llvm-project/llvm/lib/Target/AMDGPU/AMDGPUAsmPrinter.cpp

1295 lines
48 KiB
C++

//===-- AMDGPUAsmPrinter.cpp - AMDGPU Assebly printer --------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
/// \file
///
/// The AMDGPUAsmPrinter is used to print both assembly string and also binary
/// code. When passed an MCAsmStreamer it prints assembly and when passed
/// an MCObjectStreamer it outputs binary code.
//
//===----------------------------------------------------------------------===//
//
#include "AMDGPUAsmPrinter.h"
#include "AMDGPU.h"
#include "AMDGPUSubtarget.h"
#include "AMDGPUTargetMachine.h"
#include "InstPrinter/AMDGPUInstPrinter.h"
#include "MCTargetDesc/AMDGPUTargetStreamer.h"
#include "R600Defines.h"
#include "R600MachineFunctionInfo.h"
#include "R600RegisterInfo.h"
#include "SIDefines.h"
#include "SIInstrInfo.h"
#include "SIMachineFunctionInfo.h"
#include "SIRegisterInfo.h"
#include "Utils/AMDGPUBaseInfo.h"
#include "llvm/BinaryFormat/ELF.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/IR/DiagnosticInfo.h"
#include "llvm/MC/MCContext.h"
#include "llvm/MC/MCSectionELF.h"
#include "llvm/MC/MCStreamer.h"
#include "llvm/Support/AMDGPUMetadata.h"
#include "llvm/Support/MathExtras.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetLoweringObjectFile.h"
using namespace llvm;
using namespace llvm::AMDGPU;
// TODO: This should get the default rounding mode from the kernel. We just set
// the default here, but this could change if the OpenCL rounding mode pragmas
// are used.
//
// The denormal mode here should match what is reported by the OpenCL runtime
// for the CL_FP_DENORM bit from CL_DEVICE_{HALF|SINGLE|DOUBLE}_FP_CONFIG, but
// can also be override to flush with the -cl-denorms-are-zero compiler flag.
//
// AMD OpenCL only sets flush none and reports CL_FP_DENORM for double
// precision, and leaves single precision to flush all and does not report
// CL_FP_DENORM for CL_DEVICE_SINGLE_FP_CONFIG. Mesa's OpenCL currently reports
// CL_FP_DENORM for both.
//
// FIXME: It seems some instructions do not support single precision denormals
// regardless of the mode (exp_*_f32, rcp_*_f32, rsq_*_f32, rsq_*f32, sqrt_f32,
// and sin_f32, cos_f32 on most parts).
// We want to use these instructions, and using fp32 denormals also causes
// instructions to run at the double precision rate for the device so it's
// probably best to just report no single precision denormals.
static uint32_t getFPMode(const MachineFunction &F) {
const SISubtarget& ST = F.getSubtarget<SISubtarget>();
// TODO: Is there any real use for the flush in only / flush out only modes?
uint32_t FP32Denormals =
ST.hasFP32Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
uint32_t FP64Denormals =
ST.hasFP64Denormals() ? FP_DENORM_FLUSH_NONE : FP_DENORM_FLUSH_IN_FLUSH_OUT;
return FP_ROUND_MODE_SP(FP_ROUND_ROUND_TO_NEAREST) |
FP_ROUND_MODE_DP(FP_ROUND_ROUND_TO_NEAREST) |
FP_DENORM_MODE_SP(FP32Denormals) |
FP_DENORM_MODE_DP(FP64Denormals);
}
static AsmPrinter *
createAMDGPUAsmPrinterPass(TargetMachine &tm,
std::unique_ptr<MCStreamer> &&Streamer) {
return new AMDGPUAsmPrinter(tm, std::move(Streamer));
}
extern "C" void LLVMInitializeAMDGPUAsmPrinter() {
TargetRegistry::RegisterAsmPrinter(getTheAMDGPUTarget(),
createAMDGPUAsmPrinterPass);
TargetRegistry::RegisterAsmPrinter(getTheGCNTarget(),
createAMDGPUAsmPrinterPass);
}
AMDGPUAsmPrinter::AMDGPUAsmPrinter(TargetMachine &TM,
std::unique_ptr<MCStreamer> Streamer)
: AsmPrinter(TM, std::move(Streamer)) {
AMDGPUASI = static_cast<AMDGPUTargetMachine*>(&TM)->getAMDGPUAS();
}
StringRef AMDGPUAsmPrinter::getPassName() const {
return "AMDGPU Assembly Printer";
}
const MCSubtargetInfo* AMDGPUAsmPrinter::getSTI() const {
return TM.getMCSubtargetInfo();
}
AMDGPUTargetStreamer* AMDGPUAsmPrinter::getTargetStreamer() const {
if (!OutStreamer)
return nullptr;
return static_cast<AMDGPUTargetStreamer*>(OutStreamer->getTargetStreamer());
}
void AMDGPUAsmPrinter::EmitStartOfAsmFile(Module &M) {
if (TM.getTargetTriple().getArch() != Triple::amdgcn)
return;
if (TM.getTargetTriple().getOS() != Triple::AMDHSA &&
TM.getTargetTriple().getOS() != Triple::AMDPAL)
return;
if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
HSAMetadataStream.begin(M);
if (TM.getTargetTriple().getOS() == Triple::AMDPAL)
readPALMetadata(M);
// Deprecated notes are not emitted for code object v3.
