrCommon(S, D, Attr, Args))
return;
unsigned Size = Args.size();
Expr **StartArg = Size == 0 ? nullptr : &Args[0];
D->addAttr(::new (S.Context)
AssertExclusiveLockAttr(Attr.getRange(), S.Context,
StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static bool checkTryLockFunAttrCommon(Sema &S, Decl *D,
const AttributeList &Attr,
SmallVectorImpl<Expr *> &Args) {
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return false;
if (!isIntOrBool(Attr.getArgAsExpr(0))) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 1 << AANT_ArgumentIntOrBool;
return false;
}
// check that all arguments are lockable objects
checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 1);
return true;
}
static void handleSharedTrylockFunctionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
return;
D->addAttr(::new (S.Context)
SharedTrylockFunctionAttr(Attr.getRange(), S.Context,
Attr.getArgAsExpr(0),
Args.data(), Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleExclusiveTrylockFunctionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
return;
D->addAttr(::new (S.Context) ExclusiveTrylockFunctionAttr(
Attr.getRange(), S.Context, Attr.getArgAsExpr(0), Args.data(),
Args.size(), Attr.getAttributeSpellingListIndex()));
}
static void handleLockReturnedAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// check that the argument is lockable object
SmallVector<Expr*, 1> Args;
checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
unsigned Size = Args.size();
if (Size == 0)
return;
D->addAttr(::new (S.Context)
LockReturnedAttr(Attr.getRange(), S.Context, Args[0],
Attr.getAttributeSpellingListIndex()));
}
static void handleLocksExcludedAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return;
// check that all arguments are lockable objects
SmallVector<Expr*, 1> Args;
checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
unsigned Size = Args.size();
if (Size == 0)
return;
Expr **StartArg = &Args[0];
D->addAttr(::new (S.Context)
LocksExcludedAttr(Attr.getRange(), S.Context, StartArg, Size,
Attr.getAttributeSpellingListIndex()));
}
static void handleEnableIfAttr(Sema &S, Decl *D, const AttributeList &Attr) {
S.Diag(Attr.getLoc(), diag::ext_clang_enable_if);
Expr *Cond = Attr.getArgAsExpr(0);
if (!Cond->isTypeDependent()) {
ExprResult Converted = S.PerformContextuallyConvertToBool(Cond);
if (Converted.isInvalid())
return;
Cond = Converted.get();
}
StringRef Msg;
if (!S.checkStringLiteralArgumentAttr(Attr, 1, Msg))
return;
SmallVector<PartialDiagnosticAt, 8> Diags;
if (!Cond->isValueDependent() &&
!Expr::isPotentialConstantExprUnevaluated(Cond, cast<FunctionDecl>(D),
Diags)) {
S.Diag(Attr.getLoc(), diag::err_enable_if_never_constant_expr);
for (int I = 0, N = Diags.size(); I != N; ++I)
S.Diag(Diags[I].first, Diags[I].second);
return;
}
D->addAttr(::new (S.Context)
EnableIfAttr(Attr.getRange(), S.Context, Cond, Msg,
Attr.getAttributeSpellingListIndex()));
}
static void handlePassObjectSizeAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (D->hasAttr<PassObjectSizeAttr>()) {
S.Diag(D->getLocStart(), diag::err_attribute_only_once_per_parameter)
<< Attr.getName();
return;
}
Expr *E = Attr.getArgAsExpr(0);
uint32_t Type;
if (!checkUInt32Argument(S, Attr, E, Type, /*Idx=*/1))
return;
// pass_object_size's argument is passed in as the second argument of
// __builtin_object_size. So, it has the same constraints as that second
// argument; namely, it must be in the range [0, 3].
if (Type > 3) {
S.Diag(E->getLocStart(), diag::err_attribute_argument_outof_range)
<< Attr.getName() << 0 << 3 << E->getSourceRange();
return;
}
// pass_object_size is only supported on constant pointer parameters; as a
// kindness to users, we allow the parameter to be non-const for declarations.
// At this point, we have no clue if `D` belongs to a function declaration or
// definition, so we defer the constness check until later.
if (!cast<ParmVarDecl>(D)->getType()->isPointerType()) {
S.Diag(D->getLocStart(), diag::err_attribute_pointers_only)
<< Attr.getName() << 1;
return;
}
D->addAttr(::new (S.Context)
PassObjectSizeAttr(Attr.getRange(), S.Context, (int)Type,
Attr.getAttributeSpellingListIndex()));
}
static void handleConsumableAttr(Sema &S, Decl *D, const AttributeList &Attr) {
ConsumableAttr::ConsumedState DefaultState;
if (Attr.isArgIdent(0)) {
IdentifierLoc *IL = Attr.getArgAsIdent(0);
if (!ConsumableAttr::ConvertStrToConsumedState(IL->Ident->getName(),
DefaultState)) {
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << IL->Ident;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentIdentifier;
return;
}
D->addAttr(::new (S.Context)
ConsumableAttr(Attr.getRange(), S.Context, DefaultState,
Attr.getAttributeSpellingListIndex()));
}
static bool checkForConsumableClass(Sema &S, const CXXMethodDecl *MD,
const AttributeList &Attr) {
ASTContext &CurrContext = S.getASTContext();
QualType ThisType = MD->getThisType(CurrContext)->getPointeeType();
if (const CXXRecordDecl *RD = ThisType->getAsCXXRecordDecl()) {
if (!RD->hasAttr<ConsumableAttr>()) {
S.Diag(Attr.getLoc(), diag::warn_attr_on_unconsumable_class) <<
RD->getNameAsString();
return false;
}
}
return true;
}
static void handleCallableWhenAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return;
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
return;
SmallVector<CallableWhenAttr::ConsumedState, 3> States;
for (unsigned ArgIndex = 0; ArgIndex < Attr.getNumArgs(); ++ArgIndex) {
CallableWhenAttr::ConsumedState CallableState;
StringRef StateString;
SourceLocation Loc;
if (Attr.isArgIdent(ArgIndex)) {
IdentifierLoc *Ident = Attr.getArgAsIdent(ArgIndex);
StateString = Ident->Ident->getName();
Loc = Ident->Loc;
} else {
if (!S.checkStringLiteralArgumentAttr(Attr, ArgIndex, StateString, &Loc))
return;
}
if (!CallableWhenAttr::ConvertStrToConsumedState(StateString,
CallableState)) {
S.Diag(Loc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << StateString;
return;
}
States.push_back(CallableState);
}
D->addAttr(::new (S.Context)
CallableWhenAttr(Attr.getRange(), S.Context, States.data(),
States.size(), Attr.getAttributeSpellingListIndex()));
}
static void handleParamTypestateAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
ParamTypestateAttr::ConsumedState ParamState;
if (Attr.isArgIdent(0)) {
IdentifierLoc *Ident = Attr.getArgAsIdent(0);
StringRef StateString = Ident->Ident->getName();
if (!ParamTypestateAttr::ConvertStrToConsumedState(StateString,
ParamState)) {
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << StateString;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
Attr.getName() << AANT_ArgumentIdentifier;
return;
}
// FIXME: This check is currently being done in the analysis. It can be
// enabled here only after the parser propagates attributes at
// template specialization definition, not declaration.
//QualType ReturnType = cast<ParmVarDecl>(D)->getType();
//const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
//
//if (!RD || !RD->hasAttr<ConsumableAttr>()) {
// S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
// ReturnType.getAsString();
// return;
//}
D->addAttr(::new (S.Context)
ParamTypestateAttr(Attr.getRange(), S.Context, ParamState,
Attr.getAttributeSpellingListIndex()));
}
static void handleReturnTypestateAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
ReturnTypestateAttr::ConsumedState ReturnState;
if (Attr.isArgIdent(0)) {
IdentifierLoc *IL = Attr.getArgAsIdent(0);
if (!ReturnTypestateAttr::ConvertStrToConsumedState(IL->Ident->getName(),
ReturnState)) {
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << IL->Ident;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
Attr.getName() << AANT_ArgumentIdentifier;
return;
}
// FIXME: This check is currently being done in the analysis. It can be
// enabled here only after the parser propagates attributes at
// template specialization definition, not declaration.
//QualType ReturnType;
//
//if (const ParmVarDecl *Param = dyn_cast<ParmVarDecl>(D)) {
// ReturnType = Param->getType();
//
//} else if (const CXXConstructorDecl *Constructor =
// dyn_cast<CXXConstructorDecl>(D)) {
// ReturnType = Constructor->getThisType(S.getASTContext())->getPointeeType();
//
//} else {
//
// ReturnType = cast<FunctionDecl>(D)->getCallResultType();
//}
//
//const CXXRecordDecl *RD = ReturnType->getAsCXXRecordDecl();
//
//if (!RD || !RD->hasAttr<ConsumableAttr>()) {
// S.Diag(Attr.getLoc(), diag::warn_return_state_for_unconsumable_type) <<
// ReturnType.getAsString();
// return;
//}
D->addAttr(::new (S.Context)
ReturnTypestateAttr(Attr.getRange(), S.Context, ReturnState,
Attr.getAttributeSpellingListIndex()));
}
static void handleSetTypestateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
return;
SetTypestateAttr::ConsumedState NewState;
if (Attr.isArgIdent(0)) {
IdentifierLoc *Ident = Attr.getArgAsIdent(0);
StringRef Param = Ident->Ident->getName();
if (!SetTypestateAttr::ConvertStrToConsumedState(Param, NewState)) {
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << Param;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
Attr.getName() << AANT_ArgumentIdentifier;
return;
}
D->addAttr(::new (S.Context)
SetTypestateAttr(Attr.getRange(), S.Context, NewState,
Attr.getAttributeSpellingListIndex()));
}
static void handleTestTypestateAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkForConsumableClass(S, cast<CXXMethodDecl>(D), Attr))
return;
TestTypestateAttr::ConsumedState TestState;
if (Attr.isArgIdent(0)) {
IdentifierLoc *Ident = Attr.getArgAsIdent(0);
StringRef Param = Ident->Ident->getName();
if (!TestTypestateAttr::ConvertStrToConsumedState(Param, TestState)) {
S.Diag(Ident->Loc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << Param;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) <<
Attr.getName() << AANT_ArgumentIdentifier;
return;
}
D->addAttr(::new (S.Context)
TestTypestateAttr(Attr.getRange(), S.Context, TestState,
Attr.getAttributeSpellingListIndex()));
}
static void handleExtVectorTypeAttr(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr) {
// Remember this typedef decl, we will need it later for diagnostics.
S.ExtVectorDecls.push_back(cast<TypedefNameDecl>(D));
}
static void handlePackedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (TagDecl *TD = dyn_cast<TagDecl>(D))
TD->addAttr(::new (S.Context) PackedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
// Report warning about changed offset in the newer compiler versions.
if (!FD->getType()->isDependentType() &&
!FD->getType()->isIncompleteType() && FD->isBitField() &&
S.Context.getTypeAlign(FD->getType()) <= 8)
S.Diag(Attr.getLoc(), diag::warn_attribute_packed_for_bitfield);
FD->addAttr(::new (S.Context) PackedAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
}
static bool checkIBOutletCommon(Sema &S, Decl *D, const AttributeList &Attr) {
// The IBOutlet/IBOutletCollection attributes only apply to instance
// variables or properties of Objective-C classes. The outlet must also
// have an object reference type.
if (const ObjCIvarDecl *VD = dyn_cast<ObjCIvarDecl>(D)) {
if (!VD->getType()->getAs<ObjCObjectPointerType>()) {
S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
<< Attr.getName() << VD->getType() << 0;
return false;
}
}
else if (const ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
if (!PD->getType()->getAs<ObjCObjectPointerType>()) {
S.Diag(Attr.getLoc(), diag::warn_iboutlet_object_type)
<< Attr.getName() << PD->getType() << 1;
return false;
}
}
else {
S.Diag(Attr.getLoc(), diag::warn_attribute_iboutlet) << Attr.getName();
return false;
}
return true;
}
static void handleIBOutlet(Sema &S, Decl *D, const AttributeList &Attr) {
if (!checkIBOutletCommon(S, D, Attr))
return;
D->addAttr(::new (S.Context)
IBOutletAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleIBOutletCollection(Sema &S, Decl *D,
const AttributeList &Attr) {
// The iboutletcollection attribute can have zero or one arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
return;
}
if (!checkIBOutletCommon(S, D, Attr))
return;
ParsedType PT;
if (Attr.hasParsedType())
PT = Attr.getTypeArg();
else {
PT = S.getTypeName(S.Context.Idents.get("NSObject"), Attr.getLoc(),
S.getScopeForContext(D->getDeclContext()->getParent()));
if (!PT) {
S.Diag(Attr.getLoc(), diag::err_iboutletcollection_type) << "NSObject";
return;
}
}
TypeSourceInfo *QTLoc = nullptr;
QualType QT = S.GetTypeFromParser(PT, &QTLoc);
if (!QTLoc)
QTLoc = S.Context.getTrivialTypeSourceInfo(QT, Attr.getLoc());
// Diagnose use of non-object type in iboutletcollection attribute.
// FIXME. Gnu attribute extension ignores use of builtin types in
// attributes. So, __attribute__((iboutletcollection(char))) will be
// treated as __attribute__((iboutletcollection())).
if (!QT->isObjCIdType() && !QT->isObjCObjectType()) {
S.Diag(Attr.getLoc(),
QT->isBuiltinType() ? diag::err_iboutletcollection_builtintype
: diag::err_iboutletcollection_type) << QT;
return;
}
D->addAttr(::new (S.Context)
IBOutletCollectionAttr(Attr.getRange(), S.Context, QTLoc,
Attr.getAttributeSpellingListIndex()));
}
bool Sema::isValidPointerAttrType(QualType T, bool RefOkay) {
if (RefOkay) {
if (T->isReferenceType())
return true;
} else {
T = T.getNonReferenceType();
}
// The nonnull attribute, and other similar attributes, can be applied to a
// transparent union that contains a pointer type.
if (const RecordType *UT = T->getAsUnionType()) {
if (UT && UT->getDecl()->hasAttr<TransparentUnionAttr>()) {
RecordDecl *UD = UT->getDecl();
for (const auto *I : UD->fields()) {
QualType QT = I->getType();
if (QT->isAnyPointerType() || QT->isBlockPointerType())
return true;
}
}
}
return T->isAnyPointerType() || T->isBlockPointerType();
}
static bool attrNonNullArgCheck(Sema &S, QualType T, const AttributeList &Attr,
SourceRange AttrParmRange,
SourceRange TypeRange,
bool isReturnValue = false) {
if (!S.isValidPointerAttrType(T)) {
if (isReturnValue)
S.Diag(Attr.getLoc(), diag::warn_attribute_return_pointers_only)
<< Attr.getName() << AttrParmRange << TypeRange;
else
S.Diag(Attr.getLoc(), diag::warn_attribute_pointers_only)
<< Attr.getName() << AttrParmRange << TypeRange << 0;
return false;
}
return true;
}
static void handleNonNullAttr(Sema &S, Decl *D, const AttributeList &Attr) {
SmallVector<unsigned, 8> NonNullArgs;
for (unsigned I = 0; I < Attr.getNumArgs(); ++I) {
Expr *Ex = Attr.getArgAsExpr(I);
uint64_t Idx;
if (!checkFunctionOrMethodParameterIndex(S, D, Attr, I + 1, Ex, Idx))
return;
// Is the function argument a pointer type?
if (Idx < getFunctionOrMethodNumParams(D) &&
!attrNonNullArgCheck(S, getFunctionOrMethodParamType(D, Idx), Attr,
Ex->getSourceRange(),
getFunctionOrMethodParamRange(D, Idx)))
continue;
NonNullArgs.push_back(Idx);
}
// If no arguments were specified to __attribute__((nonnull)) then all pointer
// arguments have a nonnull attribute; warn if there aren't any. Skip this
// check if the attribute came from a macro expansion or a template
// instantiation.
if (NonNullArgs.empty() && Attr.getLoc().isFileID() &&
S.ActiveTemplateInstantiations.empty()) {
bool AnyPointers = isFunctionOrMethodVariadic(D);
for (unsigned I = 0, E = getFunctionOrMethodNumParams(D);
I != E && !AnyPointers; ++I) {
QualType T = getFunctionOrMethodParamType(D, I);
if (T->isDependentType() || S.isValidPointerAttrType(T))
AnyPointers = true;
}
if (!AnyPointers)
S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_no_pointers);
}
unsigned *Start = NonNullArgs.data();
unsigned Size = NonNullArgs.size();
llvm::array_pod_sort(Start, Start + Size);
D->addAttr(::new (S.Context)
NonNullAttr(Attr.getRange(), S.Context, Start, Size,
Attr.getAttributeSpellingListIndex()));
}
static void handleNonNullAttrParameter(Sema &S, ParmVarDecl *D,
const AttributeList &Attr) {
if (Attr.getNumArgs() > 0) {
if (D->getFunctionType()) {
handleNonNullAttr(S, D, Attr);
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_nonnull_parm_no_args)
<< D->getSourceRange();
}
return;
}
// Is the argument a pointer type?
if (!attrNonNullArgCheck(S, D->getType(), Attr, SourceRange(),
D->getSourceRange()))
return;
D->addAttr(::new (S.Context)
NonNullAttr(Attr.getRange(), S.Context, nullptr, 0,
Attr.getAttributeSpellingListIndex()));
}
static void handleReturnsNonNullAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
QualType ResultType = getFunctionOrMethodResultType(D);
SourceRange SR = getFunctionOrMethodResultSourceRange(D);
if (!attrNonNullArgCheck(S, ResultType, Attr, SourceRange(), SR,
/* isReturnValue */ true))
return;
D->addAttr(::new (S.Context)
ReturnsNonNullAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleAssumeAlignedAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
Expr *E = Attr.getArgAsExpr(0),
*OE = Attr.getNumArgs() > 1 ? Attr.getArgAsExpr(1) : nullptr;
S.AddAssumeAlignedAttr(Attr.getRange(), D, E, OE,
Attr.getAttributeSpellingListIndex());
}
void Sema::AddAssumeAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
Expr *OE, unsigned SpellingListIndex) {
QualType ResultType = getFunctionOrMethodResultType(D);
SourceRange SR = getFunctionOrMethodResultSourceRange(D);
AssumeAlignedAttr TmpAttr(AttrRange, Context, E, OE, SpellingListIndex);
SourceLocation AttrLoc = AttrRange.getBegin();
if (!isValidPointerAttrType(ResultType, /* RefOkay */ true)) {
Diag(AttrLoc, diag::warn_attribute_return_pointers_refs_only)
<< &TmpAttr << AttrRange << SR;
return;
}
if (!E->isValueDependent()) {
llvm::APSInt I(64);
if (!E->isIntegerConstantExpr(I, Context)) {
if (OE)
Diag(AttrLoc, diag::err_attribute_argument_n_type)
<< &TmpAttr << 1 << AANT_ArgumentIntegerConstant
<< E->getSourceRange();
else
Diag(AttrLoc, diag::err_attribute_argument_type)
<< &TmpAttr << AANT_ArgumentIntegerConstant
<< E->getSourceRange();
return;
}
if (!I.isPowerOf2()) {
Diag(AttrLoc, diag::err_alignment_not_power_of_two)
<< E->getSourceRange();
return;
}
}
if (OE) {
if (!OE->isValueDependent()) {
llvm::APSInt I(64);
if (!OE->isIntegerConstantExpr(I, Context)) {
Diag(AttrLoc, diag::err_attribute_argument_n_type)
<< &TmpAttr << 2 << AANT_ArgumentIntegerConstant
<< OE->getSourceRange();
return;
}
}
}
D->addAttr(::new (Context)
AssumeAlignedAttr(AttrRange, Context, E, OE, SpellingListIndex));
}
/// Normalize the attribute, __foo__ becomes foo.
/// Returns true if normalization was applied.
static bool normalizeName(StringRef &AttrName) {
if (AttrName.size() > 4 && AttrName.startswith("__") &&
AttrName.endswith("__")) {
AttrName = AttrName.drop_front(2).drop_back(2);
return true;
}
return false;
}
static void handleOwnershipAttr(Sema &S, Decl *D, const AttributeList &AL) {
// This attribute must be applied to a function declaration. The first
// argument to the attribute must be an identifier, the name of the resource,
// for example: malloc. The following arguments must be argument indexes, the
// arguments must be of integer type for Returns, otherwise of pointer type.
// The difference between Holds and Takes is that a pointer may still be used
// after being held. free() should be __attribute((ownership_takes)), whereas
// a list append function may well be __attribute((ownership_holds)).
if (!AL.isArgIdent(0)) {
S.Diag(AL.getLoc(), diag::err_attribute_argument_n_type)
<< AL.getName() << 1 << AANT_ArgumentIdentifier;
return;
}
// Figure out our Kind.
OwnershipAttr::OwnershipKind K =
OwnershipAttr(AL.getLoc(), S.Context, nullptr, nullptr, 0,
AL.getAttributeSpellingListIndex()).getOwnKind();
// Check arguments.
switch (K) {
case OwnershipAttr::Takes:
case OwnershipAttr::Holds:
if (AL.getNumArgs() < 2) {
S.Diag(AL.getLoc(), diag::err_attribute_too_few_arguments)
<< AL.getName() << 2;
return;
}
break;
case OwnershipAttr::Returns:
if (AL.getNumArgs() > 2) {
S.Diag(AL.getLoc(), diag::err_attribute_too_many_arguments)
<< AL.getName() << 1;
return;
}
break;
}
IdentifierInfo *Module = AL.getArgAsIdent(0)->Ident;
StringRef ModuleName = Module->getName();
if (normalizeName(ModuleName)) {
Module = &S.PP.getIdentifierTable().get(ModuleName);
}
SmallVector<unsigned, 8> OwnershipArgs;
for (unsigned i = 1; i < AL.getNumArgs(); ++i) {
Expr *Ex = AL.getArgAsExpr(i);
uint64_t Idx;
if (!checkFunctionOrMethodParameterIndex(S, D, AL, i, Ex, Idx))
return;
// Is the function argument a pointer type?
QualType T = getFunctionOrMethodParamType(D, Idx);
int Err = -1; // No error
switch (K) {
case OwnershipAttr::Takes:
case OwnershipAttr::Holds:
if (!T->isAnyPointerType() && !T->isBlockPointerType())
Err = 0;
break;
case OwnershipAttr::Returns:
if (!T->isIntegerType())
Err = 1;
break;
}
if (-1 != Err) {
S.Diag(AL.getLoc(), diag::err_ownership_type) << AL.getName() << Err
<< Ex->getSourceRange();
return;
}
// Check we don't have a conflict with another ownership attribute.
for (const auto *I : D->specific_attrs<OwnershipAttr>()) {
// Cannot have two ownership attributes of different kinds for the same
// index.
if (I->getOwnKind() != K && I->args_end() !=
std::find(I->args_begin(), I->args_end(), Idx)) {
S.Diag(AL.getLoc(), diag::err_attributes_are_not_compatible)
<< AL.getName() << I;
return;
} else if (K == OwnershipAttr::Returns &&
I->getOwnKind() == OwnershipAttr::Returns) {
// A returns attribute conflicts with any other returns attribute using
// a different index. Note, diagnostic reporting is 1-based, but stored
// argument indexes are 0-based.
if (std::find(I->args_begin(), I->args_end(), Idx) == I->args_end()) {
S.Diag(I->getLocation(), diag::err_ownership_returns_index_mismatch)
<< *(I->args_begin()) + 1;
if (I->args_size())
S.Diag(AL.getLoc(), diag::note_ownership_returns_index_mismatch)
<< (unsigned)Idx + 1 << Ex->getSourceRange();
return;
}
}
}
OwnershipArgs.push_back(Idx);
}
unsigned* start = OwnershipArgs.data();
unsigned size = OwnershipArgs.size();
llvm::array_pod_sort(start, start + size);
D->addAttr(::new (S.Context)
OwnershipAttr(AL.getLoc(), S.Context, Module, start, size,
AL.getAttributeSpellingListIndex()));
}
static void handleWeakRefAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
return;
}
NamedDecl *nd = cast<NamedDecl>(D);
// gcc rejects
// class c {
// static int a __attribute__((weakref ("v2")));
// static int b() __attribute__((weakref ("f3")));
// };
// and ignores the attributes of
// void f(void) {
// static int a __attribute__((weakref ("v2")));
// }
// we reject them
const DeclContext *Ctx = D->getDeclContext()->getRedeclContext();
if (!Ctx->isFileContext()) {
S.Diag(Attr.getLoc(), diag::err_attribute_weakref_not_global_context)
<< nd;
return;
}
// The GCC manual says
//
// At present, a declaration to which `weakref' is attached can only
// be `static'.
//
// It also says
//
// Without a TARGET,
// given as an argument to `weakref' or to `alias', `weakref' is
// equivalent to `weak'.
//
// gcc 4.4.1 will accept
// int a7 __attribute__((weakref));
// as
// int a7 __attribute__((weak));
// This looks like a bug in gcc. We reject that for now. We should revisit
// it if this behaviour is actually used.
// GCC rejects
// static ((alias ("y"), weakref)).
// Should we? How to check that weakref is before or after alias?
// FIXME: it would be good for us to keep the WeakRefAttr as-written instead
// of transforming it into an AliasAttr. The WeakRefAttr never uses the
// StringRef parameter it was given anyway.
StringRef Str;
if (Attr.getNumArgs() && S.checkStringLiteralArgumentAttr(Attr, 0, Str))
// GCC will accept anything as the argument of weakref. Should we
// check for an existing decl?
D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
Attr.getAttributeSpellingListIndex()));
D->addAttr(::new (S.Context)
WeakRefAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleIFuncAttr(Sema &S, Decl *D, const AttributeList &Attr) {
StringRef Str;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
return;
// Aliases should be on declarations, not definitions.
const auto *FD = cast<FunctionDecl>(D);
if (FD->isThisDeclarationADefinition()) {
S.Diag(Attr.getLoc(), diag::err_alias_is_definition) << FD << 1;
return;
}
// FIXME: it should be handled as a target specific attribute.
if (S.Context.getTargetInfo().getTriple().getObjectFormat() !=
llvm::Triple::ELF) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
D->addAttr(::new (S.Context) IFuncAttr(Attr.getRange(), S.Context, Str,
Attr.getAttributeSpellingListIndex()));
}
static void handleAliasAttr(Sema &S, Decl *D, const AttributeList &Attr) {
StringRef Str;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
return;
if (S.Context.getTargetInfo().getTriple().isOSDarwin()) {
S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_darwin);
return;
}
if (S.Context.getTargetInfo().getTriple().isNVPTX()) {
S.Diag(Attr.getLoc(), diag::err_alias_not_supported_on_nvptx);
}
// Aliases should be on declarations, not definitions.
if (const auto *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isThisDeclarationADefinition()) {
S.Diag(Attr.getLoc(), diag::err_alias_is_definition) << FD << 0;
return;
}
} else {
const auto *VD = cast<VarDecl>(D);
if (VD->isThisDeclarationADefinition() && VD->isExternallyVisible()) {
S.Diag(Attr.getLoc(), diag::err_alias_is_definition) << VD << 0;
return;
}
}
// FIXME: check if target symbol exists in current file
D->addAttr(::new (S.Context) AliasAttr(Attr.getRange(), S.Context, Str,
Attr.getAttributeSpellingListIndex()));
}
static void handleColdAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (checkAttrMutualExclusion<HotAttr>(S, D, Attr.getRange(), Attr.getName()))
return;
D->addAttr(::new (S.Context) ColdAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleHotAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (checkAttrMutualExclusion<ColdAttr>(S, D, Attr.getRange(), Attr.getName()))
return;
D->addAttr(::new (S.Context) HotAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleTLSModelAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
StringRef Model;
SourceLocation LiteralLoc;
// Check that it is a string.
if (!S.checkStringLiteralArgumentAttr(Attr, 0, Model, &LiteralLoc))
return;
// Check that the value.
if (Model != "global-dynamic" && Model != "local-dynamic"
&& Model != "initial-exec" && Model != "local-exec") {
S.Diag(LiteralLoc, diag::err_attr_tlsmodel_arg);
return;
}
D->addAttr(::new (S.Context)
TLSModelAttr(Attr.getRange(), S.Context, Model,
Attr.getAttributeSpellingListIndex()));
}
static void handleRestrictAttr(Sema &S, Decl *D, const AttributeList &Attr) {
QualType ResultType = getFunctionOrMethodResultType(D);
if (ResultType->isAnyPointerType() || ResultType->isBlockPointerType()) {
D->addAttr(::new (S.Context) RestrictAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
return;
}
S.Diag(Attr.getLoc(), diag::warn_attribute_return_pointers_only)
<< Attr.getName() << getFunctionOrMethodResultSourceRange(D);
}
static void handleCommonAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.CPlusPlus) {
S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
<< Attr.getName() << AttributeLangSupport::Cpp;
return;
}
if (CommonAttr *CA = S.mergeCommonAttr(D, Attr.getRange(), Attr.getName(),
Attr.getAttributeSpellingListIndex()))
D->addAttr(CA);
}
static void handleNakedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (checkAttrMutualExclusion<DisableTailCallsAttr>(S, D, Attr.getRange(),
Attr.getName()))
return;
D->addAttr(::new (S.Context) NakedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleNoReturnAttr(Sema &S, Decl *D, const AttributeList &attr) {
if (hasDeclarator(D)) return;
if (S.CheckNoReturnAttr(attr)) return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< attr.getName() << ExpectedFunctionOrMethod;
return;
}
D->addAttr(::new (S.Context)
NoReturnAttr(attr.getRange(), S.Context,
attr.getAttributeSpellingListIndex()));
}
bool Sema::CheckNoReturnAttr(const AttributeList &attr) {
if (!checkAttributeNumArgs(*this, attr, 0)) {
attr.setInvalid();
return true;
}
return false;
}
static void handleAnalyzerNoReturnAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// The checking path for 'noreturn' and 'analyzer_noreturn' are different
// because 'analyzer_noreturn' does not impact the type.
if (!isFunctionOrMethodOrBlock(D)) {
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (!VD || (!VD->getType()->isBlockPointerType() &&
!VD->getType()->isFunctionPointerType())) {
S.Diag(Attr.getLoc(),
Attr.isCXX11Attribute() ? diag::err_attribute_wrong_decl_type
: diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrBlock;
return;
}
}
D->addAttr(::new (S.Context)
AnalyzerNoReturnAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
// PS3 PPU-specific.
static void handleVecReturnAttr(Sema &S, Decl *D, const AttributeList &Attr) {
/*
Returning a Vector Class in Registers
According to the PPU ABI specifications, a class with a single member of
vector type is returned in memory when used as the return value of a function.
This results in inefficient code when implementing vector classes. To return
the value in a single vector register, add the vecreturn attribute to the
class definition. This attribute is also applicable to struct types.
Example:
struct Vector
{
__vector float xyzw;
} __attribute__((vecreturn));
Vector Add(Vector lhs, Vector rhs)
{
Vector result;
result.xyzw = vec_add(lhs.xyzw, rhs.xyzw);
return result; // This will be returned in a register
}
*/
if (VecReturnAttr *A = D->getAttr<VecReturnAttr>()) {
S.Diag(Attr.getLoc(), diag::err_repeat_attribute) << A;
return;
}
RecordDecl *record = cast<RecordDecl>(D);
int count = 0;
if (!isa<CXXRecordDecl>(record)) {
S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
return;
}
if (!cast<CXXRecordDecl>(record)->isPOD()) {
S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_pod_record);
return;
}
for (const auto *I : record->fields()) {
if ((count == 1) || !I->getType()->isVectorType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_vecreturn_only_vector_member);
return;
}
count++;
}
D->addAttr(::new (S.Context)
VecReturnAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleDependencyAttr(Sema &S, Scope *Scope, Decl *D,
const AttributeList &Attr) {
if (isa<ParmVarDecl>(D)) {
// [[carries_dependency]] can only be applied to a parameter if it is a
// parameter of a function declaration or lambda.
if (!(Scope->getFlags() & clang::Scope::FunctionDeclarationScope)) {
S.Diag(Attr.getLoc(),
diag::err_carries_dependency_param_not_function_decl);
return;
}
}
D->addAttr(::new (S.Context) CarriesDependencyAttr(
Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleNotTailCalledAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (checkAttrMutualExclusion<AlwaysInlineAttr>(S, D, Attr.getRange(),
Attr.getName()))
return;
D->addAttr(::new (S.Context) NotTailCalledAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
}
static void handleDisableTailCallsAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (checkAttrMutualExclusion<NakedAttr>(S, D, Attr.getRange(),
Attr.getName()))
return;
D->addAttr(::new (S.Context) DisableTailCallsAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
}
static void handleUsedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (const VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->hasLocalStorage()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
} else if (!isFunctionOrMethod(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
D->addAttr(::new (S.Context)
UsedAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleUnusedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
bool IsCXX1zAttr = Attr.isCXX11Attribute() && !Attr.getScopeName();
if (IsCXX1zAttr && isa<VarDecl>(D)) {
// The C++1z spelling of this attribute cannot be applied to a static data
// member per [dcl.attr.unused]p2.
if (cast<VarDecl>(D)->isStaticDataMember()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedForMaybeUnused;
return;
}
}
// If this is spelled as the standard C++1z attribute, but not in C++1z, warn
// about using it as an extension.
if (!S.getLangOpts().CPlusPlus1z && IsCXX1zAttr)
S.Diag(Attr.getLoc(), diag::ext_cxx1z_attr) << Attr.getName();
D->addAttr(::new (S.Context) UnusedAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
}
static void handleConstructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
uint32_t priority = ConstructorAttr::DefaultPriority;
if (Attr.getNumArgs() &&
!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
return;
D->addAttr(::new (S.Context)
ConstructorAttr(Attr.getRange(), S.Context, priority,
Attr.getAttributeSpellingListIndex()));
}
static void handleDestructorAttr(Sema &S, Decl *D, const AttributeList &Attr) {
uint32_t priority = DestructorAttr::DefaultPriority;
if (Attr.getNumArgs() &&
!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), priority))
return;
D->addAttr(::new (S.Context)
DestructorAttr(Attr.getRange(), S.Context, priority,
Attr.getAttributeSpellingListIndex()));
}
template <typename AttrTy>
static void handleAttrWithMessage(Sema &S, Decl *D,
const AttributeList &Attr) {
// Handle the case where the attribute has a text message.
StringRef Str;
if (Attr.getNumArgs() == 1 && !S.checkStringLiteralArgumentAttr(Attr, 0, Str))
return;
D->addAttr(::new (S.Context) AttrTy(Attr.getRange(), S.Context, Str,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCSuppresProtocolAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!cast<ObjCProtocolDecl>(D)->isThisDeclarationADefinition()) {
S.Diag(Attr.getLoc(), diag::err_objc_attr_protocol_requires_definition)
<< Attr.getName() << Attr.getRange();
return;
}
D->addAttr(::new (S.Context)
ObjCExplicitProtocolImplAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static bool checkAvailabilityAttr(Sema &S, SourceRange Range,
IdentifierInfo *Platform,
VersionTuple Introduced,
VersionTuple Deprecated,
VersionTuple Obsoleted) {
StringRef PlatformName
= AvailabilityAttr::getPrettyPlatformName(Platform->getName());
if (PlatformName.empty())
PlatformName = Platform->getName();
// Ensure that Introduced <= Deprecated <= Obsoleted (although not all
// of these steps are needed).
if (!Introduced.empty() && !Deprecated.empty() &&
!(Introduced <= Deprecated)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 1 << PlatformName << Deprecated.getAsString()
<< 0 << Introduced.getAsString();
return true;
}
if (!Introduced.empty() && !Obsoleted.empty() &&
!(Introduced <= Obsoleted)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 2 << PlatformName << Obsoleted.getAsString()
<< 0 << Introduced.getAsString();
return true;
}
if (!Deprecated.empty() && !Obsoleted.empty() &&
!(Deprecated <= Obsoleted)) {
S.Diag(Range.getBegin(), diag::warn_availability_version_ordering)
<< 2 << PlatformName << Obsoleted.getAsString()
<< 1 << Deprecated.getAsString();
return true;
}
return false;
}
/// \brief Check whether the two versions match.
///
/// If either version tuple is empty, then they are assumed to match. If
/// \p BeforeIsOkay is true, then \p X can be less than or equal to \p Y.
static bool versionsMatch(const VersionTuple &X, const VersionTuple &Y,
bool BeforeIsOkay) {
if (X.empty() || Y.empty())
return true;
if (X == Y)
return true;
if (BeforeIsOkay && X < Y)
return true;
return false;
}
AvailabilityAttr *Sema::mergeAvailabilityAttr(NamedDecl *D, SourceRange Range,
IdentifierInfo *Platform,
bool Implicit,
VersionTuple Introduced,
VersionTuple Deprecated,
VersionTuple Obsoleted,
bool IsUnavailable,
StringRef Message,
bool IsStrict,
StringRef Replacement,
AvailabilityMergeKind AMK,
unsigned AttrSpellingListIndex) {
VersionTuple MergedIntroduced = Introduced;
VersionTuple MergedDeprecated = Deprecated;
VersionTuple MergedObsoleted = Obsoleted;
bool FoundAny = false;
bool OverrideOrImpl = false;
switch (AMK) {
case AMK_None:
case AMK_Redeclaration:
OverrideOrImpl = false;
break;
case AMK_Override:
case AMK_ProtocolImplementation:
OverrideOrImpl = true;
break;
}
if (D->hasAttrs()) {
AttrVec &Attrs = D->getAttrs();
for (unsigned i = 0, e = Attrs.size(); i != e;) {
const AvailabilityAttr *OldAA = dyn_cast<AvailabilityAttr>(Attrs[i]);
if (!OldAA) {
++i;
continue;
}
IdentifierInfo *OldPlatform = OldAA->getPlatform();
if (OldPlatform != Platform) {
++i;
continue;
}
// If there is an existing availability attribute for this platform that
// is explicit and the new one is implicit use the explicit one and
// discard the new implicit attribute.
if (!OldAA->isImplicit() && Implicit) {
return nullptr;
}
// If there is an existing attribute for this platform that is implicit
// and the new attribute is explicit then erase the old one and
// continue processing the attributes.
if (!Implicit && OldAA->isImplicit()) {
Attrs.erase(Attrs.begin() + i);
--e;
continue;
}
FoundAny = true;
VersionTuple OldIntroduced = OldAA->getIntroduced();
VersionTuple OldDeprecated = OldAA->getDeprecated();
VersionTuple OldObsoleted = OldAA->getObsoleted();
bool OldIsUnavailable = OldAA->getUnavailable();
if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl) ||
!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl) ||
!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl) ||
!(OldIsUnavailable == IsUnavailable ||
(OverrideOrImpl && !OldIsUnavailable && IsUnavailable))) {
if (OverrideOrImpl) {
int Which = -1;
VersionTuple FirstVersion;
VersionTuple SecondVersion;
if (!versionsMatch(OldIntroduced, Introduced, OverrideOrImpl)) {
Which = 0;
FirstVersion = OldIntroduced;
SecondVersion = Introduced;
} else if (!versionsMatch(Deprecated, OldDeprecated, OverrideOrImpl)) {
Which = 1;
FirstVersion = Deprecated;
SecondVersion = OldDeprecated;
} else if (!versionsMatch(Obsoleted, OldObsoleted, OverrideOrImpl)) {
Which = 2;
FirstVersion = Obsoleted;
SecondVersion = OldObsoleted;
}
if (Which == -1) {
Diag(OldAA->getLocation(),
diag::warn_mismatched_availability_override_unavail)
<< AvailabilityAttr::getPrettyPlatformName(Platform->getName())
<< (AMK == AMK_Override);
} else {
Diag(OldAA->getLocation(),
diag::warn_mismatched_availability_override)
<< Which
<< AvailabilityAttr::getPrettyPlatformName(Platform->getName())
<< FirstVersion.getAsString() << SecondVersion.getAsString()
<< (AMK == AMK_Override);
}
if (AMK == AMK_Override)
Diag(Range.getBegin(), diag::note_overridden_method);
else
Diag(Range.getBegin(), diag::note_protocol_method);
} else {
Diag(OldAA->getLocation(), diag::warn_mismatched_availability);
Diag(Range.getBegin(), diag::note_previous_attribute);
}
Attrs.erase(Attrs.begin() + i);
--e;
continue;
}
VersionTuple MergedIntroduced2 = MergedIntroduced;
VersionTuple MergedDeprecated2 = MergedDeprecated;
VersionTuple MergedObsoleted2 = MergedObsoleted;
if (MergedIntroduced2.empty())
MergedIntroduced2 = OldIntroduced;
if (MergedDeprecated2.empty())
MergedDeprecated2 = OldDeprecated;
if (MergedObsoleted2.empty())
MergedObsoleted2 = OldObsoleted;
if (checkAvailabilityAttr(*this, OldAA->getRange(), Platform,
MergedIntroduced2, MergedDeprecated2,
MergedObsoleted2)) {
Attrs.erase(Attrs.begin() + i);
--e;
continue;
}
MergedIntroduced = MergedIntroduced2;
MergedDeprecated = MergedDeprecated2;
MergedObsoleted = MergedObsoleted2;
++i;
}
}
if (FoundAny &&
MergedIntroduced == Introduced &&
MergedDeprecated == Deprecated &&
MergedObsoleted == Obsoleted)
return nullptr;
// Only create a new attribute if !OverrideOrImpl, but we want to do
// the checking.
if (!checkAvailabilityAttr(*this, Range, Platform, MergedIntroduced,
MergedDeprecated, MergedObsoleted) &&
!OverrideOrImpl) {
auto *Avail = ::new (Context) AvailabilityAttr(Range, Context, Platform,
Introduced, Deprecated,
Obsoleted, IsUnavailable, Message,
IsStrict, Replacement,
AttrSpellingListIndex);
Avail->setImplicit(Implicit);
return Avail;
}
return nullptr;
}
static void handleAvailabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeNumArgs(S, Attr, 1))
return;
IdentifierLoc *Platform = Attr.getArgAsIdent(0);
unsigned Index = Attr.getAttributeSpellingListIndex();
IdentifierInfo *II = Platform->Ident;
if (AvailabilityAttr::getPrettyPlatformName(II->getName()).empty())
S.Diag(Platform->Loc, diag::warn_availability_unknown_platform)
<< Platform->Ident;
NamedDecl *ND = dyn_cast<NamedDecl>(D);
if (!ND) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
AvailabilityChange Introduced = Attr.getAvailabilityIntroduced();
AvailabilityChange Deprecated = Attr.getAvailabilityDeprecated();
AvailabilityChange Obsoleted = Attr.getAvailabilityObsoleted();
bool IsUnavailable = Attr.getUnavailableLoc().isValid();
bool IsStrict = Attr.getStrictLoc().isValid();
StringRef Str;
if (const StringLiteral *SE =
dyn_cast_or_null<StringLiteral>(Attr.getMessageExpr()))
Str = SE->getString();
StringRef Replacement;
if (const StringLiteral *SE =
dyn_cast_or_null<StringLiteral>(Attr.getReplacementExpr()))
Replacement = SE->getString();
AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND, Attr.getRange(), II,
false/*Implicit*/,
Introduced.Version,
Deprecated.Version,
Obsoleted.Version,
IsUnavailable, Str,
IsStrict, Replacement,
Sema::AMK_None,
Index);
if (NewAttr)
D->addAttr(NewAttr);
// Transcribe "ios" to "watchos" (and add a new attribute) if the versioning
// matches before the start of the watchOS platform.
if (S.Context.getTargetInfo().getTriple().isWatchOS()) {
IdentifierInfo *NewII = nullptr;
if (II->getName() == "ios")
NewII = &S.Context.Idents.get("watchos");
else if (II->getName() == "ios_app_extension")
NewII = &S.Context.Idents.get("watchos_app_extension");
if (NewII) {
auto adjustWatchOSVersion = [](VersionTuple Version) -> VersionTuple {
if (Version.empty())
return Version;
auto Major = Version.getMajor();
auto NewMajor = Major >= 9 ? Major - 7 : 0;
if (NewMajor >= 2) {
if (Version.getMinor().hasValue()) {
if (Version.getSubminor().hasValue())
return VersionTuple(NewMajor, Version.getMinor().getValue(),
Version.getSubminor().getValue());
else
return VersionTuple(NewMajor, Version.getMinor().getValue());
}
}
return VersionTuple(2, 0);
};
auto NewIntroduced = adjustWatchOSVersion(Introduced.Version);
auto NewDeprecated = adjustWatchOSVersion(Deprecated.Version);
auto NewObsoleted = adjustWatchOSVersion(Obsoleted.Version);
AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND,
Attr.getRange(),
NewII,
true/*Implicit*/,
NewIntroduced,
NewDeprecated,
NewObsoleted,
IsUnavailable, Str,
IsStrict,
Replacement,
Sema::AMK_None,
Index);
if (NewAttr)
D->addAttr(NewAttr);
}
} else if (S.Context.getTargetInfo().getTriple().isTvOS()) {
// Transcribe "ios" to "tvos" (and add a new attribute) if the versioning
// matches before the start of the tvOS platform.
IdentifierInfo *NewII = nullptr;
if (II->getName() == "ios")
NewII = &S.Context.Idents.get("tvos");
else if (II->getName() == "ios_app_extension")
NewII = &S.Context.Idents.get("tvos_app_extension");
if (NewII) {
AvailabilityAttr *NewAttr = S.mergeAvailabilityAttr(ND,
Attr.getRange(),
NewII,
true/*Implicit*/,
Introduced.Version,
Deprecated.Version,
Obsoleted.Version,
IsUnavailable, Str,
IsStrict,
Replacement,
Sema::AMK_None,
Index);
if (NewAttr)
D->addAttr(NewAttr);
}
}
}
template <class T>
static T *mergeVisibilityAttr(Sema &S, Decl *D, SourceRange range,
typename T::VisibilityType value,
unsigned attrSpellingListIndex) {
T *existingAttr = D->getAttr<T>();
if (existingAttr) {
typename T::VisibilityType existingValue = existingAttr->getVisibility();
if (existingValue == value)
return nullptr;
S.Diag(existingAttr->getLocation(), diag::err_mismatched_visibility);
S.Diag(range.getBegin(), diag::note_previous_attribute);
D->dropAttr<T>();
}
return ::new (S.Context) T(range, S.Context, value, attrSpellingListIndex);
}
VisibilityAttr *Sema::mergeVisibilityAttr(Decl *D, SourceRange Range,
VisibilityAttr::VisibilityType Vis,
unsigned AttrSpellingListIndex) {
return ::mergeVisibilityAttr<VisibilityAttr>(*this, D, Range, Vis,
AttrSpellingListIndex);
}
TypeVisibilityAttr *Sema::mergeTypeVisibilityAttr(Decl *D, SourceRange Range,
TypeVisibilityAttr::VisibilityType Vis,
unsigned AttrSpellingListIndex) {
return ::mergeVisibilityAttr<TypeVisibilityAttr>(*this, D, Range, Vis,
AttrSpellingListIndex);
}
static void handleVisibilityAttr(Sema &S, Decl *D, const AttributeList &Attr,
bool isTypeVisibility) {
// Visibility attributes don't mean anything on a typedef.
if (isa<TypedefNameDecl>(D)) {
S.Diag(Attr.getRange().getBegin(), diag::warn_attribute_ignored)
<< Attr.getName();
return;
}
// 'type_visibility' can only go on a type or namespace.
if (isTypeVisibility &&
!(isa<TagDecl>(D) ||
isa<ObjCInterfaceDecl>(D) ||
isa<NamespaceDecl>(D))) {
S.Diag(Attr.getRange().getBegin(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedTypeOrNamespace;
return;
}
// Check that the argument is a string literal.