if (IsaInfo::hasCodeObjectV3(getSTI()->getFeatureBits()))
return;
// HSA emits NT_AMDGPU_HSA_CODE_OBJECT_VERSION for code objects v2.
if (TM.getTargetTriple().getOS() == Triple::AMDHSA)
getTargetStreamer()->EmitDirectiveHSACodeObjectVersion(2, 1);
// HSA and PAL emit NT_AMDGPU_HSA_ISA for code objects v2.
IsaInfo::IsaVersion ISA = IsaInfo::getIsaVersion(getSTI()->getFeatureBits());
getTargetStreamer()->EmitDirectiveHSACodeObjectISA(
ISA.Major, ISA.Minor, ISA.Stepping, "AMD", "AMDGPU");
}
void AMDGPUAsmPrinter::EmitEndOfAsmFile(Module &M) {
if (TM.getTargetTriple().getArch() != Triple::amdgcn)
return;
// Following code requires TargetStreamer to be present.
if (!getTargetStreamer())
return;
// Emit ISA Version (NT_AMD_AMDGPU_ISA).
std::string ISAVersionString;
raw_string_ostream ISAVersionStream(ISAVersionString);
IsaInfo::streamIsaVersion(getSTI(), ISAVersionStream);
getTargetStreamer()->EmitISAVersion(ISAVersionStream.str());
// Emit HSA Metadata (NT_AMD_AMDGPU_HSA_METADATA).
if (TM.getTargetTriple().getOS() == Triple::AMDHSA) {
HSAMetadataStream.end();
getTargetStreamer()->EmitHSAMetadata(HSAMetadataStream.getHSAMetadata());
}
// Emit PAL Metadata (NT_AMD_AMDGPU_PAL_METADATA).
if (TM.getTargetTriple().getOS() == Triple::AMDPAL) {
// Copy the PAL metadata from the map where we collected it into a vector,
// then write it as a .note.
PALMD::Metadata PALMetadataVector;
for (auto i : PALMetadataMap) {
PALMetadataVector.push_back(i.first);
PALMetadataVector.push_back(i.second);
}
getTargetStreamer()->EmitPALMetadata(PALMetadataVector);
}
}
bool AMDGPUAsmPrinter::isBlockOnlyReachableByFallthrough(
const MachineBasicBlock *MBB) const {
if (!AsmPrinter::isBlockOnlyReachableByFallthrough(MBB))
return false;
if (MBB->empty())
return true;
// If this is a block implementing a long branch, an expression relative to
// the start of the block is needed. to the start of the block.
// XXX - Is there a smarter way to check this?