StringRef TypeStr;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, TypeStr, &LiteralLoc))
return;
VisibilityAttr::VisibilityType type;
if (!VisibilityAttr::ConvertStrToVisibilityType(TypeStr, type)) {
S.Diag(LiteralLoc, diag::warn_attribute_type_not_supported)
<< Attr.getName() << TypeStr;
return;
}
// Complain about attempts to use protected visibility on targets
// (like Darwin) that don't support it.
if (type == VisibilityAttr::Protected &&
!S.Context.getTargetInfo().hasProtectedVisibility()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_protected_visibility);
type = VisibilityAttr::Default;
}
unsigned Index = Attr.getAttributeSpellingListIndex();
clang::Attr *newAttr;
if (isTypeVisibility) {
newAttr = S.mergeTypeVisibilityAttr(D, Attr.getRange(),
(TypeVisibilityAttr::VisibilityType) type,
Index);
} else {
newAttr = S.mergeVisibilityAttr(D, Attr.getRange(), type, Index);
}
if (newAttr)
D->addAttr(newAttr);
}
static void handleObjCMethodFamilyAttr(Sema &S, Decl *decl,
const AttributeList &Attr) {
ObjCMethodDecl *method = cast<ObjCMethodDecl>(decl);
if (!Attr.isArgIdent(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 1 << AANT_ArgumentIdentifier;
return;
}
IdentifierLoc *IL = Attr.getArgAsIdent(0);
ObjCMethodFamilyAttr::FamilyKind F;
if (!ObjCMethodFamilyAttr::ConvertStrToFamilyKind(IL->Ident->getName(), F)) {
S.Diag(IL->Loc, diag::warn_attribute_type_not_supported) << Attr.getName()
<< IL->Ident;
return;
}
if (F == ObjCMethodFamilyAttr::OMF_init &&
!method->getReturnType()->isObjCObjectPointerType()) {
S.Diag(method->getLocation(), diag::err_init_method_bad_return_type)
<< method->getReturnType();
// Ignore the attribute.
return;
}
method->addAttr(new (S.Context) ObjCMethodFamilyAttr(Attr.getRange(),
S.Context, F,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCNSObject(Sema &S, Decl *D, const AttributeList &Attr) {
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
QualType T = TD->getUnderlyingType();
if (!T->isCARCBridgableType()) {
S.Diag(TD->getLocation(), diag::err_nsobject_attribute);
return;
}
}
else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D)) {
QualType T = PD->getType();
if (!T->isCARCBridgableType()) {
S.Diag(PD->getLocation(), diag::err_nsobject_attribute);
return;
}
}
else {
// It is okay to include this attribute on properties, e.g.:
//
// @property (retain, nonatomic) struct Bork *Q __attribute__((NSObject));
//
// In this case it follows tradition and suppresses an error in the above
// case.
S.Diag(D->getLocation(), diag::warn_nsobject_attribute);
}
D->addAttr(::new (S.Context)
ObjCNSObjectAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCIndependentClass(Sema &S, Decl *D, const AttributeList &Attr) {
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D)) {
QualType T = TD->getUnderlyingType();
if (!T->isObjCObjectPointerType()) {
S.Diag(TD->getLocation(), diag::warn_ptr_independentclass_attribute);
return;
}
} else {
S.Diag(D->getLocation(), diag::warn_independentclass_attribute);
return;
}
D->addAttr(::new (S.Context)
ObjCIndependentClassAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleBlocksAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!Attr.isArgIdent(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 1 << AANT_ArgumentIdentifier;
return;
}
IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
BlocksAttr::BlockType type;
if (!BlocksAttr::ConvertStrToBlockType(II->getName(), type)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< Attr.getName() << II;
return;
}
D->addAttr(::new (S.Context)
BlocksAttr(Attr.getRange(), S.Context, type,
Attr.getAttributeSpellingListIndex()));
}
static void handleSentinelAttr(Sema &S, Decl *D, const AttributeList &Attr) {
unsigned sentinel = (unsigned)SentinelAttr::DefaultSentinel;
if (Attr.getNumArgs() > 0) {
Expr *E = Attr.getArgAsExpr(0);
llvm::APSInt Idx(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 1 << AANT_ArgumentIntegerConstant
<< E->getSourceRange();
return;
}
if (Idx.isSigned() && Idx.isNegative()) {
S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_less_than_zero)
<< E->getSourceRange();
return;
}
sentinel = Idx.getZExtValue();
}
unsigned nullPos = (unsigned)SentinelAttr::DefaultNullPos;
if (Attr.getNumArgs() > 1) {
Expr *E = Attr.getArgAsExpr(1);
llvm::APSInt Idx(32);
if (E->isTypeDependent() || E->isValueDependent() ||
!E->isIntegerConstantExpr(Idx, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 2 << AANT_ArgumentIntegerConstant
<< E->getSourceRange();
return;
}
nullPos = Idx.getZExtValue();
if ((Idx.isSigned() && Idx.isNegative()) || nullPos > 1) {
// FIXME: This error message could be improved, it would be nice
// to say what the bounds actually are.
S.Diag(Attr.getLoc(), diag::err_attribute_sentinel_not_zero_or_one)
<< E->getSourceRange();
return;
}
}
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
const FunctionType *FT = FD->getType()->castAs<FunctionType>();
if (isa<FunctionNoProtoType>(FT)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_named_arguments);
return;
}
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
return;
}
} else if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D)) {
if (!MD->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 0;
return;
}
} else if (BlockDecl *BD = dyn_cast<BlockDecl>(D)) {
if (!BD->isVariadic()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << 1;
return;
}
} else if (const VarDecl *V = dyn_cast<VarDecl>(D)) {
QualType Ty = V->getType();
if (Ty->isBlockPointerType() || Ty->isFunctionPointerType()) {
const FunctionType *FT = Ty->isFunctionPointerType()
? D->getFunctionType()
: Ty->getAs<BlockPointerType>()->getPointeeType()->getAs<FunctionType>();
if (!cast<FunctionProtoType>(FT)->isVariadic()) {
int m = Ty->isFunctionPointerType() ? 0 : 1;
S.Diag(Attr.getLoc(), diag::warn_attribute_sentinel_not_variadic) << m;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrBlock;
return;
}
} else {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionMethodOrBlock;
return;
}
D->addAttr(::new (S.Context)
SentinelAttr(Attr.getRange(), S.Context, sentinel, nullPos,
Attr.getAttributeSpellingListIndex()));
}
static void handleWarnUnusedResult(Sema &S, Decl *D, const AttributeList &Attr) {
if (D->getFunctionType() &&
D->getFunctionType()->getReturnType()->isVoidType()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
<< Attr.getName() << 0;
return;
}
if (const ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
if (MD->getReturnType()->isVoidType()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_void_function_method)
<< Attr.getName() << 1;
return;
}
// If this is spelled as the standard C++1z attribute, but not in C++1z, warn
// about using it as an extension.
if (!S.getLangOpts().CPlusPlus1z && Attr.isCXX11Attribute() &&
!Attr.getScopeName())
S.Diag(Attr.getLoc(), diag::ext_cxx1z_attr) << Attr.getName();
D->addAttr(::new (S.Context)
WarnUnusedResultAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleWeakImportAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// weak_import only applies to variable & function declarations.
bool isDef = false;
if (!D->canBeWeakImported(isDef)) {
if (isDef)
S.Diag(Attr.getLoc(), diag::warn_attribute_invalid_on_definition)
<< "weak_import";
else if (isa<ObjCPropertyDecl>(D) || isa<ObjCMethodDecl>(D) ||
(S.Context.getTargetInfo().getTriple().isOSDarwin() &&
(isa<ObjCInterfaceDecl>(D) || isa<EnumDecl>(D)))) {
// Nothing to warn about here.
} else
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariableOrFunction;
return;
}
D->addAttr(::new (S.Context)
WeakImportAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
// Handles reqd_work_group_size and work_group_size_hint.
template <typename WorkGroupAttr>
static void handleWorkGroupSize(Sema &S, Decl *D,
const AttributeList &Attr) {
uint32_t WGSize[3];
for (unsigned i = 0; i < 3; ++i) {
const Expr *E = Attr.getArgAsExpr(i);
if (!checkUInt32Argument(S, Attr, E, WGSize[i], i))
return;
if (WGSize[i] == 0) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_is_zero)
<< Attr.getName() << E->getSourceRange();
return;
}
}
WorkGroupAttr *Existing = D->getAttr<WorkGroupAttr>();
if (Existing && !(Existing->getXDim() == WGSize[0] &&
Existing->getYDim() == WGSize[1] &&
Existing->getZDim() == WGSize[2]))
S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
D->addAttr(::new (S.Context) WorkGroupAttr(Attr.getRange(), S.Context,
WGSize[0], WGSize[1], WGSize[2],
Attr.getAttributeSpellingListIndex()));
}
static void handleVecTypeHint(Sema &S, Decl *D, const AttributeList &Attr) {
if (!Attr.hasParsedType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
return;
}
TypeSourceInfo *ParmTSI = nullptr;
QualType ParmType = S.GetTypeFromParser(Attr.getTypeArg(), &ParmTSI);
assert(ParmTSI && "no type source info for attribute argument");
if (!ParmType->isExtVectorType() && !ParmType->isFloatingType() &&
(ParmType->isBooleanType() ||
!ParmType->isIntegralType(S.getASTContext()))) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_vec_type_hint)
<< ParmType;
return;
}
if (VecTypeHintAttr *A = D->getAttr<VecTypeHintAttr>()) {
if (!S.Context.hasSameType(A->getTypeHint(), ParmType)) {
S.Diag(Attr.getLoc(), diag::warn_duplicate_attribute) << Attr.getName();
return;
}
}
D->addAttr(::new (S.Context) VecTypeHintAttr(Attr.getLoc(), S.Context,
ParmTSI,
Attr.getAttributeSpellingListIndex()));
}
SectionAttr *Sema::mergeSectionAttr(Decl *D, SourceRange Range,
StringRef Name,
unsigned AttrSpellingListIndex) {
if (SectionAttr *ExistingAttr = D->getAttr<SectionAttr>()) {
if (ExistingAttr->getName() == Name)
return nullptr;
Diag(ExistingAttr->getLocation(), diag::warn_mismatched_section);
Diag(Range.getBegin(), diag::note_previous_attribute);
return nullptr;
}
return ::new (Context) SectionAttr(Range, Context, Name,
AttrSpellingListIndex);
}
bool Sema::checkSectionName(SourceLocation LiteralLoc, StringRef SecName) {
std::string Error = Context.getTargetInfo().isValidSectionSpecifier(SecName);
if (!Error.empty()) {
Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target) << Error;
return false;
}
return true;
}
static void handleSectionAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Make sure that there is a string literal as the sections's single
// argument.
StringRef Str;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc))
return;
if (!S.checkSectionName(LiteralLoc, Str))
return;
// If the target wants to validate the section specifier, make it happen.
std::string Error = S.Context.getTargetInfo().isValidSectionSpecifier(Str);
if (!Error.empty()) {
S.Diag(LiteralLoc, diag::err_attribute_section_invalid_for_target)
<< Error;
return;
}
unsigned Index = Attr.getAttributeSpellingListIndex();
SectionAttr *NewAttr = S.mergeSectionAttr(D, Attr.getRange(), Str, Index);
if (NewAttr)
D->addAttr(NewAttr);
}
// Check for things we'd like to warn about, no errors or validation for now.
// TODO: Validation should use a backend target library that specifies
// the allowable subtarget features and cpus. We could use something like a
// TargetCodeGenInfo hook here to do validation.
void Sema::checkTargetAttr(SourceLocation LiteralLoc, StringRef AttrStr) {
for (auto Str : {"tune=", "fpmath="})
if (AttrStr.find(Str) != StringRef::npos)
Diag(LiteralLoc, diag::warn_unsupported_target_attribute) << Str;
}
static void handleTargetAttr(Sema &S, Decl *D, const AttributeList &Attr) {
StringRef Str;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &LiteralLoc))
return;
S.checkTargetAttr(LiteralLoc, Str);
unsigned Index = Attr.getAttributeSpellingListIndex();
TargetAttr *NewAttr =
::new (S.Context) TargetAttr(Attr.getRange(), S.Context, Str, Index);
D->addAttr(NewAttr);
}
static void handleCleanupAttr(Sema &S, Decl *D, const AttributeList &Attr) {
VarDecl *VD = cast<VarDecl>(D);
if (!VD->hasLocalStorage()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
Expr *E = Attr.getArgAsExpr(0);
SourceLocation Loc = E->getExprLoc();
FunctionDecl *FD = nullptr;
DeclarationNameInfo NI;
// gcc only allows for simple identifiers. Since we support more than gcc, we
// will warn the user.
if (DeclRefExpr *DRE = dyn_cast<DeclRefExpr>(E)) {
if (DRE->hasQualifier())
S.Diag(Loc, diag::warn_cleanup_ext);
FD = dyn_cast<FunctionDecl>(DRE->getDecl());
NI = DRE->getNameInfo();
if (!FD) {
S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 1
<< NI.getName();
return;
}
} else if (UnresolvedLookupExpr *ULE = dyn_cast<UnresolvedLookupExpr>(E)) {
if (ULE->hasExplicitTemplateArgs())
S.Diag(Loc, diag::warn_cleanup_ext);
FD = S.ResolveSingleFunctionTemplateSpecialization(ULE, true);
NI = ULE->getNameInfo();
if (!FD) {
S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 2
<< NI.getName();
if (ULE->getType() == S.Context.OverloadTy)
S.NoteAllOverloadCandidates(ULE);
return;
}
} else {
S.Diag(Loc, diag::err_attribute_cleanup_arg_not_function) << 0;
return;
}
if (FD->getNumParams() != 1) {
S.Diag(Loc, diag::err_attribute_cleanup_func_must_take_one_arg)
<< NI.getName();
return;
}
// We're currently more strict than GCC about what function types we accept.
// If this ever proves to be a problem it should be easy to fix.
QualType Ty = S.Context.getPointerType(VD->getType());
QualType ParamTy = FD->getParamDecl(0)->getType();
if (S.CheckAssignmentConstraints(FD->getParamDecl(0)->getLocation(),
ParamTy, Ty) != Sema::Compatible) {
S.Diag(Loc, diag::err_attribute_cleanup_func_arg_incompatible_type)
<< NI.getName() << ParamTy << Ty;
return;
}
D->addAttr(::new (S.Context)
CleanupAttr(Attr.getRange(), S.Context, FD,
Attr.getAttributeSpellingListIndex()));
}
/// Handle __attribute__((format_arg((idx)))) attribute based on
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void handleFormatArgAttr(Sema &S, Decl *D, const AttributeList &Attr) {
Expr *IdxExpr = Attr.getArgAsExpr(0);
uint64_t Idx;
if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 1, IdxExpr, Idx))
return;
// Make sure the format string is really a string.
QualType Ty = getFunctionOrMethodParamType(D, Idx);
bool NotNSStringTy = !isNSStringType(Ty, S.Context);
if (NotNSStringTy &&
!isCFStringType(Ty, S.Context) &&
(!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a string type" << IdxExpr->getSourceRange()
<< getFunctionOrMethodParamRange(D, 0);
return;
}
Ty = getFunctionOrMethodResultType(D);
if (!isNSStringType(Ty, S.Context) &&
!isCFStringType(Ty, S.Context) &&
(!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType())) {
S.Diag(Attr.getLoc(), diag::err_format_attribute_result_not)
<< (NotNSStringTy ? "string type" : "NSString")
<< IdxExpr->getSourceRange() << getFunctionOrMethodParamRange(D, 0);
return;
}
// We cannot use the Idx returned from checkFunctionOrMethodParameterIndex
// because that has corrected for the implicit this parameter, and is zero-
// based. The attribute expects what the user wrote explicitly.
llvm::APSInt Val;
IdxExpr->EvaluateAsInt(Val, S.Context);
D->addAttr(::new (S.Context)
FormatArgAttr(Attr.getRange(), S.Context, Val.getZExtValue(),
Attr.getAttributeSpellingListIndex()));
}
enum FormatAttrKind {
CFStringFormat,
NSStringFormat,
StrftimeFormat,
SupportedFormat,
IgnoredFormat,
InvalidFormat
};
/// getFormatAttrKind - Map from format attribute names to supported format
/// types.
static FormatAttrKind getFormatAttrKind(StringRef Format) {
return llvm::StringSwitch<FormatAttrKind>(Format)
// Check for formats that get handled specially.
.Case("NSString", NSStringFormat)
.Case("CFString", CFStringFormat)
.Case("strftime", StrftimeFormat)
// Otherwise, check for supported formats.
.Cases("scanf", "printf", "printf0", "strfmon", SupportedFormat)
.Cases("cmn_err", "vcmn_err", "zcmn_err", SupportedFormat)
.Case("kprintf", SupportedFormat) // OpenBSD.
.Case("freebsd_kprintf", SupportedFormat) // FreeBSD.
.Case("os_trace", SupportedFormat)
.Cases("gcc_diag", "gcc_cdiag", "gcc_cxxdiag", "gcc_tdiag", IgnoredFormat)
.Default(InvalidFormat);
}
/// Handle __attribute__((init_priority(priority))) attributes based on
/// http://gcc.gnu.org/onlinedocs/gcc/C_002b_002b-Attributes.html
static void handleInitPriorityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!S.getLangOpts().CPlusPlus) {
S.Diag(Attr.getLoc(), diag::warn_attribute_ignored) << Attr.getName();
return;
}
if (S.getCurFunctionOrMethodDecl()) {
S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
Attr.setInvalid();
return;
}
QualType T = cast<VarDecl>(D)->getType();
if (S.Context.getAsArrayType(T))
T = S.Context.getBaseElementType(T);
if (!T->getAs<RecordType>()) {
S.Diag(Attr.getLoc(), diag::err_init_priority_object_attr);
Attr.setInvalid();
return;
}
Expr *E = Attr.getArgAsExpr(0);
uint32_t prioritynum;
if (!checkUInt32Argument(S, Attr, E, prioritynum)) {
Attr.setInvalid();
return;
}
if (prioritynum < 101 || prioritynum > 65535) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_outof_range)
<< E->getSourceRange() << Attr.getName() << 101 << 65535;
Attr.setInvalid();
return;
}
D->addAttr(::new (S.Context)
InitPriorityAttr(Attr.getRange(), S.Context, prioritynum,
Attr.getAttributeSpellingListIndex()));
}
FormatAttr *Sema::mergeFormatAttr(Decl *D, SourceRange Range,
IdentifierInfo *Format, int FormatIdx,
int FirstArg,
unsigned AttrSpellingListIndex) {
// Check whether we already have an equivalent format attribute.
for (auto *F : D->specific_attrs<FormatAttr>()) {
if (F->getType() == Format &&
F->getFormatIdx() == FormatIdx &&
F->getFirstArg() == FirstArg) {
// If we don't have a valid location for this attribute, adopt the
// location.
if (F->getLocation().isInvalid())
F->setRange(Range);
return nullptr;
}
}
return ::new (Context) FormatAttr(Range, Context, Format, FormatIdx,
FirstArg, AttrSpellingListIndex);
}
/// Handle __attribute__((format(type,idx,firstarg))) attributes based on
/// http://gcc.gnu.org/onlinedocs/gcc/Function-Attributes.html
static void handleFormatAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!Attr.isArgIdent(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 1 << AANT_ArgumentIdentifier;
return;
}
// In C++ the implicit 'this' function parameter also counts, and they are
// counted from one.
bool HasImplicitThisParam = isInstanceMethod(D);
unsigned NumArgs = getFunctionOrMethodNumParams(D) + HasImplicitThisParam;
IdentifierInfo *II = Attr.getArgAsIdent(0)->Ident;
StringRef Format = II->getName();
if (normalizeName(Format)) {
// If we've modified the string name, we need a new identifier for it.
II = &S.Context.Idents.get(Format);
}
// Check for supported formats.
FormatAttrKind Kind = getFormatAttrKind(Format);
if (Kind == IgnoredFormat)
return;
if (Kind == InvalidFormat) {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< Attr.getName() << II->getName();
return;
}
// checks for the 2nd argument
Expr *IdxExpr = Attr.getArgAsExpr(1);
uint32_t Idx;
if (!checkUInt32Argument(S, Attr, IdxExpr, Idx, 2))
return;
if (Idx < 1 || Idx > NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< Attr.getName() << 2 << IdxExpr->getSourceRange();
return;
}
// FIXME: Do we need to bounds check?
unsigned ArgIdx = Idx - 1;
if (HasImplicitThisParam) {
if (ArgIdx == 0) {
S.Diag(Attr.getLoc(),
diag::err_format_attribute_implicit_this_format_string)
<< IdxExpr->getSourceRange();
return;
}
ArgIdx--;
}
// make sure the format string is really a string
QualType Ty = getFunctionOrMethodParamType(D, ArgIdx);
if (Kind == CFStringFormat) {
if (!isCFStringType(Ty, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a CFString" << IdxExpr->getSourceRange()
<< getFunctionOrMethodParamRange(D, ArgIdx);
return;
}
} else if (Kind == NSStringFormat) {
// FIXME: do we need to check if the type is NSString*? What are the
// semantics?
if (!isNSStringType(Ty, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "an NSString" << IdxExpr->getSourceRange()
<< getFunctionOrMethodParamRange(D, ArgIdx);
return;
}
} else if (!Ty->isPointerType() ||
!Ty->getAs<PointerType>()->getPointeeType()->isCharType()) {
S.Diag(Attr.getLoc(), diag::err_format_attribute_not)
<< "a string type" << IdxExpr->getSourceRange()
<< getFunctionOrMethodParamRange(D, ArgIdx);
return;
}
// check the 3rd argument
Expr *FirstArgExpr = Attr.getArgAsExpr(2);
uint32_t FirstArg;
if (!checkUInt32Argument(S, Attr, FirstArgExpr, FirstArg, 3))
return;
// check if the function is variadic if the 3rd argument non-zero
if (FirstArg != 0) {
if (isFunctionOrMethodVariadic(D)) {
++NumArgs; // +1 for ...
} else {
S.Diag(D->getLocation(), diag::err_format_attribute_requires_variadic);
return;
}
}
// strftime requires FirstArg to be 0 because it doesn't read from any
// variable the input is just the current time + the format string.
if (Kind == StrftimeFormat) {
if (FirstArg != 0) {
S.Diag(Attr.getLoc(), diag::err_format_strftime_third_parameter)
<< FirstArgExpr->getSourceRange();
return;
}
// if 0 it disables parameter checking (to use with e.g. va_list)
} else if (FirstArg != 0 && FirstArg != NumArgs) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< Attr.getName() << 3 << FirstArgExpr->getSourceRange();
return;
}
FormatAttr *NewAttr = S.mergeFormatAttr(D, Attr.getRange(), II,
Idx, FirstArg,
Attr.getAttributeSpellingListIndex());
if (NewAttr)
D->addAttr(NewAttr);
}
static void handleTransparentUnionAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// Try to find the underlying union declaration.
RecordDecl *RD = nullptr;
TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
if (TD && TD->getUnderlyingType()->isUnionType())
RD = TD->getUnderlyingType()->getAsUnionType()->getDecl();
else
RD = dyn_cast<RecordDecl>(D);
if (!RD || !RD->isUnion()) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedUnion;
return;
}
if (!RD->isCompleteDefinition()) {
S.Diag(Attr.getLoc(),
diag::warn_transparent_union_attribute_not_definition);
return;
}
RecordDecl::field_iterator Field = RD->field_begin(),
FieldEnd = RD->field_end();
if (Field == FieldEnd) {
S.Diag(Attr.getLoc(), diag::warn_transparent_union_attribute_zero_fields);
return;
}
FieldDecl *FirstField = *Field;
QualType FirstType = FirstField->getType();
if (FirstType->hasFloatingRepresentation() || FirstType->isVectorType()) {
S.Diag(FirstField->getLocation(),
diag::warn_transparent_union_attribute_floating)
<< FirstType->isVectorType() << FirstType;
return;
}
uint64_t FirstSize = S.Context.getTypeSize(FirstType);
uint64_t FirstAlign = S.Context.getTypeAlign(FirstType);
for (; Field != FieldEnd; ++Field) {
QualType FieldType = Field->getType();
// FIXME: this isn't fully correct; we also need to test whether the
// members of the union would all have the same calling convention as the
// first member of the union. Checking just the size and alignment isn't
// sufficient (consider structs passed on the stack instead of in registers
// as an example).
if (S.Context.getTypeSize(FieldType) != FirstSize ||
S.Context.getTypeAlign(FieldType) > FirstAlign) {
// Warn if we drop the attribute.
bool isSize = S.Context.getTypeSize(FieldType) != FirstSize;
unsigned FieldBits = isSize? S.Context.getTypeSize(FieldType)
: S.Context.getTypeAlign(FieldType);
S.Diag(Field->getLocation(),
diag::warn_transparent_union_attribute_field_size_align)
<< isSize << Field->getDeclName() << FieldBits;
unsigned FirstBits = isSize? FirstSize : FirstAlign;
S.Diag(FirstField->getLocation(),
diag::note_transparent_union_first_field_size_align)
<< isSize << FirstBits;
return;
}
}
RD->addAttr(::new (S.Context)
TransparentUnionAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleAnnotateAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Make sure that there is a string literal as the annotation's single
// argument.
StringRef Str;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
return;
// Don't duplicate annotations that are already set.
for (const auto *I : D->specific_attrs<AnnotateAttr>()) {
if (I->getAnnotation() == Str)
return;
}
D->addAttr(::new (S.Context)
AnnotateAttr(Attr.getRange(), S.Context, Str,
Attr.getAttributeSpellingListIndex()));
}
static void handleAlignValueAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
S.AddAlignValueAttr(Attr.getRange(), D, Attr.getArgAsExpr(0),
Attr.getAttributeSpellingListIndex());
}
void Sema::AddAlignValueAttr(SourceRange AttrRange, Decl *D, Expr *E,
unsigned SpellingListIndex) {
AlignValueAttr TmpAttr(AttrRange, Context, E, SpellingListIndex);
SourceLocation AttrLoc = AttrRange.getBegin();
QualType T;
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
T = TD->getUnderlyingType();
else if (ValueDecl *VD = dyn_cast<ValueDecl>(D))
T = VD->getType();
else
llvm_unreachable("Unknown decl type for align_value");
if (!T->isDependentType() && !T->isAnyPointerType() &&
!T->isReferenceType() && !T->isMemberPointerType()) {
Diag(AttrLoc, diag::warn_attribute_pointer_or_reference_only)
<< &TmpAttr /*TmpAttr.getName()*/ << T << D->getSourceRange();
return;
}
if (!E->isValueDependent()) {
llvm::APSInt Alignment;
ExprResult ICE
= VerifyIntegerConstantExpression(E, &Alignment,
diag::err_align_value_attribute_argument_not_int,
/*AllowFold*/ false);
if (ICE.isInvalid())
return;
if (!Alignment.isPowerOf2()) {
Diag(AttrLoc, diag::err_alignment_not_power_of_two)
<< E->getSourceRange();
return;
}
D->addAttr(::new (Context)
AlignValueAttr(AttrRange, Context, ICE.get(),
SpellingListIndex));
return;
}
// Save dependent expressions in the AST to be instantiated.
D->addAttr(::new (Context) AlignValueAttr(TmpAttr));
}
static void handleAlignedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_number_arguments)
<< Attr.getName() << 1;
return;
}
if (Attr.getNumArgs() == 0) {
D->addAttr(::new (S.Context) AlignedAttr(Attr.getRange(), S.Context,
true, nullptr, Attr.getAttributeSpellingListIndex()));
return;
}
Expr *E = Attr.getArgAsExpr(0);
if (Attr.isPackExpansion() && !E->containsUnexpandedParameterPack()) {
S.Diag(Attr.getEllipsisLoc(),
diag::err_pack_expansion_without_parameter_packs);
return;
}
if (!Attr.isPackExpansion() && S.DiagnoseUnexpandedParameterPack(E))
return;
if (E->isValueDependent()) {
if (const auto *TND = dyn_cast<TypedefNameDecl>(D)) {
if (!TND->getUnderlyingType()->isDependentType()) {
S.Diag(Attr.getLoc(), diag::err_alignment_dependent_typedef_name)
<< E->getSourceRange();
return;
}
}
}
S.AddAlignedAttr(Attr.getRange(), D, E, Attr.getAttributeSpellingListIndex(),
Attr.isPackExpansion());
}
void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, Expr *E,
unsigned SpellingListIndex, bool IsPackExpansion) {
AlignedAttr TmpAttr(AttrRange, Context, true, E, SpellingListIndex);
SourceLocation AttrLoc = AttrRange.getBegin();
// C++11 alignas(...) and C11 _Alignas(...) have additional requirements.
if (TmpAttr.isAlignas()) {
// C++11 [dcl.align]p1:
// An alignment-specifier may be applied to a variable or to a class
// data member, but it shall not be applied to a bit-field, a function
// parameter, the formal parameter of a catch clause, or a variable
// declared with the register storage class specifier. An
// alignment-specifier may also be applied to the declaration of a class
// or enumeration type.
// C11 6.7.5/2:
// An alignment attribute shall not be specified in a declaration of
// a typedef, or a bit-field, or a function, or a parameter, or an
// object declared with the register storage-class specifier.
int DiagKind = -1;
if (isa<ParmVarDecl>(D)) {
DiagKind = 0;
} else if (VarDecl *VD = dyn_cast<VarDecl>(D)) {
if (VD->getStorageClass() == SC_Register)
DiagKind = 1;
if (VD->isExceptionVariable())
DiagKind = 2;
} else if (FieldDecl *FD = dyn_cast<FieldDecl>(D)) {
if (FD->isBitField())
DiagKind = 3;
} else if (!isa<TagDecl>(D)) {
Diag(AttrLoc, diag::err_attribute_wrong_decl_type) << &TmpAttr
<< (TmpAttr.isC11() ? ExpectedVariableOrField
: ExpectedVariableFieldOrTag);
return;
}
if (DiagKind != -1) {
Diag(AttrLoc, diag::err_alignas_attribute_wrong_decl_type)
<< &TmpAttr << DiagKind;
return;
}
}
if (E->isTypeDependent() || E->isValueDependent()) {
// Save dependent expressions in the AST to be instantiated.
AlignedAttr *AA = ::new (Context) AlignedAttr(TmpAttr);
AA->setPackExpansion(IsPackExpansion);
D->addAttr(AA);
return;
}
// FIXME: Cache the number on the Attr object?
llvm::APSInt Alignment;
ExprResult ICE
= VerifyIntegerConstantExpression(E, &Alignment,
diag::err_aligned_attribute_argument_not_int,
/*AllowFold*/ false);
if (ICE.isInvalid())
return;
uint64_t AlignVal = Alignment.getZExtValue();
// C++11 [dcl.align]p2:
// -- if the constant expression evaluates to zero, the alignment
// specifier shall have no effect
// C11 6.7.5p6:
// An alignment specification of zero has no effect.
if (!(TmpAttr.isAlignas() && !Alignment)) {
if (!llvm::isPowerOf2_64(AlignVal)) {
Diag(AttrLoc, diag::err_alignment_not_power_of_two)
<< E->getSourceRange();
return;
}
}
// Alignment calculations can wrap around if it's greater than 2**28.
unsigned MaxValidAlignment =
Context.getTargetInfo().getTriple().isOSBinFormatCOFF() ? 8192
: 268435456;
if (AlignVal > MaxValidAlignment) {
Diag(AttrLoc, diag::err_attribute_aligned_too_great) << MaxValidAlignment
<< E->getSourceRange();
return;
}
if (Context.getTargetInfo().isTLSSupported()) {
unsigned MaxTLSAlign =
Context.toCharUnitsFromBits(Context.getTargetInfo().getMaxTLSAlign())
.getQuantity();
auto *VD = dyn_cast<VarDecl>(D);
if (MaxTLSAlign && AlignVal > MaxTLSAlign && VD &&
VD->getTLSKind() != VarDecl::TLS_None) {
Diag(VD->getLocation(), diag::err_tls_var_aligned_over_maximum)
<< (unsigned)AlignVal << VD << MaxTLSAlign;
return;
}
}
AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, true,
ICE.get(), SpellingListIndex);
AA->setPackExpansion(IsPackExpansion);
D->addAttr(AA);
}
void Sema::AddAlignedAttr(SourceRange AttrRange, Decl *D, TypeSourceInfo *TS,
unsigned SpellingListIndex, bool IsPackExpansion) {
// FIXME: Cache the number on the Attr object if non-dependent?
// FIXME: Perform checking of type validity
AlignedAttr *AA = ::new (Context) AlignedAttr(AttrRange, Context, false, TS,
SpellingListIndex);
AA->setPackExpansion(IsPackExpansion);
D->addAttr(AA);
}
void Sema::CheckAlignasUnderalignment(Decl *D) {
assert(D->hasAttrs() && "no attributes on decl");
QualType UnderlyingTy, DiagTy;
if (ValueDecl *VD = dyn_cast<ValueDecl>(D)) {
UnderlyingTy = DiagTy = VD->getType();
} else {
UnderlyingTy = DiagTy = Context.getTagDeclType(cast<TagDecl>(D));
if (EnumDecl *ED = dyn_cast<EnumDecl>(D))
UnderlyingTy = ED->getIntegerType();
}
if (DiagTy->isDependentType() || DiagTy->isIncompleteType())
return;
// C++11 [dcl.align]p5, C11 6.7.5/4:
// The combined effect of all alignment attributes in a declaration shall
// not specify an alignment that is less strict than the alignment that
// would otherwise be required for the entity being declared.
AlignedAttr *AlignasAttr = nullptr;
unsigned Align = 0;
for (auto *I : D->specific_attrs<AlignedAttr>()) {
if (I->isAlignmentDependent())
return;
if (I->isAlignas())
AlignasAttr = I;
Align = std::max(Align, I->getAlignment(Context));
}
if (AlignasAttr && Align) {
CharUnits RequestedAlign = Context.toCharUnitsFromBits(Align);
CharUnits NaturalAlign = Context.getTypeAlignInChars(UnderlyingTy);
if (NaturalAlign > RequestedAlign)
Diag(AlignasAttr->getLocation(), diag::err_alignas_underaligned)
<< DiagTy << (unsigned)NaturalAlign.getQuantity();
}
}
bool Sema::checkMSInheritanceAttrOnDefinition(
CXXRecordDecl *RD, SourceRange Range, bool BestCase,
MSInheritanceAttr::Spelling SemanticSpelling) {
assert(RD->hasDefinition() && "RD has no definition!");
// We may not have seen base specifiers or any virtual methods yet. We will
// have to wait until the record is defined to catch any mismatches.
if (!RD->getDefinition()->isCompleteDefinition())
return false;
// The unspecified model never matches what a definition could need.
if (SemanticSpelling == MSInheritanceAttr::Keyword_unspecified_inheritance)
return false;
if (BestCase) {
if (RD->calculateInheritanceModel() == SemanticSpelling)
return false;
} else {
if (RD->calculateInheritanceModel() <= SemanticSpelling)
return false;
}
Diag(Range.getBegin(), diag::err_mismatched_ms_inheritance)
<< 0 /*definition*/;
Diag(RD->getDefinition()->getLocation(), diag::note_defined_here)
<< RD->getNameAsString();
return true;
}
/// parseModeAttrArg - Parses attribute mode string and returns parsed type
/// attribute.
static void parseModeAttrArg(Sema &S, StringRef Str, unsigned &DestWidth,
bool &IntegerMode, bool &ComplexMode) {
IntegerMode = true;
ComplexMode = false;
switch (Str.size()) {
case 2:
switch (Str[0]) {
case 'Q':
DestWidth = 8;
break;
case 'H':
DestWidth = 16;
break;
case 'S':
DestWidth = 32;
break;
case 'D':
DestWidth = 64;
break;
case 'X':
DestWidth = 96;
break;
case 'T':
DestWidth = 128;
break;
}
if (Str[1] == 'F') {
IntegerMode = false;
} else if (Str[1] == 'C') {
IntegerMode = false;
ComplexMode = true;
} else if (Str[1] != 'I') {
DestWidth = 0;
}
break;
case 4:
// FIXME: glibc uses 'word' to define register_t; this is narrower than a
// pointer on PIC16 and other embedded platforms.
if (Str == "word")
DestWidth = S.Context.getTargetInfo().getRegisterWidth();
else if (Str == "byte")
DestWidth = S.Context.getTargetInfo().getCharWidth();
break;
case 7:
if (Str == "pointer")
DestWidth = S.Context.getTargetInfo().getPointerWidth(0);
break;
case 11:
if (Str == "unwind_word")
DestWidth = S.Context.getTargetInfo().getUnwindWordWidth();
break;
}
}
/// handleModeAttr - This attribute modifies the width of a decl with primitive
/// type.
///
/// Despite what would be logical, the mode attribute is a decl attribute, not a
/// type attribute: 'int ** __attribute((mode(HI))) *G;' tries to make 'G' be
/// HImode, not an intermediate pointer.
static void handleModeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// This attribute isn't documented, but glibc uses it. It changes
// the width of an int or unsigned int to the specified size.
if (!Attr.isArgIdent(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
<< AANT_ArgumentIdentifier;
return;
}
IdentifierInfo *Name = Attr.getArgAsIdent(0)->Ident;
S.AddModeAttr(Attr.getRange(), D, Name, Attr.getAttributeSpellingListIndex());
}
void Sema::AddModeAttr(SourceRange AttrRange, Decl *D, IdentifierInfo *Name,
unsigned SpellingListIndex, bool InInstantiation) {
StringRef Str = Name->getName();
normalizeName(Str);
SourceLocation AttrLoc = AttrRange.getBegin();
unsigned DestWidth = 0;
bool IntegerMode = true;
bool ComplexMode = false;
llvm::APInt VectorSize(64, 0);
if (Str.size() >= 4 && Str[0] == 'V') {
// Minimal length of vector mode is 4: 'V' + NUMBER(>=1) + TYPE(>=2).
size_t StrSize = Str.size();
size_t VectorStringLength = 0;
while ((VectorStringLength + 1) < StrSize &&
isdigit(Str[VectorStringLength + 1]))
++VectorStringLength;
if (VectorStringLength &&
!Str.substr(1, VectorStringLength).getAsInteger(10, VectorSize) &&
VectorSize.isPowerOf2()) {
parseModeAttrArg(*this, Str.substr(VectorStringLength + 1), DestWidth,
IntegerMode, ComplexMode);
// Avoid duplicate warning from template instantiation.
if (!InInstantiation)
Diag(AttrLoc, diag::warn_vector_mode_deprecated);
} else {
VectorSize = 0;
}
}
if (!VectorSize)
parseModeAttrArg(*this, Str, DestWidth, IntegerMode, ComplexMode);
// FIXME: Sync this with InitializePredefinedMacros; we need to match int8_t
// and friends, at least with glibc.
// FIXME: Make sure floating-point mappings are accurate
// FIXME: Support XF and TF types
if (!DestWidth) {
Diag(AttrLoc, diag::err_machine_mode) << 0 /*Unknown*/ << Name;
return;
}
QualType OldTy;
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
OldTy = TD->getUnderlyingType();
else if (EnumDecl *ED = dyn_cast<EnumDecl>(D)) {
// Something like 'typedef enum { X } __attribute__((mode(XX))) T;'.
// Try to get type from enum declaration, default to int.
OldTy = ED->getIntegerType();
if (OldTy.isNull())
OldTy = Context.IntTy;
} else
OldTy = cast<ValueDecl>(D)->getType();
if (OldTy->isDependentType()) {
D->addAttr(::new (Context)
ModeAttr(AttrRange, Context, Name, SpellingListIndex));
return;
}
// Base type can also be a vector type (see PR17453).
// Distinguish between base type and base element type.
QualType OldElemTy = OldTy;
if (const VectorType *VT = OldTy->getAs<VectorType>())
OldElemTy = VT->getElementType();
// GCC allows 'mode' attribute on enumeration types (even incomplete), except
// for vector modes. So, 'enum X __attribute__((mode(QI)));' forms a complete
// type, 'enum { A } __attribute__((mode(V4SI)))' is rejected.
if ((isa<EnumDecl>(D) || OldElemTy->getAs<EnumType>()) &&
VectorSize.getBoolValue()) {
Diag(AttrLoc, diag::err_enum_mode_vector_type) << Name << AttrRange;
return;
}
bool IntegralOrAnyEnumType =
OldElemTy->isIntegralOrEnumerationType() || OldElemTy->getAs<EnumType>();
if (!OldElemTy->getAs<BuiltinType>() && !OldElemTy->isComplexType() &&
!IntegralOrAnyEnumType)
Diag(AttrLoc, diag::err_mode_not_primitive);
else if (IntegerMode) {
if (!IntegralOrAnyEnumType)
Diag(AttrLoc, diag::err_mode_wrong_type);
} else if (ComplexMode) {
if (!OldElemTy->isComplexType())
Diag(AttrLoc, diag::err_mode_wrong_type);
} else {
if (!OldElemTy->isFloatingType())
Diag(AttrLoc, diag::err_mode_wrong_type);
}
QualType NewElemTy;
if (IntegerMode)
NewElemTy = Context.getIntTypeForBitwidth(DestWidth,
OldElemTy->isSignedIntegerType());
else
NewElemTy = Context.getRealTypeForBitwidth(DestWidth);
if (NewElemTy.isNull()) {
Diag(AttrLoc, diag::err_machine_mode) << 1 /*Unsupported*/ << Name;
return;
}
if (ComplexMode) {
NewElemTy = Context.getComplexType(NewElemTy);
}
QualType NewTy = NewElemTy;
if (VectorSize.getBoolValue()) {
NewTy = Context.getVectorType(NewTy, VectorSize.getZExtValue(),
VectorType::GenericVector);
} else if (const VectorType *OldVT = OldTy->getAs<VectorType>()) {
// Complex machine mode does not support base vector types.
if (ComplexMode) {
Diag(AttrLoc, diag::err_complex_mode_vector_type);
return;
}
unsigned NumElements = Context.getTypeSize(OldElemTy) *
OldVT->getNumElements() /
Context.getTypeSize(NewElemTy);
NewTy =
Context.getVectorType(NewElemTy, NumElements, OldVT->getVectorKind());
}
if (NewTy.isNull()) {
Diag(AttrLoc, diag::err_mode_wrong_type);
return;
}
// Install the new type.
if (TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D))
TD->setModedTypeSourceInfo(TD->getTypeSourceInfo(), NewTy);
else if (EnumDecl *ED = dyn_cast<EnumDecl>(D))
ED->setIntegerType(NewTy);
else
cast<ValueDecl>(D)->setType(NewTy);
D->addAttr(::new (Context)
ModeAttr(AttrRange, Context, Name, SpellingListIndex));
}
static void handleNoDebugAttr(Sema &S, Decl *D, const AttributeList &Attr) {
D->addAttr(::new (S.Context)
NoDebugAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
AlwaysInlineAttr *Sema::mergeAlwaysInlineAttr(Decl *D, SourceRange Range,
IdentifierInfo *Ident,
unsigned AttrSpellingListIndex) {
if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
Diag(Range.getBegin(), diag::warn_attribute_ignored) << Ident;
Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
return nullptr;
}
if (D->hasAttr<AlwaysInlineAttr>())
return nullptr;
return ::new (Context) AlwaysInlineAttr(Range, Context,
AttrSpellingListIndex);
}
CommonAttr *Sema::mergeCommonAttr(Decl *D, SourceRange Range,
IdentifierInfo *Ident,
unsigned AttrSpellingListIndex) {
if (checkAttrMutualExclusion<InternalLinkageAttr>(*this, D, Range, Ident))
return nullptr;
return ::new (Context) CommonAttr(Range, Context, AttrSpellingListIndex);
}
InternalLinkageAttr *
Sema::mergeInternalLinkageAttr(Decl *D, SourceRange Range,
IdentifierInfo *Ident,
unsigned AttrSpellingListIndex) {
if (auto VD = dyn_cast<VarDecl>(D)) {
// Attribute applies to Var but not any subclass of it (like ParmVar,
// ImplicitParm or VarTemplateSpecialization).
if (VD->getKind() != Decl::Var) {
Diag(Range.getBegin(), diag::warn_attribute_wrong_decl_type)
<< Ident << (getLangOpts().CPlusPlus ? ExpectedFunctionVariableOrClass
: ExpectedVariableOrFunction);
return nullptr;
}
// Attribute does not apply to non-static local variables.
if (VD->hasLocalStorage()) {
Diag(VD->getLocation(), diag::warn_internal_linkage_local_storage);
return nullptr;
}
}
if (checkAttrMutualExclusion<CommonAttr>(*this, D, Range, Ident))
return nullptr;
return ::new (Context)
InternalLinkageAttr(Range, Context, AttrSpellingListIndex);
}
MinSizeAttr *Sema::mergeMinSizeAttr(Decl *D, SourceRange Range,
unsigned AttrSpellingListIndex) {
if (OptimizeNoneAttr *Optnone = D->getAttr<OptimizeNoneAttr>()) {
Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'minsize'";
Diag(Optnone->getLocation(), diag::note_conflicting_attribute);
return nullptr;
}
if (D->hasAttr<MinSizeAttr>())
return nullptr;
return ::new (Context) MinSizeAttr(Range, Context, AttrSpellingListIndex);
}
OptimizeNoneAttr *Sema::mergeOptimizeNoneAttr(Decl *D, SourceRange Range,
unsigned AttrSpellingListIndex) {
if (AlwaysInlineAttr *Inline = D->getAttr<AlwaysInlineAttr>()) {
Diag(Inline->getLocation(), diag::warn_attribute_ignored) << Inline;
Diag(Range.getBegin(), diag::note_conflicting_attribute);
D->dropAttr<AlwaysInlineAttr>();
}
if (MinSizeAttr *MinSize = D->getAttr<MinSizeAttr>()) {
Diag(MinSize->getLocation(), diag::warn_attribute_ignored) << MinSize;
Diag(Range.getBegin(), diag::note_conflicting_attribute);
D->dropAttr<MinSizeAttr>();
}
if (D->hasAttr<OptimizeNoneAttr>())
return nullptr;
return ::new (Context) OptimizeNoneAttr(Range, Context,
AttrSpellingListIndex);
}
static void handleAlwaysInlineAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (checkAttrMutualExclusion<NotTailCalledAttr>(S, D, Attr.getRange(),
Attr.getName()))
return;
if (AlwaysInlineAttr *Inline = S.mergeAlwaysInlineAttr(
D, Attr.getRange(), Attr.getName(),
Attr.getAttributeSpellingListIndex()))
D->addAttr(Inline);
}
static void handleMinSizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (MinSizeAttr *MinSize = S.mergeMinSizeAttr(
D, Attr.getRange(), Attr.getAttributeSpellingListIndex()))
D->addAttr(MinSize);
}
static void handleOptimizeNoneAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (OptimizeNoneAttr *Optnone = S.mergeOptimizeNoneAttr(
D, Attr.getRange(), Attr.getAttributeSpellingListIndex()))
D->addAttr(Optnone);
}
static void handleGlobalAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (checkAttrMutualExclusion<CUDADeviceAttr>(S, D, Attr.getRange(),
Attr.getName()) ||
checkAttrMutualExclusion<CUDAHostAttr>(S, D, Attr.getRange(),
Attr.getName())) {
return;
}
FunctionDecl *FD = cast<FunctionDecl>(D);
if (!FD->getReturnType()->isVoidType()) {
SourceRange RTRange = FD->getReturnTypeSourceRange();
S.Diag(FD->getTypeSpecStartLoc(), diag::err_kern_type_not_void_return)
<< FD->getType()
<< (RTRange.isValid() ? FixItHint::CreateReplacement(RTRange, "void")
: FixItHint());
return;
}
if (const auto *Method = dyn_cast<CXXMethodDecl>(FD)) {
if (Method->isInstance()) {
S.Diag(Method->getLocStart(), diag::err_kern_is_nonstatic_method)
<< Method;
return;
}
S.Diag(Method->getLocStart(), diag::warn_kern_is_method) << Method;
}
// Only warn for "inline" when compiling for host, to cut down on noise.
if (FD->isInlineSpecified() && !S.getLangOpts().CUDAIsDevice)
S.Diag(FD->getLocStart(), diag::warn_kern_is_inline) << FD;
D->addAttr(::new (S.Context)
CUDAGlobalAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleGNUInlineAttr(Sema &S, Decl *D, const AttributeList &Attr) {
FunctionDecl *Fn = cast<FunctionDecl>(D);
if (!Fn->isInlineSpecified()) {
S.Diag(Attr.getLoc(), diag::warn_gnu_inline_attribute_requires_inline);
return;
}
D->addAttr(::new (S.Context)
GNUInlineAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleCallConvAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (hasDeclarator(D)) return;
// Diagnostic is emitted elsewhere: here we store the (valid) Attr
// in the Decl node for syntactic reasoning, e.g., pretty-printing.
CallingConv CC;
if (S.CheckCallingConvAttr(Attr, CC, /*FD*/nullptr))
return;
if (!isa<ObjCMethodDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
switch (Attr.getKind()) {
case AttributeList::AT_FastCall:
D->addAttr(::new (S.Context)
FastCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_StdCall:
D->addAttr(::new (S.Context)
StdCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_ThisCall:
D->addAttr(::new (S.Context)
ThisCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_CDecl:
D->addAttr(::new (S.Context)
CDeclAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_Pascal:
D->addAttr(::new (S.Context)
PascalAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_SwiftCall:
D->addAttr(::new (S.Context)
SwiftCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_VectorCall:
D->addAttr(::new (S.Context)
VectorCallAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_MSABI:
D->addAttr(::new (S.Context)
MSABIAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_SysVABI:
D->addAttr(::new (S.Context)
SysVABIAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_Pcs: {
PcsAttr::PCSType PCS;
switch (CC) {
case CC_AAPCS:
PCS = PcsAttr::AAPCS;
break;
case CC_AAPCS_VFP:
PCS = PcsAttr::AAPCS_VFP;
break;
default:
llvm_unreachable("unexpected calling convention in pcs attribute");
}
D->addAttr(::new (S.Context)
PcsAttr(Attr.getRange(), S.Context, PCS,
Attr.getAttributeSpellingListIndex()));
return;
}
case AttributeList::AT_IntelOclBicc:
D->addAttr(::new (S.Context)
IntelOclBiccAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_PreserveMost:
D->addAttr(::new (S.Context) PreserveMostAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_PreserveAll:
D->addAttr(::new (S.Context) PreserveAllAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
return;
default:
llvm_unreachable("unexpected attribute kind");
}
}
bool Sema::CheckCallingConvAttr(const AttributeList &attr, CallingConv &CC,
const FunctionDecl *FD) {
if (attr.isInvalid())
return true;
if (attr.hasProcessingCache()) {
CC = (CallingConv) attr.getProcessingCache();
return false;
}
unsigned ReqArgs = attr.getKind() == AttributeList::AT_Pcs ? 1 : 0;
if (!checkAttributeNumArgs(*this, attr, ReqArgs)) {
attr.setInvalid();
return true;
}
// TODO: diagnose uses of these conventions on the wrong target.
switch (attr.getKind()) {
case AttributeList::AT_CDecl: CC = CC_C; break;
case AttributeList::AT_FastCall: CC = CC_X86FastCall; break;
case AttributeList::AT_StdCall: CC = CC_X86StdCall; break;
case AttributeList::AT_ThisCall: CC = CC_X86ThisCall; break;
case AttributeList::AT_Pascal: CC = CC_X86Pascal; break;
case AttributeList::AT_SwiftCall: CC = CC_Swift; break;
case AttributeList::AT_VectorCall: CC = CC_X86VectorCall; break;
case AttributeList::AT_MSABI:
CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_C :
CC_X86_64Win64;
break;
case AttributeList::AT_SysVABI:
CC = Context.getTargetInfo().getTriple().isOSWindows() ? CC_X86_64SysV :
CC_C;
break;
case AttributeList::AT_Pcs: {
StringRef StrRef;
if (!checkStringLiteralArgumentAttr(attr, 0, StrRef)) {
attr.setInvalid();
return true;
}
if (StrRef == "aapcs") {
CC = CC_AAPCS;
break;
} else if (StrRef == "aapcs-vfp") {
CC = CC_AAPCS_VFP;
break;
}
attr.setInvalid();
Diag(attr.getLoc(), diag::err_invalid_pcs);
return true;
}
case AttributeList::AT_IntelOclBicc: CC = CC_IntelOclBicc; break;
case AttributeList::AT_PreserveMost: CC = CC_PreserveMost; break;
case AttributeList::AT_PreserveAll: CC = CC_PreserveAll; break;
default: llvm_unreachable("unexpected attribute kind");
}
const TargetInfo &TI = Context.getTargetInfo();
TargetInfo::CallingConvCheckResult A = TI.checkCallingConvention(CC);
if (A != TargetInfo::CCCR_OK) {
if (A == TargetInfo::CCCR_Warning)
Diag(attr.getLoc(), diag::warn_cconv_ignored) << attr.getName();
// This convention is not valid for the target. Use the default function or
// method calling convention.
bool IsCXXMethod = false, IsVariadic = false;
if (FD) {
IsCXXMethod = FD->isCXXInstanceMember();
IsVariadic = FD->isVariadic();
}
CC = Context.getDefaultCallingConvention(IsVariadic, IsCXXMethod);
}
attr.setProcessingCache((unsigned) CC);
return false;
}
/// Pointer-like types in the default address space.
static bool isValidSwiftContextType(QualType type) {
if (!type->hasPointerRepresentation())
return type->isDependentType();
return type->getPointeeType().getAddressSpace() == 0;
}
/// Pointers and references in the default address space.
static bool isValidSwiftIndirectResultType(QualType type) {
if (auto ptrType = type->getAs<PointerType>()) {
type = ptrType->getPointeeType();
} else if (auto refType = type->getAs<ReferenceType>()) {
type = refType->getPointeeType();
} else {
return type->isDependentType();
}
return type.getAddressSpace() == 0;
}
/// Pointers and references to pointers in the default address space.
static bool isValidSwiftErrorResultType(QualType type) {
if (auto ptrType = type->getAs<PointerType>()) {
type = ptrType->getPointeeType();
} else if (auto refType = type->getAs<ReferenceType>()) {
type = refType->getPointeeType();
} else {
return type->isDependentType();
}
if (!type.getQualifiers().empty())
return false;
return isValidSwiftContextType(type);
}
static void handleParameterABIAttr(Sema &S, Decl *D, const AttributeList &attr,
ParameterABI abi) {
S.AddParameterABIAttr(attr.getRange(), D, abi,
attr.getAttributeSpellingListIndex());
}
void Sema::AddParameterABIAttr(SourceRange range, Decl *D, ParameterABI abi,
unsigned spellingIndex) {
QualType type = cast<ParmVarDecl>(D)->getType();
if (auto existingAttr = D->getAttr<ParameterABIAttr>()) {
if (existingAttr->getABI() != abi) {
Diag(range.getBegin(), diag::err_attributes_are_not_compatible)
<< getParameterABISpelling(abi) << existingAttr;
Diag(existingAttr->getLocation(), diag::note_conflicting_attribute);
return;
}
}
switch (abi) {
case ParameterABI::Ordinary:
llvm_unreachable("explicit attribute for ordinary parameter ABI?");
case ParameterABI::SwiftContext:
if (!isValidSwiftContextType(type)) {
Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi)
<< /*pointer to pointer */ 0 << type;
}
D->addAttr(::new (Context)
SwiftContextAttr(range, Context, spellingIndex));
return;
case ParameterABI::SwiftErrorResult:
if (!isValidSwiftErrorResultType(type)) {
Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi)
<< /*pointer to pointer */ 1 << type;
}
D->addAttr(::new (Context)
SwiftErrorResultAttr(range, Context, spellingIndex));
return;
case ParameterABI::SwiftIndirectResult:
if (!isValidSwiftIndirectResultType(type)) {
Diag(range.getBegin(), diag::err_swift_abi_parameter_wrong_type)
<< getParameterABISpelling(abi)
<< /*pointer*/ 0 << type;
}
D->addAttr(::new (Context)
SwiftIndirectResultAttr(range, Context, spellingIndex));
return;
}
llvm_unreachable("bad parameter ABI attribute");
}
/// Checks a regparm attribute, returning true if it is ill-formed and
/// otherwise setting numParams to the appropriate value.
bool Sema::CheckRegparmAttr(const AttributeList &Attr, unsigned &numParams) {
if (Attr.isInvalid())
return true;
if (!checkAttributeNumArgs(*this, Attr, 1)) {
Attr.setInvalid();
return true;
}
uint32_t NP;
Expr *NumParamsExpr = Attr.getArgAsExpr(0);
if (!checkUInt32Argument(*this, Attr, NumParamsExpr, NP)) {
Attr.setInvalid();
return true;
}
if (Context.getTargetInfo().getRegParmMax() == 0) {
Diag(Attr.getLoc(), diag::err_attribute_regparm_wrong_platform)
<< NumParamsExpr->getSourceRange();
Attr.setInvalid();
return true;
}
numParams = NP;
if (numParams > Context.getTargetInfo().getRegParmMax()) {
Diag(Attr.getLoc(), diag::err_attribute_regparm_invalid_number)
<< Context.getTargetInfo().getRegParmMax() << NumParamsExpr->getSourceRange();
Attr.setInvalid();
return true;
}
return false;
}
// Checks whether an argument of launch_bounds attribute is
// acceptable, performs implicit conversion to Rvalue, and returns
// non-nullptr Expr result on success. Otherwise, it returns nullptr
// and may output an error.
static Expr *makeLaunchBoundsArgExpr(Sema &S, Expr *E,
const CUDALaunchBoundsAttr &Attr,
const unsigned Idx) {
if (S.DiagnoseUnexpandedParameterPack(E))
return nullptr;
// Accept template arguments for now as they depend on something else.
// We'll get to check them when they eventually get instantiated.
if (E->isValueDependent())
return E;
llvm::APSInt I(64);
if (!E->isIntegerConstantExpr(I, S.Context)) {
S.Diag(E->getExprLoc(), diag::err_attribute_argument_n_type)
<< &Attr << Idx << AANT_ArgumentIntegerConstant << E->getSourceRange();
return nullptr;
}
// Make sure we can fit it in 32 bits.
if (!I.isIntN(32)) {
S.Diag(E->getExprLoc(), diag::err_ice_too_large) << I.toString(10, false)
<< 32 << /* Unsigned */ 1;
return nullptr;
}
if (I < 0)
S.Diag(E->getExprLoc(), diag::warn_attribute_argument_n_negative)
<< &Attr << Idx << E->getSourceRange();
// We may need to perform implicit conversion of the argument.
InitializedEntity Entity = InitializedEntity::InitializeParameter(
S.Context, S.Context.getConstType(S.Context.IntTy), /*consume*/ false);
ExprResult ValArg = S.PerformCopyInitialization(Entity, SourceLocation(), E);
assert(!ValArg.isInvalid() &&
"Unexpected PerformCopyInitialization() failure.");
return ValArg.getAs<Expr>();
}
void Sema::AddLaunchBoundsAttr(SourceRange AttrRange, Decl *D, Expr *MaxThreads,
Expr *MinBlocks, unsigned SpellingListIndex) {
CUDALaunchBoundsAttr TmpAttr(AttrRange, Context, MaxThreads, MinBlocks,
SpellingListIndex);
MaxThreads = makeLaunchBoundsArgExpr(*this, MaxThreads, TmpAttr, 0);
if (MaxThreads == nullptr)
return;
if (MinBlocks) {
MinBlocks = makeLaunchBoundsArgExpr(*this, MinBlocks, TmpAttr, 1);
if (MinBlocks == nullptr)
return;
}
D->addAttr(::new (Context) CUDALaunchBoundsAttr(
AttrRange, Context, MaxThreads, MinBlocks, SpellingListIndex));
}
static void handleLaunchBoundsAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeAtLeastNumArgs(S, Attr, 1) ||
!checkAttributeAtMostNumArgs(S, Attr, 2))
return;
S.AddLaunchBoundsAttr(Attr.getRange(), D, Attr.getArgAsExpr(0),
Attr.getNumArgs() > 1 ? Attr.getArgAsExpr(1) : nullptr,
Attr.getAttributeSpellingListIndex());
}
static void handleArgumentWithTypeTagAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!Attr.isArgIdent(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << /* arg num = */ 1 << AANT_ArgumentIdentifier;
return;
}
if (!checkAttributeNumArgs(S, Attr, 3))
return;
IdentifierInfo *ArgumentKind = Attr.getArgAsIdent(0)->Ident;
if (!isFunctionOrMethod(D) || !hasFunctionProto(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionOrMethod;
return;
}
uint64_t ArgumentIdx;
if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 2, Attr.getArgAsExpr(1),
ArgumentIdx))
return;
uint64_t TypeTagIdx;
if (!checkFunctionOrMethodParameterIndex(S, D, Attr, 3, Attr.getArgAsExpr(2),
TypeTagIdx))
return;
bool IsPointer = (Attr.getName()->getName() == "pointer_with_type_tag");
if (IsPointer) {
// Ensure that buffer has a pointer type.
QualType BufferTy = getFunctionOrMethodParamType(D, ArgumentIdx);
if (!BufferTy->isPointerType()) {
S.Diag(Attr.getLoc(), diag::err_attribute_pointers_only)
<< Attr.getName() << 0;
}
}
D->addAttr(::new (S.Context)
ArgumentWithTypeTagAttr(Attr.getRange(), S.Context, ArgumentKind,
ArgumentIdx, TypeTagIdx, IsPointer,
Attr.getAttributeSpellingListIndex()));
}
static void handleTypeTagForDatatypeAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!Attr.isArgIdent(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_n_type)
<< Attr.getName() << 1 << AANT_ArgumentIdentifier;
return;
}
if (!checkAttributeNumArgs(S, Attr, 1))
return;
if (!isa<VarDecl>(D)) {
S.Diag(Attr.getLoc(), diag::err_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedVariable;
return;
}
IdentifierInfo *PointerKind = Attr.getArgAsIdent(0)->Ident;
TypeSourceInfo *MatchingCTypeLoc = nullptr;
S.GetTypeFromParser(Attr.getMatchingCType(), &MatchingCTypeLoc);
assert(MatchingCTypeLoc && "no type source info for attribute argument");
D->addAttr(::new (S.Context)
TypeTagForDatatypeAttr(Attr.getRange(), S.Context, PointerKind,
MatchingCTypeLoc,
Attr.getLayoutCompatible(),
Attr.getMustBeNull(),
Attr.getAttributeSpellingListIndex()));
}
//===----------------------------------------------------------------------===//
// Checker-specific attribute handlers.
//===----------------------------------------------------------------------===//
static bool isValidSubjectOfNSReturnsRetainedAttribute(QualType type) {
return type->isDependentType() ||
type->isObjCRetainableType();
}
static bool isValidSubjectOfNSAttribute(Sema &S, QualType type) {
return type->isDependentType() ||
type->isObjCObjectPointerType() ||
S.Context.isObjCNSObjectType(type);
}
static bool isValidSubjectOfCFAttribute(Sema &S, QualType type) {
return type->isDependentType() ||
type->isPointerType() ||
isValidSubjectOfNSAttribute(S, type);
}
static void handleNSConsumedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
S.AddNSConsumedAttr(Attr.getRange(), D, Attr.getAttributeSpellingListIndex(),
Attr.getKind() == AttributeList::AT_NSConsumed,
/*template instantiation*/ false);
}
void Sema::AddNSConsumedAttr(SourceRange attrRange, Decl *D,
unsigned spellingIndex, bool isNSConsumed,
bool isTemplateInstantiation) {
ParmVarDecl *param = cast<ParmVarDecl>(D);
bool typeOK;
if (isNSConsumed) {
typeOK = isValidSubjectOfNSAttribute(*this, param->getType());
} else {
typeOK = isValidSubjectOfCFAttribute(*this, param->getType());
}
if (!typeOK) {
// These attributes are normally just advisory, but in ARC, ns_consumed
// is significant. Allow non-dependent code to contain inappropriate
// attributes even in ARC, but require template instantiations to be
// set up correctly.
Diag(D->getLocStart(),
(isTemplateInstantiation && isNSConsumed &&
getLangOpts().ObjCAutoRefCount
? diag::err_ns_attribute_wrong_parameter_type
: diag::warn_ns_attribute_wrong_parameter_type))
<< attrRange
<< (isNSConsumed ? "ns_consumed" : "cf_consumed")
<< (isNSConsumed ? /*objc pointers*/ 0 : /*cf pointers*/ 1);
return;
}
if (isNSConsumed)
param->addAttr(::new (Context)
NSConsumedAttr(attrRange, Context, spellingIndex));
else
param->addAttr(::new (Context)
CFConsumedAttr(attrRange, Context, spellingIndex));
}
static void handleNSReturnsRetainedAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
QualType returnType;
if (ObjCMethodDecl *MD = dyn_cast<ObjCMethodDecl>(D))
returnType = MD->getReturnType();
else if (S.getLangOpts().ObjCAutoRefCount && hasDeclarator(D) &&
(Attr.getKind() == AttributeList::AT_NSReturnsRetained))
return; // ignore: was handled as a type attribute
else if (ObjCPropertyDecl *PD = dyn_cast<ObjCPropertyDecl>(D))
returnType = PD->getType();
else if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
returnType = FD->getReturnType();
else if (auto *Param = dyn_cast<ParmVarDecl>(D)) {
returnType = Param->getType()->getPointeeType();
if (returnType.isNull()) {
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
<< Attr.getName() << /*pointer-to-CF*/2
<< Attr.getRange();
return;
}
} else {
AttributeDeclKind ExpectedDeclKind;
switch (Attr.getKind()) {
default: llvm_unreachable("invalid ownership attribute");
case AttributeList::AT_NSReturnsRetained:
case AttributeList::AT_NSReturnsAutoreleased:
case AttributeList::AT_NSReturnsNotRetained:
ExpectedDeclKind = ExpectedFunctionOrMethod;
break;
case AttributeList::AT_CFReturnsRetained:
case AttributeList::AT_CFReturnsNotRetained:
ExpectedDeclKind = ExpectedFunctionMethodOrParameter;
break;
}
S.Diag(D->getLocStart(), diag::warn_attribute_wrong_decl_type)
<< Attr.getRange() << Attr.getName() << ExpectedDeclKind;
return;
}
bool typeOK;
bool cf;
switch (Attr.getKind()) {
default: llvm_unreachable("invalid ownership attribute");
case AttributeList::AT_NSReturnsRetained:
typeOK = isValidSubjectOfNSReturnsRetainedAttribute(returnType);
cf = false;
break;
case AttributeList::AT_NSReturnsAutoreleased:
case AttributeList::AT_NSReturnsNotRetained:
typeOK = isValidSubjectOfNSAttribute(S, returnType);
cf = false;
break;
case AttributeList::AT_CFReturnsRetained:
case AttributeList::AT_CFReturnsNotRetained:
typeOK = isValidSubjectOfCFAttribute(S, returnType);
cf = true;
break;
}
if (!typeOK) {
if (isa<ParmVarDecl>(D)) {
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_parameter_type)
<< Attr.getName() << /*pointer-to-CF*/2
<< Attr.getRange();
} else {
// Needs to be kept in sync with warn_ns_attribute_wrong_return_type.
enum : unsigned {
Function,
Method,
Property
} SubjectKind = Function;
if (isa<ObjCMethodDecl>(D))
SubjectKind = Method;
else if (isa<ObjCPropertyDecl>(D))
SubjectKind = Property;
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
<< Attr.getName() << SubjectKind << cf
<< Attr.getRange();
}
return;
}
switch (Attr.getKind()) {
default:
llvm_unreachable("invalid ownership attribute");
case AttributeList::AT_NSReturnsAutoreleased:
D->addAttr(::new (S.Context) NSReturnsAutoreleasedAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_CFReturnsNotRetained:
D->addAttr(::new (S.Context) CFReturnsNotRetainedAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_NSReturnsNotRetained:
D->addAttr(::new (S.Context) NSReturnsNotRetainedAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_CFReturnsRetained:
D->addAttr(::new (S.Context) CFReturnsRetainedAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
return;
case AttributeList::AT_NSReturnsRetained:
D->addAttr(::new (S.Context) NSReturnsRetainedAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
return;
};
}
static void handleObjCReturnsInnerPointerAttr(Sema &S, Decl *D,
const AttributeList &attr) {
const int EP_ObjCMethod = 1;
const int EP_ObjCProperty = 2;
SourceLocation loc = attr.getLoc();
QualType resultType;
if (isa<ObjCMethodDecl>(D))
resultType = cast<ObjCMethodDecl>(D)->getReturnType();
else
resultType = cast<ObjCPropertyDecl>(D)->getType();
if (!resultType->isReferenceType() &&
(!resultType->isPointerType() || resultType->isObjCRetainableType())) {
S.Diag(D->getLocStart(), diag::warn_ns_attribute_wrong_return_type)
<< SourceRange(loc)
<< attr.getName()
<< (isa<ObjCMethodDecl>(D) ? EP_ObjCMethod : EP_ObjCProperty)
<< /*non-retainable pointer*/ 2;
// Drop the attribute.
return;
}
D->addAttr(::new (S.Context) ObjCReturnsInnerPointerAttr(
attr.getRange(), S.Context, attr.getAttributeSpellingListIndex()));
}
static void handleObjCRequiresSuperAttr(Sema &S, Decl *D,
const AttributeList &attr) {
ObjCMethodDecl *method = cast<ObjCMethodDecl>(D);
DeclContext *DC = method->getDeclContext();
if (const ObjCProtocolDecl *PDecl = dyn_cast_or_null<ObjCProtocolDecl>(DC)) {
S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
<< attr.getName() << 0;
S.Diag(PDecl->getLocation(), diag::note_protocol_decl);
return;
}
if (method->getMethodFamily() == OMF_dealloc) {
S.Diag(D->getLocStart(), diag::warn_objc_requires_super_protocol)
<< attr.getName() << 1;
return;
}
method->addAttr(::new (S.Context)
ObjCRequiresSuperAttr(attr.getRange(), S.Context,
attr.getAttributeSpellingListIndex()));
}
static void handleCFAuditedTransferAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (checkAttrMutualExclusion<CFUnknownTransferAttr>(S, D, Attr.getRange(),
Attr.getName()))
return;
D->addAttr(::new (S.Context)
CFAuditedTransferAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleCFUnknownTransferAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (checkAttrMutualExclusion<CFAuditedTransferAttr>(S, D, Attr.getRange(),
Attr.getName()))
return;
D->addAttr(::new (S.Context)
CFUnknownTransferAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCBridgeAttr(Sema &S, Scope *Sc, Decl *D,
const AttributeList &Attr) {
IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr;
if (!Parm) {
S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
return;
}
// Typedefs only allow objc_bridge(id) and have some additional checking.
if (auto TD = dyn_cast<TypedefNameDecl>(D)) {
if (!Parm->Ident->isStr("id")) {
S.Diag(Attr.getLoc(), diag::err_objc_attr_typedef_not_id)
<< Attr.getName();
return;
}
// Only allow 'cv void *'.
QualType T = TD->getUnderlyingType();
if (!T->isVoidPointerType()) {
S.Diag(Attr.getLoc(), diag::err_objc_attr_typedef_not_void_pointer);
return;
}
}
D->addAttr(::new (S.Context)
ObjCBridgeAttr(Attr.getRange(), S.Context, Parm->Ident,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCBridgeMutableAttr(Sema &S, Scope *Sc, Decl *D,
const AttributeList &Attr) {
IdentifierLoc * Parm = Attr.isArgIdent(0) ? Attr.getArgAsIdent(0) : nullptr;
if (!Parm) {
S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
return;
}
D->addAttr(::new (S.Context)
ObjCBridgeMutableAttr(Attr.getRange(), S.Context, Parm->Ident,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCBridgeRelatedAttr(Sema &S, Scope *Sc, Decl *D,
const AttributeList &Attr) {
IdentifierInfo *RelatedClass =
Attr.isArgIdent(0) ? Attr.getArgAsIdent(0)->Ident : nullptr;
if (!RelatedClass) {
S.Diag(D->getLocStart(), diag::err_objc_attr_not_id) << Attr.getName() << 0;
return;
}
IdentifierInfo *ClassMethod =
Attr.getArgAsIdent(1) ? Attr.getArgAsIdent(1)->Ident : nullptr;
IdentifierInfo *InstanceMethod =
Attr.getArgAsIdent(2) ? Attr.getArgAsIdent(2)->Ident : nullptr;
D->addAttr(::new (S.Context)
ObjCBridgeRelatedAttr(Attr.getRange(), S.Context, RelatedClass,
ClassMethod, InstanceMethod,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCDesignatedInitializer(Sema &S, Decl *D,
const AttributeList &Attr) {
ObjCInterfaceDecl *IFace;
if (ObjCCategoryDecl *CatDecl =
dyn_cast<ObjCCategoryDecl>(D->getDeclContext()))
IFace = CatDecl->getClassInterface();
else
IFace = cast<ObjCInterfaceDecl>(D->getDeclContext());
if (!IFace)
return;
IFace->setHasDesignatedInitializers();
D->addAttr(::new (S.Context)
ObjCDesignatedInitializerAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleObjCRuntimeName(Sema &S, Decl *D,
const AttributeList &Attr) {
StringRef MetaDataName;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, MetaDataName))
return;
D->addAttr(::new (S.Context)
ObjCRuntimeNameAttr(Attr.getRange(), S.Context,
MetaDataName,
Attr.getAttributeSpellingListIndex()));
}
// When a user wants to use objc_boxable with a union or struct
// but they don't have access to the declaration (legacy/third-party code)
// then they can 'enable' this feature with a typedef:
// typedef struct __attribute((objc_boxable)) legacy_struct legacy_struct;
static void handleObjCBoxable(Sema &S, Decl *D, const AttributeList &Attr) {
bool notify = false;
RecordDecl *RD = dyn_cast<RecordDecl>(D);
if (RD && RD->getDefinition()) {
RD = RD->getDefinition();
notify = true;
}
if (RD) {
ObjCBoxableAttr *BoxableAttr = ::new (S.Context)
ObjCBoxableAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex());
RD->addAttr(BoxableAttr);
if (notify) {
// we need to notify ASTReader/ASTWriter about
// modification of existing declaration
if (ASTMutationListener *L = S.getASTMutationListener())
L->AddedAttributeToRecord(BoxableAttr, RD);
}
}
}
static void handleObjCOwnershipAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (hasDeclarator(D)) return;
S.Diag(D->getLocStart(), diag::err_attribute_wrong_decl_type)
<< Attr.getRange() << Attr.getName() << ExpectedVariable;
}
static void handleObjCPreciseLifetimeAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
ValueDecl *vd = cast<ValueDecl>(D);
QualType type = vd->getType();
if (!type->isDependentType() &&
!type->isObjCLifetimeType()) {
S.Diag(Attr.getLoc(), diag::err_objc_precise_lifetime_bad_type)
<< type;
return;
}
Qualifiers::ObjCLifetime lifetime = type.getObjCLifetime();
// If we have no lifetime yet, check the lifetime we're presumably
// going to infer.
if (lifetime == Qualifiers::OCL_None && !type->isDependentType())
lifetime = type->getObjCARCImplicitLifetime();
switch (lifetime) {
case Qualifiers::OCL_None:
assert(type->isDependentType() &&
"didn't infer lifetime for non-dependent type?");
break;
case Qualifiers::OCL_Weak: // meaningful
case Qualifiers::OCL_Strong: // meaningful
break;
case Qualifiers::OCL_ExplicitNone:
case Qualifiers::OCL_Autoreleasing:
S.Diag(Attr.getLoc(), diag::warn_objc_precise_lifetime_meaningless)
<< (lifetime == Qualifiers::OCL_Autoreleasing);
break;
}
D->addAttr(::new (S.Context)
ObjCPreciseLifetimeAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
//===----------------------------------------------------------------------===//
// Microsoft specific attribute handlers.
//===----------------------------------------------------------------------===//
static void handleUuidAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!S.LangOpts.CPlusPlus) {
S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
<< Attr.getName() << AttributeLangSupport::C;
return;
}
if (!isa<CXXRecordDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedClass;
return;
}
StringRef StrRef;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(Attr, 0, StrRef, &LiteralLoc))
return;
// GUID format is "XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX" or
// "{XXXXXXXX-XXXX-XXXX-XXXX-XXXXXXXXXXXX}", normalize to the former.
if (StrRef.size() == 38 && StrRef.front() == '{' && StrRef.back() == '}')
StrRef = StrRef.drop_front().drop_back();
// Validate GUID length.
if (StrRef.size() != 36) {
S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
return;
}
for (unsigned i = 0; i < 36; ++i) {
if (i == 8 || i == 13 || i == 18 || i == 23) {
if (StrRef[i] != '-') {
S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
return;
}
} else if (!isHexDigit(StrRef[i])) {
S.Diag(LiteralLoc, diag::err_attribute_uuid_malformed_guid);
return;
}
}
D->addAttr(::new (S.Context) UuidAttr(Attr.getRange(), S.Context, StrRef,
Attr.getAttributeSpellingListIndex()));
}
static void handleMSInheritanceAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!S.LangOpts.CPlusPlus) {
S.Diag(Attr.getLoc(), diag::err_attribute_not_supported_in_lang)
<< Attr.getName() << AttributeLangSupport::C;
return;
}
MSInheritanceAttr *IA = S.mergeMSInheritanceAttr(
D, Attr.getRange(), /*BestCase=*/true,
Attr.getAttributeSpellingListIndex(),
(MSInheritanceAttr::Spelling)Attr.getSemanticSpelling());
if (IA) {
D->addAttr(IA);
S.Consumer.AssignInheritanceModel(cast<CXXRecordDecl>(D));
}
}
static void handleDeclspecThreadAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
VarDecl *VD = cast<VarDecl>(D);
if (!S.Context.getTargetInfo().isTLSSupported()) {
S.Diag(Attr.getLoc(), diag::err_thread_unsupported);
return;
}
if (VD->getTSCSpec() != TSCS_unspecified) {
S.Diag(Attr.getLoc(), diag::err_declspec_thread_on_thread_variable);
return;
}
if (VD->hasLocalStorage()) {
S.Diag(Attr.getLoc(), diag::err_thread_non_global) << "__declspec(thread)";
return;
}
VD->addAttr(::new (S.Context) ThreadAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
}
static void handleAbiTagAttr(Sema &S, Decl *D, const AttributeList &Attr) {
SmallVector<StringRef, 4> Tags;
for (unsigned I = 0, E = Attr.getNumArgs(); I != E; ++I) {
StringRef Tag;
if (!S.checkStringLiteralArgumentAttr(Attr, I, Tag))
return;
Tags.push_back(Tag);
}
if (const auto *NS = dyn_cast<NamespaceDecl>(D)) {
if (!NS->isInline()) {
S.Diag(Attr.getLoc(), diag::warn_attr_abi_tag_namespace) << 0;
return;
}
if (NS->isAnonymousNamespace()) {
S.Diag(Attr.getLoc(), diag::warn_attr_abi_tag_namespace) << 1;
return;
}
if (Attr.getNumArgs() == 0)
Tags.push_back(NS->getName());
} else if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return;
// Store tags sorted and without duplicates.
std::sort(Tags.begin(), Tags.end());
Tags.erase(std::unique(Tags.begin(), Tags.end()), Tags.end());
D->addAttr(::new (S.Context)
AbiTagAttr(Attr.getRange(), S.Context, Tags.data(), Tags.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleARMInterruptAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// Check the attribute arguments.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
<< Attr.getName() << 1;
return;
}
StringRef Str;
SourceLocation ArgLoc;
if (Attr.getNumArgs() == 0)
Str = "";
else if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &ArgLoc))
return;
ARMInterruptAttr::InterruptType Kind;
if (!ARMInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< Attr.getName() << Str << ArgLoc;
return;
}
unsigned Index = Attr.getAttributeSpellingListIndex();
D->addAttr(::new (S.Context)
ARMInterruptAttr(Attr.getLoc(), S.Context, Kind, Index));
}
static void handleMSP430InterruptAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeNumArgs(S, Attr, 1))
return;
if (!Attr.isArgExpr(0)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type) << Attr.getName()
<< AANT_ArgumentIntegerConstant;
return;
}
// FIXME: Check for decl - it should be void ()(void).
Expr *NumParamsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
llvm::APSInt NumParams(32);
if (!NumParamsExpr->isIntegerConstantExpr(NumParams, S.Context)) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_type)
<< Attr.getName() << AANT_ArgumentIntegerConstant
<< NumParamsExpr->getSourceRange();
return;
}
unsigned Num = NumParams.getLimitedValue(255);
if ((Num & 1) || Num > 30) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< Attr.getName() << (int)NumParams.getSExtValue()
<< NumParamsExpr->getSourceRange();
return;
}
D->addAttr(::new (S.Context)
MSP430InterruptAttr(Attr.getLoc(), S.Context, Num,
Attr.getAttributeSpellingListIndex()));
D->addAttr(UsedAttr::CreateImplicit(S.Context));
}
static void handleMipsInterruptAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// Only one optional argument permitted.
if (Attr.getNumArgs() > 1) {
S.Diag(Attr.getLoc(), diag::err_attribute_too_many_arguments)
<< Attr.getName() << 1;
return;
}
StringRef Str;
SourceLocation ArgLoc;
if (Attr.getNumArgs() == 0)
Str = "";
else if (!S.checkStringLiteralArgumentAttr(Attr, 0, Str, &ArgLoc))
return;
// Semantic checks for a function with the 'interrupt' attribute for MIPS:
// a) Must be a function.
// b) Must have no parameters.
// c) Must have the 'void' return type.
// d) Cannot have the 'mips16' attribute, as that instruction set
// lacks the 'eret' instruction.
// e) The attribute itself must either have no argument or one of the
// valid interrupt types, see [MipsInterruptDocs].
if (!isFunctionOrMethod(D)) {
S.Diag(D->getLocation(), diag::warn_attribute_wrong_decl_type)
<< "'interrupt'" << ExpectedFunctionOrMethod;
return;
}
if (hasFunctionProto(D) && getFunctionOrMethodNumParams(D) != 0) {
S.Diag(D->getLocation(), diag::warn_mips_interrupt_attribute)
<< 0;
return;
}
if (!getFunctionOrMethodResultType(D)->isVoidType()) {
S.Diag(D->getLocation(), diag::warn_mips_interrupt_attribute)
<< 1;
return;
}
if (checkAttrMutualExclusion<Mips16Attr>(S, D, Attr.getRange(),
Attr.getName()))
return;
MipsInterruptAttr::InterruptType Kind;
if (!MipsInterruptAttr::ConvertStrToInterruptType(Str, Kind)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_type_not_supported)
<< Attr.getName() << "'" + std::string(Str) + "'";
return;
}
D->addAttr(::new (S.Context) MipsInterruptAttr(
Attr.getLoc(), S.Context, Kind, Attr.getAttributeSpellingListIndex()));
}
static void handleAnyX86InterruptAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// Semantic checks for a function with the 'interrupt' attribute.
// a) Must be a function.
// b) Must have the 'void' return type.
// c) Must take 1 or 2 arguments.
// d) The 1st argument must be a pointer.
// e) The 2nd argument (if any) must be an unsigned integer.
if (!isFunctionOrMethod(D) || !hasFunctionProto(D) || isInstanceMethod(D) ||
CXXMethodDecl::isStaticOverloadedOperator(
cast<NamedDecl>(D)->getDeclName().getCXXOverloadedOperator())) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << ExpectedFunctionWithProtoType;
return;
}
// Interrupt handler must have void return type.
if (!getFunctionOrMethodResultType(D)->isVoidType()) {
S.Diag(getFunctionOrMethodResultSourceRange(D).getBegin(),
diag::err_anyx86_interrupt_attribute)
<< (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
? 0
: 1)
<< 0;
return;
}
// Interrupt handler must have 1 or 2 parameters.
unsigned NumParams = getFunctionOrMethodNumParams(D);
if (NumParams < 1 || NumParams > 2) {
S.Diag(D->getLocStart(), diag::err_anyx86_interrupt_attribute)
<< (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
? 0
: 1)
<< 1;
return;
}
// The first argument must be a pointer.
if (!getFunctionOrMethodParamType(D, 0)->isPointerType()) {
S.Diag(getFunctionOrMethodParamRange(D, 0).getBegin(),
diag::err_anyx86_interrupt_attribute)
<< (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
? 0
: 1)
<< 2;
return;
}
// The second argument, if present, must be an unsigned integer.
unsigned TypeSize =
S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86_64
? 64
: 32;
if (NumParams == 2 &&
(!getFunctionOrMethodParamType(D, 1)->isUnsignedIntegerType() ||
S.Context.getTypeSize(getFunctionOrMethodParamType(D, 1)) != TypeSize)) {
S.Diag(getFunctionOrMethodParamRange(D, 1).getBegin(),
diag::err_anyx86_interrupt_attribute)
<< (S.Context.getTargetInfo().getTriple().getArch() == llvm::Triple::x86
? 0
: 1)
<< 3 << S.Context.getIntTypeForBitwidth(TypeSize, /*Signed=*/false);
return;
}
D->addAttr(::new (S.Context) AnyX86InterruptAttr(
Attr.getLoc(), S.Context, Attr.getAttributeSpellingListIndex()));
D->addAttr(UsedAttr::CreateImplicit(S.Context));
}
static void handleInterruptAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// Dispatch the interrupt attribute based on the current target.
switch (S.Context.getTargetInfo().getTriple().getArch()) {
case llvm::Triple::msp430:
handleMSP430InterruptAttr(S, D, Attr);
break;
case llvm::Triple::mipsel:
case llvm::Triple::mips:
handleMipsInterruptAttr(S, D, Attr);
break;
case llvm::Triple::x86:
case llvm::Triple::x86_64:
handleAnyX86InterruptAttr(S, D, Attr);
break;
default:
handleARMInterruptAttr(S, D, Attr);
break;
}
}
static void handleAMDGPUNumVGPRAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
uint32_t NumRegs;
Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs))
return;
D->addAttr(::new (S.Context)
AMDGPUNumVGPRAttr(Attr.getLoc(), S.Context,
NumRegs,
Attr.getAttributeSpellingListIndex()));
}
static void handleAMDGPUNumSGPRAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
uint32_t NumRegs;
Expr *NumRegsExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
if (!checkUInt32Argument(S, Attr, NumRegsExpr, NumRegs))
return;
D->addAttr(::new (S.Context)
AMDGPUNumSGPRAttr(Attr.getLoc(), S.Context,
NumRegs,
Attr.getAttributeSpellingListIndex()));
}
static void handleX86ForceAlignArgPointerAttr(Sema &S, Decl *D,
const AttributeList& Attr) {
// If we try to apply it to a function pointer, don't warn, but don't
// do anything, either. It doesn't matter anyway, because there's nothing
// special about calling a force_align_arg_pointer function.
ValueDecl *VD = dyn_cast<ValueDecl>(D);
if (VD && VD->getType()->isFunctionPointerType())
return;
// Also don't warn on function pointer typedefs.
TypedefNameDecl *TD = dyn_cast<TypedefNameDecl>(D);
if (TD && (TD->getUnderlyingType()->isFunctionPointerType() ||
TD->getUnderlyingType()->isFunctionType()))
return;
// Attribute can only be applied to function types.
if (!isa<FunctionDecl>(D)) {
S.Diag(Attr.getLoc(), diag::warn_attribute_wrong_decl_type)
<< Attr.getName() << /* function */0;
return;
}
D->addAttr(::new (S.Context)
X86ForceAlignArgPointerAttr(Attr.getRange(), S.Context,
Attr.getAttributeSpellingListIndex()));
}
static void handleLayoutVersion(Sema &S, Decl *D, const AttributeList &Attr) {
uint32_t Version;
Expr *VersionExpr = static_cast<Expr *>(Attr.getArgAsExpr(0));
if (!checkUInt32Argument(S, Attr, Attr.getArgAsExpr(0), Version))
return;
// TODO: Investigate what happens with the next major version of MSVC.
if (Version != LangOptions::MSVC2015) {
S.Diag(Attr.getLoc(), diag::err_attribute_argument_out_of_bounds)
<< Attr.getName() << Version << VersionExpr->getSourceRange();
return;
}
D->addAttr(::new (S.Context)
LayoutVersionAttr(Attr.getRange(), S.Context, Version,
Attr.getAttributeSpellingListIndex()));
}
DLLImportAttr *Sema::mergeDLLImportAttr(Decl *D, SourceRange Range,
unsigned AttrSpellingListIndex) {
if (D->hasAttr<DLLExportAttr>()) {
Diag(Range.getBegin(), diag::warn_attribute_ignored) << "'dllimport'";
return nullptr;
}
if (D->hasAttr<DLLImportAttr>())
return nullptr;
return ::new (Context) DLLImportAttr(Range, Context, AttrSpellingListIndex);
}
DLLExportAttr *Sema::mergeDLLExportAttr(Decl *D, SourceRange Range,
unsigned AttrSpellingListIndex) {
if (DLLImportAttr *Import = D->getAttr<DLLImportAttr>()) {
Diag(Import->getLocation(), diag::warn_attribute_ignored) << Import;
D->dropAttr<DLLImportAttr>();
}
if (D->hasAttr<DLLExportAttr>())
return nullptr;
return ::new (Context) DLLExportAttr(Range, Context, AttrSpellingListIndex);
}
static void handleDLLAttr(Sema &S, Decl *D, const AttributeList &A) {
if (isa<ClassTemplatePartialSpecializationDecl>(D) &&
S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored)
<< A.getName();
return;
}
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D)) {
if (FD->isInlined() && A.getKind() == AttributeList::AT_DLLImport &&
!S.Context.getTargetInfo().getCXXABI().isMicrosoft()) {
// MinGW doesn't allow dllimport on inline functions.
S.Diag(A.getRange().getBegin(), diag::warn_attribute_ignored_on_inline)
<< A.getName();
return;
}
}
if (auto *MD = dyn_cast<CXXMethodDecl>(D)) {
if (S.Context.getTargetInfo().getCXXABI().isMicrosoft() &&
MD->getParent()->isLambda()) {
S.Diag(A.getRange().getBegin(), diag::err_attribute_dll_lambda) << A.getName();
return;
}
}
unsigned Index = A.getAttributeSpellingListIndex();
Attr *NewAttr = A.getKind() == AttributeList::AT_DLLExport
? (Attr *)S.mergeDLLExportAttr(D, A.getRange(), Index)
: (Attr *)S.mergeDLLImportAttr(D, A.getRange(), Index);
if (NewAttr)
D->addAttr(NewAttr);
}
MSInheritanceAttr *
Sema::mergeMSInheritanceAttr(Decl *D, SourceRange Range, bool BestCase,
unsigned AttrSpellingListIndex,
MSInheritanceAttr::Spelling SemanticSpelling) {
if (MSInheritanceAttr *IA = D->getAttr<MSInheritanceAttr>()) {
if (IA->getSemanticSpelling() == SemanticSpelling)
return nullptr;
Diag(IA->getLocation(), diag::err_mismatched_ms_inheritance)
<< 1 /*previous declaration*/;
Diag(Range.getBegin(), diag::note_previous_ms_inheritance);
D->dropAttr<MSInheritanceAttr>();
}
CXXRecordDecl *RD = cast<CXXRecordDecl>(D);
if (RD->hasDefinition()) {
if (checkMSInheritanceAttrOnDefinition(RD, Range, BestCase,
SemanticSpelling)) {
return nullptr;
}
} else {
if (isa<ClassTemplatePartialSpecializationDecl>(RD)) {
Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
<< 1 /*partial specialization*/;
return nullptr;
}
if (RD->getDescribedClassTemplate()) {
Diag(Range.getBegin(), diag::warn_ignored_ms_inheritance)
<< 0 /*primary template*/;
return nullptr;
}
}
return ::new (Context)
MSInheritanceAttr(Range, Context, BestCase, AttrSpellingListIndex);
}
static void handleCapabilityAttr(Sema &S, Decl *D, const AttributeList &Attr) {
// The capability attributes take a single string parameter for the name of
// the capability they represent. The lockable attribute does not take any
// parameters. However, semantically, both attributes represent the same
// concept, and so they use the same semantic attribute. Eventually, the
// lockable attribute will be removed.
//
// For backward compatibility, any capability which has no specified string
// literal will be considered a "mutex."
StringRef N("mutex");
SourceLocation LiteralLoc;
if (Attr.getKind() == AttributeList::AT_Capability &&
!S.checkStringLiteralArgumentAttr(Attr, 0, N, &LiteralLoc))
return;
// Currently, there are only two names allowed for a capability: role and
// mutex (case insensitive). Diagnose other capability names.
if (!N.equals_lower("mutex") && !N.equals_lower("role"))
S.Diag(LiteralLoc, diag::warn_invalid_capability_name) << N;
D->addAttr(::new (S.Context) CapabilityAttr(Attr.getRange(), S.Context, N,
Attr.getAttributeSpellingListIndex()));
}
static void handleAssertCapabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
D->addAttr(::new (S.Context) AssertCapabilityAttr(Attr.getRange(), S.Context,
Attr.getArgAsExpr(0),
Attr.getAttributeSpellingListIndex()));
}
static void handleAcquireCapabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 1> Args;
if (!checkLockFunAttrCommon(S, D, Attr, Args))
return;
D->addAttr(::new (S.Context) AcquireCapabilityAttr(Attr.getRange(),
S.Context,
Args.data(), Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleTryAcquireCapabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
SmallVector<Expr*, 2> Args;
if (!checkTryLockFunAttrCommon(S, D, Attr, Args))
return;
D->addAttr(::new (S.Context) TryAcquireCapabilityAttr(Attr.getRange(),
S.Context,
Attr.getArgAsExpr(0),
Args.data(),
Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleReleaseCapabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
// Check that all arguments are lockable objects.
SmallVector<Expr *, 1> Args;
checkAttrArgsAreCapabilityObjs(S, D, Attr, Args, 0, true);
D->addAttr(::new (S.Context) ReleaseCapabilityAttr(
Attr.getRange(), S.Context, Args.data(), Args.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleRequiresCapabilityAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return;
// check that all arguments are lockable objects
SmallVector<Expr*, 1> Args;
checkAttrArgsAreCapabilityObjs(S, D, Attr, Args);
if (Args.empty())
return;
RequiresCapabilityAttr *RCA = ::new (S.Context)
RequiresCapabilityAttr(Attr.getRange(), S.Context, Args.data(),
Args.size(), Attr.getAttributeSpellingListIndex());
D->addAttr(RCA);
}
static void handleDeprecatedAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (auto *NSD = dyn_cast<NamespaceDecl>(D)) {
if (NSD->isAnonymousNamespace()) {
S.Diag(Attr.getLoc(), diag::warn_deprecated_anonymous_namespace);
// Do not want to attach the attribute to the namespace because that will
// cause confusing diagnostic reports for uses of declarations within the
// namespace.
return;
}
}
// Handle the cases where the attribute has a text message.
StringRef Str, Replacement;
if (Attr.isArgExpr(0) && Attr.getArgAsExpr(0) &&
!S.checkStringLiteralArgumentAttr(Attr, 0, Str))
return;
// Only support a single optional message for Declspec and CXX11.
if (Attr.isDeclspecAttribute() || Attr.isCXX11Attribute())
checkAttributeAtMostNumArgs(S, Attr, 1);
else if (Attr.isArgExpr(1) && Attr.getArgAsExpr(1) &&
!S.checkStringLiteralArgumentAttr(Attr, 1, Replacement))
return;
if (!S.getLangOpts().CPlusPlus14)
if (Attr.isCXX11Attribute() &&
!(Attr.hasScope() && Attr.getScopeName()->isStr("gnu")))
S.Diag(Attr.getLoc(), diag::ext_cxx14_attr) << Attr.getName();
D->addAttr(::new (S.Context) DeprecatedAttr(Attr.getRange(), S.Context, Str,
Replacement,
Attr.getAttributeSpellingListIndex()));
}
static void handleNoSanitizeAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (!checkAttributeAtLeastNumArgs(S, Attr, 1))
return;
std::vector<StringRef> Sanitizers;
for (unsigned I = 0, E = Attr.getNumArgs(); I != E; ++I) {
StringRef SanitizerName;
SourceLocation LiteralLoc;
if (!S.checkStringLiteralArgumentAttr(Attr, I, SanitizerName, &LiteralLoc))
return;
if (parseSanitizerValue(SanitizerName, /*AllowGroups=*/true) == 0)
S.Diag(LiteralLoc, diag::warn_unknown_sanitizer_ignored) << SanitizerName;
Sanitizers.push_back(SanitizerName);
}
D->addAttr(::new (S.Context) NoSanitizeAttr(
Attr.getRange(), S.Context, Sanitizers.data(), Sanitizers.size(),
Attr.getAttributeSpellingListIndex()));
}
static void handleNoSanitizeSpecificAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
StringRef AttrName = Attr.getName()->getName();
normalizeName(AttrName);
StringRef SanitizerName =
llvm::StringSwitch<StringRef>(AttrName)
.Case("no_address_safety_analysis", "address")
.Case("no_sanitize_address", "address")
.Case("no_sanitize_thread", "thread")
.Case("no_sanitize_memory", "memory");
D->addAttr(::new (S.Context)
NoSanitizeAttr(Attr.getRange(), S.Context, &SanitizerName, 1,
Attr.getAttributeSpellingListIndex()));
}
static void handleInternalLinkageAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (InternalLinkageAttr *Internal =
S.mergeInternalLinkageAttr(D, Attr.getRange(), Attr.getName(),
Attr.getAttributeSpellingListIndex()))
D->addAttr(Internal);
}
static void handleOpenCLNoSVMAttr(Sema &S, Decl *D, const AttributeList &Attr) {
if (S.LangOpts.OpenCLVersion != 200)
S.Diag(Attr.getLoc(), diag::err_attribute_requires_opencl_version)
<< Attr.getName() << "2.0" << 0;
else
S.Diag(Attr.getLoc(), diag::warn_opencl_attr_deprecated_ignored)
<< Attr.getName() << "2.0";
}
/// Handles semantic checking for features that are common to all attributes,
/// such as checking whether a parameter was properly specified, or the correct
/// number of arguments were passed, etc.
static bool handleCommonAttributeFeatures(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr) {
// Several attributes carry different semantics than the parsing requires, so
// those are opted out of the common handling.
//
// We also bail on unknown and ignored attributes because those are handled
// as part of the target-specific handling logic.
if (Attr.hasCustomParsing() ||
Attr.getKind() == AttributeList::UnknownAttribute)
return false;
// Check whether the attribute requires specific language extensions to be
// enabled.
if (!Attr.diagnoseLangOpts(S))
return true;
if (Attr.getMinArgs() == Attr.getMaxArgs()) {
// If there are no optional arguments, then checking for the argument count
// is trivial.
if (!checkAttributeNumArgs(S, Attr, Attr.getMinArgs()))
return true;
} else {
// There are optional arguments, so checking is slightly more involved.
if (Attr.getMinArgs() &&
!checkAttributeAtLeastNumArgs(S, Attr, Attr.getMinArgs()))
return true;
else if (!Attr.hasVariadicArg() && Attr.getMaxArgs() &&
!checkAttributeAtMostNumArgs(S, Attr, Attr.getMaxArgs()))
return true;
}
// Check whether the attribute appertains to the given subject.
if (!Attr.diagnoseAppertainsTo(S, D))
return true;
return false;
}
static void handleOpenCLAccessAttr(Sema &S, Decl *D,
const AttributeList &Attr) {
if (D->isInvalidDecl())
return;
// Check if there is only one access qualifier.
if (D->hasAttr<OpenCLAccessAttr>()) {
S.Diag(Attr.getLoc(), diag::err_opencl_multiple_access_qualifiers)
<< D->getSourceRange();
D->setInvalidDecl(true);
return;
}
// OpenCL v2.0 s6.6 - read_write can be used for image types to specify that an
// image object can be read and written.
// OpenCL v2.0 s6.13.6 - A kernel cannot read from and write to the same pipe
// object. Using the read_write (or __read_write) qualifier with the pipe
// qualifier is a compilation error.
if (const ParmVarDecl *PDecl = dyn_cast<ParmVarDecl>(D)) {
const Type *DeclTy = PDecl->getType().getCanonicalType().getTypePtr();
if (Attr.getName()->getName().find("read_write") != StringRef::npos) {
if (S.getLangOpts().OpenCLVersion < 200 || DeclTy->isPipeType()) {
S.Diag(Attr.getLoc(), diag::err_opencl_invalid_read_write)
<< Attr.getName() << PDecl->getType() << DeclTy->isImageType();
D->setInvalidDecl(true);
return;
}
}
}
D->addAttr(::new (S.Context) OpenCLAccessAttr(
Attr.getRange(), S.Context, Attr.getAttributeSpellingListIndex()));
}
//===----------------------------------------------------------------------===//
// Top Level Sema Entry Points
//===----------------------------------------------------------------------===//
/// ProcessDeclAttribute - Apply the specific attribute to the specified decl if
/// the attribute applies to decls. If the attribute is a type attribute, just
/// silently ignore it if a GNU attribute.
static void ProcessDeclAttribute(Sema &S, Scope *scope, Decl *D,
const AttributeList &Attr,
bool IncludeCXX11Attributes) {
if (Attr.isInvalid() || Attr.getKind() == AttributeList::IgnoredAttribute)
return;
// Ignore C++11 attributes on declarator chunks: they appertain to the type
// instead.
if (Attr.isCXX11Attribute() && !IncludeCXX11Attributes)
return;
// Unknown attributes are automatically warned on. Target-specific attributes
// which do not apply to the current target architecture are treated as
// though they were unknown attributes.
if (Attr.getKind() == AttributeList::UnknownAttribute ||
!Attr.existsInTarget(S.Context.getTargetInfo())) {
S.Diag(Attr.getLoc(), Attr.isDeclspecAttribute()
? diag::warn_unhandled_ms_attribute_ignored
: diag::warn_unknown_attribute_ignored)
<< Attr.getName();
return;
}
if (handleCommonAttributeFeatures(S, scope, D, Attr))
return;
switch (Attr.getKind()) {
default:
if (!Attr.isStmtAttr()) {
// Type attributes are handled elsewhere; silently move on.
assert(Attr.isTypeAttr() && "Non-type attribute not handled");
break;
}
S.Diag(Attr.getLoc(), diag::err_stmt_attribute_invalid_on_decl)
<< Attr.getName() << D->getLocation();
break;
case AttributeList::AT_Interrupt:
handleInterruptAttr(S, D, Attr);
break;
case AttributeList::AT_X86ForceAlignArgPointer:
handleX86ForceAlignArgPointerAttr(S, D, Attr);
break;
case AttributeList::AT_DLLExport:
case AttributeList::AT_DLLImport:
handleDLLAttr(S, D, Attr);
break;
case AttributeList::AT_Mips16:
handleSimpleAttributeWithExclusions<Mips16Attr, MipsInterruptAttr>(S, D,
Attr);
break;
case AttributeList::AT_NoMips16:
handleSimpleAttribute<NoMips16Attr>(S, D, Attr);
break;
case AttributeList::AT_AMDGPUNumVGPR:
handleAMDGPUNumVGPRAttr(S, D, Attr);
break;
case AttributeList::AT_AMDGPUNumSGPR:
handleAMDGPUNumSGPRAttr(S, D, Attr);
break;
case AttributeList::AT_IBAction:
handleSimpleAttribute<IBActionAttr>(S, D, Attr);
break;
case AttributeList::AT_IBOutlet:
handleIBOutlet(S, D, Attr);
break;
case AttributeList::AT_IBOutletCollection:
handleIBOutletCollection(S, D, Attr);
break;
case AttributeList::AT_IFunc:
handleIFuncAttr(S, D, Attr);
break;
case AttributeList::AT_Alias:
handleAliasAttr(S, D, Attr);
break;
case AttributeList::AT_Aligned:
handleAlignedAttr(S, D, Attr);
break;
case AttributeList::AT_AlignValue:
handleAlignValueAttr(S, D, Attr);
break;
case AttributeList::AT_AlwaysInline:
handleAlwaysInlineAttr(S, D, Attr);
break;
case AttributeList::AT_AnalyzerNoReturn:
handleAnalyzerNoReturnAttr(S, D, Attr);
break;
case AttributeList::AT_TLSModel:
handleTLSModelAttr(S, D, Attr);
break;
case AttributeList::AT_Annotate:
handleAnnotateAttr(S, D, Attr);
break;
case AttributeList::AT_Availability:
handleAvailabilityAttr(S, D, Attr);
break;
case AttributeList::AT_CarriesDependency:
handleDependencyAttr(S, scope, D, Attr);
break;
case AttributeList::AT_Common:
handleCommonAttr(S, D, Attr);
break;
case AttributeList::AT_CUDAConstant:
handleSimpleAttributeWithExclusions<CUDAConstantAttr, CUDASharedAttr>(S, D,
Attr);
break;
case AttributeList::AT_PassObjectSize:
handlePassObjectSizeAttr(S, D, Attr);
break;
case AttributeList::AT_Constructor:
handleConstructorAttr(S, D, Attr);
break;
case AttributeList::AT_CXX11NoReturn:
handleSimpleAttribute<CXX11NoReturnAttr>(S, D, Attr);
break;
case AttributeList::AT_Deprecated:
handleDeprecatedAttr(S, D, Attr);
break;
case AttributeList::AT_Destructor:
handleDestructorAttr(S, D, Attr);
break;
case AttributeList::AT_EnableIf:
handleEnableIfAttr(S, D, Attr);
break;
case AttributeList::AT_ExtVectorType:
handleExtVectorTypeAttr(S, scope, D, Attr);
break;
case AttributeList::AT_MinSize:
handleMinSizeAttr(S, D, Attr);
break;
case AttributeList::AT_OptimizeNone:
handleOptimizeNoneAttr(S, D, Attr);
break;
case AttributeList::AT_FlagEnum:
handleSimpleAttribute<FlagEnumAttr>(S, D, Attr);
break;
case AttributeList::AT_Flatten:
handleSimpleAttribute<FlattenAttr>(S, D, Attr);
break;
case AttributeList::AT_Format:
handleFormatAttr(S, D, Attr);
break;
case AttributeList::AT_FormatArg:
handleFormatArgAttr(S, D, Attr);
break;
case AttributeList::AT_CUDAGlobal:
handleGlobalAttr(S, D, Attr);
break;
case AttributeList::AT_CUDADevice:
handleSimpleAttributeWithExclusions<CUDADeviceAttr, CUDAGlobalAttr>(S, D,
Attr);
break;
case AttributeList::AT_CUDAHost:
handleSimpleAttributeWithExclusions<CUDAHostAttr, CUDAGlobalAttr>(S, D,
Attr);
break;
case AttributeList::AT_GNUInline:
handleGNUInlineAttr(S, D, Attr);
break;
case AttributeList::AT_CUDALaunchBounds:
handleLaunchBoundsAttr(S, D, Attr);
break;
case AttributeList::AT_Restrict:
handleRestrictAttr(S, D, Attr);
break;
case AttributeList::AT_MayAlias:
handleSimpleAttribute<MayAliasAttr>(S, D, Attr);
break;
case AttributeList::AT_Mode:
handleModeAttr(S, D, Attr);
break;
case AttributeList::AT_NoAlias:
handleSimpleAttribute<NoAliasAttr>(S, D, Attr);
break;
case AttributeList::AT_NoCommon:
handleSimpleAttribute<NoCommonAttr>(S, D, Attr);
break;
case AttributeList::AT_NoSplitStack:
handleSimpleAttribute<NoSplitStackAttr>(S, D, Attr);
break;
case AttributeList::AT_NonNull:
if (ParmVarDecl *PVD = dyn_cast<ParmVarDecl>(D))
handleNonNullAttrParameter(S, PVD, Attr);
else
handleNonNullAttr(S, D, Attr);
break;
case AttributeList::AT_ReturnsNonNull:
handleReturnsNonNullAttr(S, D, Attr);
break;
case AttributeList::AT_AssumeAligned:
handleAssumeAlignedAttr(S, D, Attr);
break;
case AttributeList::AT_Overloadable:
handleSimpleAttribute<OverloadableAttr>(S, D, Attr);
break;
case AttributeList::AT_Ownership:
handleOwnershipAttr(S, D, Attr);
break;
case AttributeList::AT_Cold:
handleColdAttr(S, D, Attr);
break;
case AttributeList::AT_Hot:
handleHotAttr(S, D, Attr);
break;
case AttributeList::AT_Naked:
handleNakedAttr(S, D, Attr);
break;
case AttributeList::AT_NoReturn:
handleNoReturnAttr(S, D, Attr);
break;
case AttributeList::AT_NoThrow:
handleSimpleAttribute<NoThrowAttr>(S, D, Attr);
break;
case AttributeList::AT_CUDAShared:
handleSimpleAttributeWithExclusions<CUDASharedAttr, CUDAConstantAttr>(S, D,
Attr);
break;
case AttributeList::AT_VecReturn:
handleVecReturnAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCOwnership:
handleObjCOwnershipAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCPreciseLifetime:
handleObjCPreciseLifetimeAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCReturnsInnerPointer:
handleObjCReturnsInnerPointerAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCRequiresSuper:
handleObjCRequiresSuperAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCBridge:
handleObjCBridgeAttr(S, scope, D, Attr);
break;
case AttributeList::AT_ObjCBridgeMutable:
handleObjCBridgeMutableAttr(S, scope, D, Attr);
break;
case AttributeList::AT_ObjCBridgeRelated:
handleObjCBridgeRelatedAttr(S, scope, D, Attr);
break;
case AttributeList::AT_ObjCDesignatedInitializer:
handleObjCDesignatedInitializer(S, D, Attr);
break;
case AttributeList::AT_ObjCRuntimeName:
handleObjCRuntimeName(S, D, Attr);
break;
case AttributeList::AT_ObjCRuntimeVisible:
handleSimpleAttribute<ObjCRuntimeVisibleAttr>(S, D, Attr);
break;
case AttributeList::AT_ObjCBoxable:
handleObjCBoxable(S, D, Attr);
break;
case AttributeList::AT_CFAuditedTransfer:
handleCFAuditedTransferAttr(S, D, Attr);
break;
case AttributeList::AT_CFUnknownTransfer:
handleCFUnknownTransferAttr(S, D, Attr);
break;
case AttributeList::AT_CFConsumed:
case AttributeList::AT_NSConsumed:
handleNSConsumedAttr(S, D, Attr);
break;
case AttributeList::AT_NSConsumesSelf:
handleSimpleAttribute<NSConsumesSelfAttr>(S, D, Attr);
break;
case AttributeList::AT_NSReturnsAutoreleased:
case AttributeList::AT_NSReturnsNotRetained:
case AttributeList::AT_CFReturnsNotRetained:
case AttributeList::AT_NSReturnsRetained:
case AttributeList::AT_CFReturnsRetained:
handleNSReturnsRetainedAttr(S, D, Attr);
break;
case AttributeList::AT_WorkGroupSizeHint:
handleWorkGroupSize<WorkGroupSizeHintAttr>(S, D, Attr);
break;
case AttributeList::AT_ReqdWorkGroupSize:
handleWorkGroupSize<ReqdWorkGroupSizeAttr>(S, D, Attr);
break;
case AttributeList::AT_VecTypeHint:
handleVecTypeHint(S, D, Attr);
break;
case AttributeList::AT_InitPriority:
handleInitPriorityAttr(S, D, Attr);
break;
case AttributeList::AT_Packed:
handlePackedAttr(S, D, Attr);
break;
case AttributeList::AT_Section:
handleSectionAttr(S, D, Attr);
break;
case AttributeList::AT_Target:
handleTargetAttr(S, D, Attr);
break;
case AttributeList::AT_Unavailable:
handleAttrWithMessage<UnavailableAttr>(S, D, Attr);
break;
case AttributeList::AT_ArcWeakrefUnavailable:
handleSimpleAttribute<ArcWeakrefUnavailableAttr>(S, D, Attr);
break;
case AttributeList::AT_ObjCRootClass:
handleSimpleAttribute<ObjCRootClassAttr>(S, D, Attr);
break;
case AttributeList::AT_ObjCExplicitProtocolImpl:
handleObjCSuppresProtocolAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCRequiresPropertyDefs:
handleSimpleAttribute<ObjCRequiresPropertyDefsAttr>(S, D, Attr);
break;
case AttributeList::AT_Unused:
handleUnusedAttr(S, D, Attr);
break;
case AttributeList::AT_ReturnsTwice:
handleSimpleAttribute<ReturnsTwiceAttr>(S, D, Attr);
break;
case AttributeList::AT_NotTailCalled:
handleNotTailCalledAttr(S, D, Attr);
break;
case AttributeList::AT_DisableTailCalls:
handleDisableTailCallsAttr(S, D, Attr);
break;
case AttributeList::AT_Used:
handleUsedAttr(S, D, Attr);
break;
case AttributeList::AT_Visibility:
handleVisibilityAttr(S, D, Attr, false);
break;
case AttributeList::AT_TypeVisibility:
handleVisibilityAttr(S, D, Attr, true);
break;
case AttributeList::AT_WarnUnused:
handleSimpleAttribute<WarnUnusedAttr>(S, D, Attr);
break;
case AttributeList::AT_WarnUnusedResult:
handleWarnUnusedResult(S, D, Attr);
break;
case AttributeList::AT_Weak:
handleSimpleAttribute<WeakAttr>(S, D, Attr);
break;
case AttributeList::AT_WeakRef:
handleWeakRefAttr(S, D, Attr);
break;
case AttributeList::AT_WeakImport:
handleWeakImportAttr(S, D, Attr);
break;
case AttributeList::AT_TransparentUnion:
handleTransparentUnionAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCException:
handleSimpleAttribute<ObjCExceptionAttr>(S, D, Attr);
break;
case AttributeList::AT_ObjCMethodFamily:
handleObjCMethodFamilyAttr(S, D, Attr);
break;
case AttributeList::AT_ObjCNSObject:
handleObjCNSObject(S, D, Attr);
break;
case AttributeList::AT_ObjCIndependentClass:
handleObjCIndependentClass(S, D, Attr);
break;
case AttributeList::AT_Blocks:
handleBlocksAttr(S, D, Attr);
break;
case AttributeList::AT_Sentinel:
handleSentinelAttr(S, D, Attr);
break;
case AttributeList::AT_Const:
handleSimpleAttribute<ConstAttr>(S, D, Attr);
break;
case AttributeList::AT_Pure:
handleSimpleAttribute<PureAttr>(S, D, Attr);
break;
case AttributeList::AT_Cleanup:
handleCleanupAttr(S, D, Attr);
break;
case AttributeList::AT_NoDebug:
handleNoDebugAttr(S, D, Attr);
break;
case AttributeList::AT_NoDuplicate:
handleSimpleAttribute<NoDuplicateAttr>(S, D, Attr);
break;
case AttributeList::AT_NoInline:
handleSimpleAttribute<NoInlineAttr>(S, D, Attr);
break;
case AttributeList::AT_NoInstrumentFunction: // Interacts with -pg.
handleSimpleAttribute<NoInstrumentFunctionAttr>(S, D, Attr);
break;
case AttributeList::AT_StdCall:
case AttributeList::AT_CDecl:
case AttributeList::AT_FastCall:
case AttributeList::AT_ThisCall:
case AttributeList::AT_Pascal:
case AttributeList::AT_SwiftCall:
case AttributeList::AT_VectorCall:
case AttributeList::AT_MSABI:
case AttributeList::AT_SysVABI:
case AttributeList::AT_Pcs:
case AttributeList::AT_IntelOclBicc:
case AttributeList::AT_PreserveMost:
case AttributeList::AT_PreserveAll:
handleCallConvAttr(S, D, Attr);
break;
case AttributeList::AT_OpenCLKernel:
handleSimpleAttribute<OpenCLKernelAttr>(S, D, Attr);
break;
case AttributeList::AT_OpenCLAccess:
handleOpenCLAccessAttr(S, D, Attr);
break;
case AttributeList::AT_OpenCLNoSVM:
handleOpenCLNoSVMAttr(S, D, Attr);
break;
case AttributeList::AT_SwiftContext:
handleParameterABIAttr(S, D, Attr, ParameterABI::SwiftContext);
break;
case AttributeList::AT_SwiftErrorResult:
handleParameterABIAttr(S, D, Attr, ParameterABI::SwiftErrorResult);
break;
case AttributeList::AT_SwiftIndirectResult:
handleParameterABIAttr(S, D, Attr, ParameterABI::SwiftIndirectResult);
break;
case AttributeList::AT_InternalLinkage:
handleInternalLinkageAttr(S, D, Attr);
break;
case AttributeList::AT_LTOVisibilityPublic:
handleSimpleAttribute<LTOVisibilityPublicAttr>(S, D, Attr);
break;
// Microsoft attributes:
case AttributeList::AT_EmptyBases:
handleSimpleAttribute<EmptyBasesAttr>(S, D, Attr);
break;
case AttributeList::AT_LayoutVersion:
handleLayoutVersion(S, D, Attr);
break;
case AttributeList::AT_MSNoVTable:
handleSimpleAttribute<MSNoVTableAttr>(S, D, Attr);
break;
case AttributeList::AT_MSStruct:
handleSimpleAttribute<MSStructAttr>(S, D, Attr);
break;
case AttributeList::AT_Uuid:
handleUuidAttr(S, D, Attr);
break;
case AttributeList::AT_MSInheritance:
handleMSInheritanceAttr(S, D, Attr);
break;
case AttributeList::AT_SelectAny:
handleSimpleAttribute<SelectAnyAttr>(S, D, Attr);
break;
case AttributeList::AT_Thread:
handleDeclspecThreadAttr(S, D, Attr);
break;
case AttributeList::AT_AbiTag:
handleAbiTagAttr(S, D, Attr);
break;
// Thread safety attributes:
case AttributeList::AT_AssertExclusiveLock:
handleAssertExclusiveLockAttr(S, D, Attr);
break;
case AttributeList::AT_AssertSharedLock:
handleAssertSharedLockAttr(S, D, Attr);
break;
case AttributeList::AT_GuardedVar:
handleSimpleAttribute<GuardedVarAttr>(S, D, Attr);
break;
case AttributeList::AT_PtGuardedVar:
handlePtGuardedVarAttr(S, D, Attr);
break;
case AttributeList::AT_ScopedLockable:
handleSimpleAttribute<ScopedLockableAttr>(S, D, Attr);
break;
case AttributeList::AT_NoSanitize:
handleNoSanitizeAttr(S, D, Attr);
break;
case AttributeList::AT_NoSanitizeSpecific:
handleNoSanitizeSpecificAttr(S, D, Attr);
break;
case AttributeList::AT_NoThreadSafetyAnalysis:
handleSimpleAttribute<NoThreadSafetyAnalysisAttr>(S, D, Attr);
break;
case AttributeList::AT_GuardedBy:
handleGuardedByAttr(S, D, Attr);
break;
case AttributeList::AT_PtGuardedBy:
handlePtGuardedByAttr(S, D, Attr);
break;
case AttributeList::AT_ExclusiveTrylockFunction:
handleExclusiveTrylockFunctionAttr(S, D, Attr);
break;
case AttributeList::AT_LockReturned:
handleLockReturnedAttr(S, D, Attr);
break;
case AttributeList::AT_LocksExcluded:
handleLocksExcludedAttr(S, D, Attr);
break;
case AttributeList::AT_SharedTrylockFunction:
handleSharedTrylockFunctionAttr(S, D, Attr);
break;
case AttributeList::AT_AcquiredBefore:
handleAcquiredBeforeAttr(S, D, Attr);
break;
case AttributeList::AT_AcquiredAfter:
handleAcquiredAfterAttr(S, D, Attr);
break;
// Capability analysis attributes.
case AttributeList::AT_Capability:
case AttributeList::AT_Lockable:
handleCapabilityAttr(S, D, Attr);
break;
case AttributeList::AT_RequiresCapability:
handleRequiresCapabilityAttr(S, D, Attr);
break;
case AttributeList::AT_AssertCapability:
handleAssertCapabilityAttr(S, D, Attr);
break;
case AttributeList::AT_AcquireCapability:
handleAcquireCapabilityAttr(S, D, Attr);
break;
case AttributeList::AT_ReleaseCapability:
handleReleaseCapabilityAttr(S, D, Attr);
break;
case AttributeList::AT_TryAcquireCapability:
handleTryAcquireCapabilityAttr(S, D, Attr);
break;
// Consumed analysis attributes.
case AttributeList::AT_Consumable:
handleConsumableAttr(S, D, Attr);
break;
case AttributeList::AT_ConsumableAutoCast:
handleSimpleAttribute<ConsumableAutoCastAttr>(S, D, Attr);
break;
case AttributeList::AT_ConsumableSetOnRead:
handleSimpleAttribute<ConsumableSetOnReadAttr>(S, D, Attr);
break;
case AttributeList::AT_CallableWhen:
handleCallableWhenAttr(S, D, Attr);
break;
case AttributeList::AT_ParamTypestate:
handleParamTypestateAttr(S, D, Attr);
break;
case AttributeList::AT_ReturnTypestate:
handleReturnTypestateAttr(S, D, Attr);
break;
case AttributeList::AT_SetTypestate:
handleSetTypestateAttr(S, D, Attr);
break;
case AttributeList::AT_TestTypestate:
handleTestTypestateAttr(S, D, Attr);
break;
// Type safety attributes.
case AttributeList::AT_ArgumentWithTypeTag:
handleArgumentWithTypeTagAttr(S, D, Attr);
break;
case AttributeList::AT_TypeTagForDatatype:
handleTypeTagForDatatypeAttr(S, D, Attr);
break;
case AttributeList::AT_RenderScriptKernel:
handleSimpleAttribute<RenderScriptKernelAttr>(S, D, Attr);
break;
// XRay attributes.
case AttributeList::AT_XRayInstrument:
handleSimpleAttribute<XRayInstrumentAttr>(S, D, Attr);
break;
}
}
/// ProcessDeclAttributeList - Apply all the decl attributes in the specified
/// attribute list to the specified decl, ignoring any type attributes.
void Sema::ProcessDeclAttributeList(Scope *S, Decl *D,
const AttributeList *AttrList,
bool IncludeCXX11Attributes) {
for (const AttributeList* l = AttrList; l; l = l->getNext())
ProcessDeclAttribute(*this, S, D, *l, IncludeCXX11Attributes);
// FIXME: We should be able to handle these cases in TableGen.
// GCC accepts
// static int a9 __attribute__((weakref));
// but that looks really pointless. We reject it.
if (D->hasAttr<WeakRefAttr>() && !D->hasAttr<AliasAttr>()) {
Diag(AttrList->getLoc(), diag::err_attribute_weakref_without_alias)
<< cast<NamedDecl>(D);
D->dropAttr<WeakRefAttr>();
return;
}
// FIXME: We should be able to handle this in TableGen as well. It would be
// good to have a way to specify "these attributes must appear as a group",
// for these. Additionally, it would be good to have a way to specify "these
// attribute must never appear as a group" for attributes like cold and hot.
if (!D->hasAttr<OpenCLKernelAttr>()) {
// These attributes cannot be applied to a non-kernel function.
if (Attr *A = D->getAttr<ReqdWorkGroupSizeAttr>()) {
// FIXME: This emits a different error message than
// diag::err_attribute_wrong_decl_type + ExpectedKernelFunction.
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
D->setInvalidDecl();
} else if (Attr *A = D->getAttr<WorkGroupSizeHintAttr>()) {
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
D->setInvalidDecl();
} else if (Attr *A = D->getAttr<VecTypeHintAttr>()) {
Diag(D->getLocation(), diag::err_opencl_kernel_attr) << A;
D->setInvalidDecl();
} else if (Attr *A = D->getAttr<AMDGPUNumVGPRAttr>()) {
Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
<< A << ExpectedKernelFunction;
D->setInvalidDecl();
} else if (Attr *A = D->getAttr<AMDGPUNumSGPRAttr>()) {
Diag(D->getLocation(), diag::err_attribute_wrong_decl_type)
<< A << ExpectedKernelFunction;
D->setInvalidDecl();
}
}
}
// Annotation attributes are the only attributes allowed after an access
// specifier.
bool Sema::ProcessAccessDeclAttributeList(AccessSpecDecl *ASDecl,
const AttributeList *AttrList) {
for (const AttributeList* l = AttrList; l; l = l->getNext()) {
if (l->getKind() == AttributeList::AT_Annotate) {
ProcessDeclAttribute(*this, nullptr, ASDecl, *l, l->isCXX11Attribute());
} else {
Diag(l->getLoc(), diag::err_only_annotate_after_access_spec);
return true;
}
}
return false;
}
/// checkUnusedDeclAttributes - Check a list of attributes to see if it
/// contains any decl attributes that we should warn about.
static void checkUnusedDeclAttributes(Sema &S, const AttributeList *A) {
for ( ; A; A = A->getNext()) {
// Only warn if the attribute is an unignored, non-type attribute.
if (A->isUsedAsTypeAttr() || A->isInvalid()) continue;
if (A->getKind() == AttributeList::IgnoredAttribute) continue;
if (A->getKind() == AttributeList::UnknownAttribute) {
S.Diag(A->getLoc(), diag::warn_unknown_attribute_ignored)
<< A->getName() << A->getRange();
} else {
S.Diag(A->getLoc(), diag::warn_attribute_not_on_decl)
<< A->getName() << A->getRange();
}
}
}
/// checkUnusedDeclAttributes - Given a declarator which is not being
/// used to build a declaration, complain about any decl attributes
/// which might be lying around on it.
void Sema::checkUnusedDeclAttributes(Declarator &D) {
::checkUnusedDeclAttributes(*this, D.getDeclSpec().getAttributes().getList());
::checkUnusedDeclAttributes(*this, D.getAttributes());
for (unsigned i = 0, e = D.getNumTypeObjects(); i != e; ++i)
::checkUnusedDeclAttributes(*this, D.getTypeObject(i).getAttrs());
}
/// DeclClonePragmaWeak - clone existing decl (maybe definition),
/// \#pragma weak needs a non-definition decl and source may not have one.
NamedDecl * Sema::DeclClonePragmaWeak(NamedDecl *ND, IdentifierInfo *II,
SourceLocation Loc) {
assert(isa<FunctionDecl>(ND) || isa<VarDecl>(ND));
NamedDecl *NewD = nullptr;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(ND)) {
FunctionDecl *NewFD;
// FIXME: Missing call to CheckFunctionDeclaration().
// FIXME: Mangling?
// FIXME: Is the qualifier info correct?
// FIXME: Is the DeclContext correct?
NewFD = FunctionDecl::Create(FD->getASTContext(), FD->getDeclContext(),
Loc, Loc, DeclarationName(II),
FD->getType(), FD->getTypeSourceInfo(),
SC_None, false/*isInlineSpecified*/,
FD->hasPrototype(),
false/*isConstexprSpecified*/);
NewD = NewFD;
if (FD->getQualifier())
NewFD->setQualifierInfo(FD->getQualifierLoc());
// Fake up parameter variables; they are declared as if this were
// a typedef.
QualType FDTy = FD->getType();
if (const FunctionProtoType *FT = FDTy->getAs<FunctionProtoType>()) {
SmallVector<ParmVarDecl*, 16> Params;
for (const auto &AI : FT->param_types()) {
ParmVarDecl *Param = BuildParmVarDeclForTypedef(NewFD, Loc, AI);
Param->setScopeInfo(0, Params.size());
Params.push_back(Param);
}
NewFD->setParams(Params);
}
} else if (VarDecl *VD = dyn_cast<VarDecl>(ND)) {
NewD = VarDecl::Create(VD->getASTContext(), VD->getDeclContext(),
VD->getInnerLocStart(), VD->getLocation(), II,
VD->getType(), VD->getTypeSourceInfo(),
VD->getStorageClass());
if (VD->getQualifier()) {
VarDecl *NewVD = cast<VarDecl>(NewD);
NewVD->setQualifierInfo(VD->getQualifierLoc());
}
}
return NewD;
}
/// DeclApplyPragmaWeak - A declaration (maybe definition) needs \#pragma weak
/// applied to it, possibly with an alias.
void Sema::DeclApplyPragmaWeak(Scope *S, NamedDecl *ND, WeakInfo &W) {
if (W.getUsed()) return; // only do this once
W.setUsed(true);
if (W.getAlias()) { // clone decl, impersonate __attribute(weak,alias(...))
IdentifierInfo *NDId = ND->getIdentifier();
NamedDecl *NewD = DeclClonePragmaWeak(ND, W.getAlias(), W.getLocation());
NewD->addAttr(AliasAttr::CreateImplicit(Context, NDId->getName(),
W.getLocation()));
NewD->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
WeakTopLevelDecl.push_back(NewD);
// FIXME: "hideous" code from Sema::LazilyCreateBuiltin
// to insert Decl at TU scope, sorry.
DeclContext *SavedContext = CurContext;
CurContext = Context.getTranslationUnitDecl();
NewD->setDeclContext(CurContext);
NewD->setLexicalDeclContext(CurContext);
PushOnScopeChains(NewD, S);
CurContext = SavedContext;
} else { // just add weak to existing
ND->addAttr(WeakAttr::CreateImplicit(Context, W.getLocation()));
}
}
void Sema::ProcessPragmaWeak(Scope *S, Decl *D) {
// It's valid to "forward-declare" #pragma weak, in which case we
// have to do this.
LoadExternalWeakUndeclaredIdentifiers();
if (!WeakUndeclaredIdentifiers.empty()) {
NamedDecl *ND = nullptr;
if (VarDecl *VD = dyn_cast<VarDecl>(D))
if (VD->isExternC())
ND = VD;
if (FunctionDecl *FD = dyn_cast<FunctionDecl>(D))
if (FD->isExternC())
ND = FD;
if (ND) {
if (IdentifierInfo *Id = ND->getIdentifier()) {
auto I = WeakUndeclaredIdentifiers.find(Id);
if (I != WeakUndeclaredIdentifiers.end()) {
WeakInfo W = I->second;
DeclApplyPragmaWeak(S, ND, W);
WeakUndeclaredIdentifiers[Id] = W;
}
}
}
}
}
/// ProcessDeclAttributes - Given a declarator (PD) with attributes indicated in
/// it, apply them to D. This is a bit tricky because PD can have attributes
/// specified in many different places, and we need to find and apply them all.
void Sema::ProcessDeclAttributes(Scope *S, Decl *D, const Declarator &PD) {
// Apply decl attributes from the DeclSpec if present.
if (const AttributeList *Attrs = PD.getDeclSpec().getAttributes().getList())
ProcessDeclAttributeList(S, D, Attrs);
// Walk the declarator structure, applying decl attributes that were in a type
// position to the decl itself. This handles cases like:
// int *__attr__(x)** D;
// when X is a decl attribute.
for (unsigned i = 0, e = PD.getNumTypeObjects(); i != e; ++i)
if (const AttributeList *Attrs = PD.getTypeObject(i).getAttrs())
ProcessDeclAttributeList(S, D, Attrs, /*IncludeCXX11Attributes=*/false);
// Finally, apply any attributes on the decl itself.
if (const AttributeList *Attrs = PD.getAttributes())
ProcessDeclAttributeList(S, D, Attrs);
}
/// Is the given declaration allowed to use a forbidden type?
/// If so, it'll still be annotated with an attribute that makes it
/// illegal to actually use.
static bool isForbiddenTypeAllowed(Sema &S, Decl *decl,
const DelayedDiagnostic &diag,
UnavailableAttr::ImplicitReason &reason) {
// Private ivars are always okay. Unfortunately, people don't
// always properly make their ivars private, even in system headers.
// Plus we need to make fields okay, too.
if (!isa<FieldDecl>(decl) && !isa<ObjCPropertyDecl>(decl) &&
!isa<FunctionDecl>(decl))
return false;
// Silently accept unsupported uses of __weak in both user and system
// declarations when it's been disabled, for ease of integration with
// -fno-objc-arc files. We do have to take some care against attempts
// to define such things; for now, we've only done that for ivars
// and properties.
if ((isa<ObjCIvarDecl>(decl) || isa<ObjCPropertyDecl>(decl))) {
if (diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_disabled ||
diag.getForbiddenTypeDiagnostic() == diag::err_arc_weak_no_runtime) {
reason = UnavailableAttr::IR_ForbiddenWeak;
return true;
}
}
// Allow all sorts of things in system headers.
if (S.Context.getSourceManager().isInSystemHeader(decl->getLocation())) {
// Currently, all the failures dealt with this way are due to ARC
// restrictions.
reason = UnavailableAttr::IR_ARCForbiddenType;
return true;
}
return false;
}
/// Handle a delayed forbidden-type diagnostic.
static void handleDelayedForbiddenType(Sema &S, DelayedDiagnostic &diag,
Decl *decl) {
auto reason = UnavailableAttr::IR_None;
if (decl && isForbiddenTypeAllowed(S, decl, diag, reason)) {
assert(reason && "didn't set reason?");
decl->addAttr(UnavailableAttr::CreateImplicit(S.Context, "", reason,
diag.Loc));
return;
}
if (S.getLangOpts().ObjCAutoRefCount)
if (const FunctionDecl *FD = dyn_cast<FunctionDecl>(decl)) {
// FIXME: we may want to suppress diagnostics for all
// kind of forbidden type messages on unavailable functions.
if (FD->hasAttr<UnavailableAttr>() &&
diag.getForbiddenTypeDiagnostic() ==
diag::err_arc_array_param_no_ownership) {
diag.Triggered = true;
return;
}
}
S.Diag(diag.Loc, diag.getForbiddenTypeDiagnostic())
<< diag.getForbiddenTypeOperand() << diag.getForbiddenTypeArgument();
diag.Triggered = true;
}
static bool isDeclDeprecated(Decl *D) {
do {
if (D->isDeprecated())
return true;
// A category implicitly has the availability of the interface.
if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface())
return Interface->isDeprecated();
} while ((D = cast_or_null<Decl>(D->getDeclContext())));
return false;
}
static bool isDeclUnavailable(Decl *D) {
do {
if (D->isUnavailable())
return true;
// A category implicitly has the availability of the interface.
if (const ObjCCategoryDecl *CatD = dyn_cast<ObjCCategoryDecl>(D))
if (const ObjCInterfaceDecl *Interface = CatD->getClassInterface())
return Interface->isUnavailable();
} while ((D = cast_or_null<Decl>(D->getDeclContext())));
return false;
}
static const AvailabilityAttr *getAttrForPlatform(ASTContext &Context,
const Decl *D) {
// Check each AvailabilityAttr to find the one for this platform.
for (const auto *A : D->attrs()) {
if (const auto *Avail = dyn_cast<AvailabilityAttr>(A)) {
// FIXME: this is copied from CheckAvailability. We should try to
// de-duplicate.
// Check if this is an App Extension "platform", and if so chop off
// the suffix for matching with the actual platform.
StringRef ActualPlatform = Avail->getPlatform()->getName();
StringRef RealizedPlatform = ActualPlatform;
if (Context.getLangOpts().AppExt) {
size_t suffix = RealizedPlatform.rfind("_app_extension");
if (suffix != StringRef::npos)
RealizedPlatform = RealizedPlatform.slice(0, suffix);
}
StringRef TargetPlatform = Context.getTargetInfo().getPlatformName();
// Match the platform name.
if (RealizedPlatform == TargetPlatform)
return Avail;
}
}
return nullptr;
}
static void DoEmitAvailabilityWarning(Sema &S, Sema::AvailabilityDiagnostic K,
Decl *Ctx, const NamedDecl *D,
StringRef Message, SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass,
const ObjCPropertyDecl *ObjCProperty,
bool ObjCPropertyAccess) {
// Diagnostics for deprecated or unavailable.
unsigned diag, diag_message, diag_fwdclass_message;
unsigned diag_available_here = diag::note_availability_specified_here;
// Matches 'diag::note_property_attribute' options.
unsigned property_note_select;
// Matches diag::note_availability_specified_here.
unsigned available_here_select_kind;
// Don't warn if our current context is deprecated or unavailable.
switch (K) {
case Sema::AD_Deprecation:
if (isDeclDeprecated(Ctx) || isDeclUnavailable(Ctx))
return;
diag = !ObjCPropertyAccess ? diag::warn_deprecated
: diag::warn_property_method_deprecated;
diag_message = diag::warn_deprecated_message;
diag_fwdclass_message = diag::warn_deprecated_fwdclass_message;
property_note_select = /* deprecated */ 0;
available_here_select_kind = /* deprecated */ 2;
break;
case Sema::AD_Unavailable:
if (isDeclUnavailable(Ctx))
return;
diag = !ObjCPropertyAccess ? diag::err_unavailable
: diag::err_property_method_unavailable;
diag_message = diag::err_unavailable_message;
diag_fwdclass_message = diag::warn_unavailable_fwdclass_message;
property_note_select = /* unavailable */ 1;
available_here_select_kind = /* unavailable */ 0;
if (auto attr = D->getAttr<UnavailableAttr>()) {
if (attr->isImplicit() && attr->getImplicitReason()) {
// Most of these failures are due to extra restrictions in ARC;
// reflect that in the primary diagnostic when applicable.
auto flagARCError = [&] {
if (S.getLangOpts().ObjCAutoRefCount &&
S.getSourceManager().isInSystemHeader(D->getLocation()))
diag = diag::err_unavailable_in_arc;
};
switch (attr->getImplicitReason()) {
case UnavailableAttr::IR_None: break;
case UnavailableAttr::IR_ARCForbiddenType:
flagARCError();
diag_available_here = diag::note_arc_forbidden_type;
break;
case UnavailableAttr::IR_ForbiddenWeak:
if (S.getLangOpts().ObjCWeakRuntime)
diag_available_here = diag::note_arc_weak_disabled;
else
diag_available_here = diag::note_arc_weak_no_runtime;
break;
case UnavailableAttr::IR_ARCForbiddenConversion:
flagARCError();
diag_available_here = diag::note_performs_forbidden_arc_conversion;
break;
case UnavailableAttr::IR_ARCInitReturnsUnrelated:
flagARCError();
diag_available_here = diag::note_arc_init_returns_unrelated;
break;
case UnavailableAttr::IR_ARCFieldWithOwnership:
flagARCError();
diag_available_here = diag::note_arc_field_with_ownership;
break;
}
}
}
break;
case Sema::AD_Partial:
diag = diag::warn_partial_availability;
diag_message = diag::warn_partial_message;
diag_fwdclass_message = diag::warn_partial_fwdclass_message;
property_note_select = /* partial */ 2;
available_here_select_kind = /* partial */ 3;
break;
}
CharSourceRange UseRange;
StringRef Replacement;
if (K == Sema::AD_Deprecation) {
if (auto attr = D->getAttr<DeprecatedAttr>())
Replacement = attr->getReplacement();
if (auto attr = getAttrForPlatform(S.Context, D))
Replacement = attr->getReplacement();
if (!Replacement.empty())
UseRange =
CharSourceRange::getCharRange(Loc, S.getLocForEndOfToken(Loc));
}
if (!Message.empty()) {
S.Diag(Loc, diag_message) << D << Message
<< (UseRange.isValid() ?
FixItHint::CreateReplacement(UseRange, Replacement) : FixItHint());
if (ObjCProperty)
S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
<< ObjCProperty->getDeclName() << property_note_select;
} else if (!UnknownObjCClass) {
S.Diag(Loc, diag) << D
<< (UseRange.isValid() ?
FixItHint::CreateReplacement(UseRange, Replacement) : FixItHint());
if (ObjCProperty)
S.Diag(ObjCProperty->getLocation(), diag::note_property_attribute)
<< ObjCProperty->getDeclName() << property_note_select;
} else {
S.Diag(Loc, diag_fwdclass_message) << D
<< (UseRange.isValid() ?
FixItHint::CreateReplacement(UseRange, Replacement) : FixItHint());
S.Diag(UnknownObjCClass->getLocation(), diag::note_forward_class);
}
// The declaration can have multiple availability attributes, we are looking
// at one of them.
const AvailabilityAttr *A = getAttrForPlatform(S.Context, D);
if (A && A->isInherited()) {
for (const Decl *Redecl = D->getMostRecentDecl(); Redecl;
Redecl = Redecl->getPreviousDecl()) {
const AvailabilityAttr *AForRedecl = getAttrForPlatform(S.Context,
Redecl);
if (AForRedecl && !AForRedecl->isInherited()) {
// If D is a declaration with inherited attributes, the note should
// point to the declaration with actual attributes.
S.Diag(Redecl->getLocation(), diag_available_here) << D
<< available_here_select_kind;
break;
}
}
}
else
S.Diag(D->getLocation(), diag_available_here)
<< D << available_here_select_kind;
if (K == Sema::AD_Partial)
S.Diag(Loc, diag::note_partial_availability_silence) << D;
}
static void handleDelayedAvailabilityCheck(Sema &S, DelayedDiagnostic &DD,
Decl *Ctx) {
assert(DD.Kind == DelayedDiagnostic::Deprecation ||
DD.Kind == DelayedDiagnostic::Unavailable);
Sema::AvailabilityDiagnostic AD = DD.Kind == DelayedDiagnostic::Deprecation
? Sema::AD_Deprecation
: Sema::AD_Unavailable;
DD.Triggered = true;
DoEmitAvailabilityWarning(
S, AD, Ctx, DD.getDeprecationDecl(), DD.getDeprecationMessage(), DD.Loc,
DD.getUnknownObjCClass(), DD.getObjCProperty(), false);
}
void Sema::PopParsingDeclaration(ParsingDeclState state, Decl *decl) {
assert(DelayedDiagnostics.getCurrentPool());
DelayedDiagnosticPool &poppedPool = *DelayedDiagnostics.getCurrentPool();
DelayedDiagnostics.popWithoutEmitting(state);
// When delaying diagnostics to run in the context of a parsed
// declaration, we only want to actually emit anything if parsing
// succeeds.
if (!decl) return;
// We emit all the active diagnostics in this pool or any of its
// parents. In general, we'll get one pool for the decl spec
// and a child pool for each declarator; in a decl group like:
// deprecated_typedef foo, *bar, baz();
// only the declarator pops will be passed decls. This is correct;
// we really do need to consider delayed diagnostics from the decl spec
// for each of the different declarations.
const DelayedDiagnosticPool *pool = &poppedPool;
do {
for (DelayedDiagnosticPool::pool_iterator
i = pool->pool_begin(), e = pool->pool_end(); i != e; ++i) {
// This const_cast is a bit lame. Really, Triggered should be mutable.
DelayedDiagnostic &diag = const_cast<DelayedDiagnostic&>(*i);
if (diag.Triggered)
continue;
switch (diag.Kind) {
case DelayedDiagnostic::Deprecation:
case DelayedDiagnostic::Unavailable:
// Don't bother giving deprecation/unavailable diagnostics if
// the decl is invalid.
if (!decl->isInvalidDecl())
handleDelayedAvailabilityCheck(*this, diag, decl);
break;
case DelayedDiagnostic::Access:
HandleDelayedAccessCheck(diag, decl);
break;
case DelayedDiagnostic::ForbiddenType:
handleDelayedForbiddenType(*this, diag, decl);
break;
}
}
} while ((pool = pool->getParent()));
}
/// Given a set of delayed diagnostics, re-emit them as if they had
/// been delayed in the current context instead of in the given pool.
/// Essentially, this just moves them to the current pool.
void Sema::redelayDiagnostics(DelayedDiagnosticPool &pool) {
DelayedDiagnosticPool *curPool = DelayedDiagnostics.getCurrentPool();
assert(curPool && "re-emitting in undelayed context not supported");
curPool->steal(pool);
}
void Sema::EmitAvailabilityWarning(AvailabilityDiagnostic AD,
NamedDecl *D, StringRef Message,
SourceLocation Loc,
const ObjCInterfaceDecl *UnknownObjCClass,
const ObjCPropertyDecl *ObjCProperty,
bool ObjCPropertyAccess) {
// Delay if we're currently parsing a declaration.
if (DelayedDiagnostics.shouldDelayDiagnostics() && AD != AD_Partial) {
DelayedDiagnostics.add(DelayedDiagnostic::makeAvailability(
AD, Loc, D, UnknownObjCClass, ObjCProperty, Message,
ObjCPropertyAccess));
return;
}
Decl *Ctx = cast<Decl>(getCurLexicalContext());
DoEmitAvailabilityWarning(*this, AD, Ctx, D, Message, Loc, UnknownObjCClass,
ObjCProperty, ObjCPropertyAccess);
}
VersionTuple Sema::getVersionForDecl(const Decl *D) const {
assert(D && "Expected a declaration here!");
VersionTuple DeclVersion;
if (const auto *AA = getAttrForPlatform(getASTContext(), D))
DeclVersion = AA->getIntroduced();
const ObjCInterfaceDecl *Interface = nullptr;
if (const auto *MD = dyn_cast<ObjCMethodDecl>(D))
Interface = MD->getClassInterface();
else if (const auto *ID = dyn_cast<ObjCImplementationDecl>(D))
Interface = ID->getClassInterface();
if (Interface) {
if (const auto *AA = getAttrForPlatform(getASTContext(), Interface))
if (AA->getIntroduced() > DeclVersion)
DeclVersion = AA->getIntroduced();
}
return std::max(DeclVersion, Context.getTargetInfo().getPlatformMinVersion());
}