return (MBB->back().getOpcode() != AMDGPU::S_SETPC_B64);
}
void AMDGPUAsmPrinter::EmitFunctionBodyStart() {
const AMDGPUMachineFunction *MFI = MF->getInfo<AMDGPUMachineFunction>();
if (!MFI->isEntryFunction())
return;
const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
amd_kernel_code_t KernelCode;
if (STM.isAmdCodeObjectV2(*MF)) {
getAmdKernelCode(KernelCode, CurrentProgramInfo, *MF);
OutStreamer->SwitchSection(getObjFileLowering().getTextSection());
getTargetStreamer()->EmitAMDKernelCodeT(KernelCode);
}
if (TM.getTargetTriple().getOS() != Triple::AMDHSA)
return;
HSAMetadataStream.emitKernel(MF->getFunction(),
getHSACodeProps(*MF, CurrentProgramInfo),
getHSADebugProps(*MF, CurrentProgramInfo));
}
void AMDGPUAsmPrinter::EmitFunctionEntryLabel() {
const SIMachineFunctionInfo *MFI = MF->getInfo<SIMachineFunctionInfo>();
const AMDGPUSubtarget &STM = MF->getSubtarget<AMDGPUSubtarget>();
if (MFI->isEntryFunction() && STM.isAmdCodeObjectV2(*MF)) {
SmallString<128> SymbolName;
getNameWithPrefix(SymbolName, &MF->getFunction()),
getTargetStreamer()->EmitAMDGPUSymbolType(
SymbolName, ELF::STT_AMDGPU_HSA_KERNEL);
}
const AMDGPUSubtarget &STI = MF->getSubtarget<AMDGPUSubtarget>();
if (STI.dumpCode()) {
// Disassemble function name label to text.
DisasmLines.push_back(MF->getName().str() + ":");
DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size());
HexLines.push_back("");
}
AsmPrinter::EmitFunctionEntryLabel();
}
void AMDGPUAsmPrinter::EmitBasicBlockStart(const MachineBasicBlock &MBB) const {
const AMDGPUSubtarget &STI = MBB.getParent()->getSubtarget<AMDGPUSubtarget>();
if (STI.dumpCode() && !isBlockOnlyReachableByFallthrough(&MBB)) {
// Write a line for the basic block label if it is not only fallthrough.
DisasmLines.push_back(
(Twine("BB") + Twine(getFunctionNumber())
+ "_" + Twine(MBB.getNumber()) + ":").str());
DisasmLineMaxLen = std::max(DisasmLineMaxLen, DisasmLines.back().size());
HexLines.push_back("");
}
AsmPrinter::EmitBasicBlockStart(MBB);
}
void AMDGPUAsmPrinter::EmitGlobalVariable(const GlobalVariable *GV) {
// Group segment variables aren't emitted in HSA.
if (AMDGPU::isGroupSegment(GV))
return;
AsmPrinter::EmitGlobalVariable(GV);
}
bool AMDGPUAsmPrinter::doFinalization(Module &M) {
CallGraphResourceInfo.clear();
return AsmPrinter::doFinalization(M);
}
// For the amdpal OS type, read the amdgpu.pal.metadata supplied by the
// frontend into our PALMetadataMap, ready for per-function modification. It
// is a NamedMD containing an MDTuple containing a number of MDNodes each of
// which is an integer value, and each two integer values forms a key=value
// pair that we store as PALMetadataMap[key]=value in the map.
void AMDGPUAsmPrinter::readPALMetadata(Module &M) {
auto NamedMD = M.getNamedMetadata("amdgpu.pal.metadata");
if (!NamedMD || !NamedMD->getNumOperands())
return;
auto Tuple = dyn_cast<MDTuple>(NamedMD->getOperand(0));
if (!Tuple)
return;
for (unsigned I = 0, E = Tuple->getNumOperands() & -2; I != E; I += 2) {
auto Key = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I));
auto Val = mdconst::dyn_extract<ConstantInt>(Tuple->getOperand(I + 1));
if (!Key || !Val)
continue;
PALMetadataMap[Key->getZExtValue()] = Val->getZExtValue();
}
}
// Print comments that apply to both callable functions and entry points.
void AMDGPUAsmPrinter::emitCommonFunctionComments(
uint32_t NumVGPR,
uint32_t NumSGPR,
uint64_t ScratchSize,
uint64_t CodeSize) {
OutStreamer->emitRawComment(" codeLenInByte = " + Twine(CodeSize), false);
OutStreamer->emitRawComment(" NumSgprs: " + Twine(NumSGPR), false);
OutStreamer->emitRawComment(" NumVgprs: " + Twine(NumVGPR), false);
OutStreamer->emitRawComment(" ScratchSize: " + Twine(ScratchSize), false);
}
bool AMDGPUAsmPrinter::runOnMachineFunction(MachineFunction &MF) {
CurrentProgramInfo = SIProgramInfo();
const AMDGPUMachineFunction *MFI = MF.getInfo<AMDGPUMachineFunction>();
// The starting address of all shader programs must be 256 bytes aligned.
// Regular functions just need the basic required instruction alignment.
MF.setAlignment(MFI->isEntryFunction() ? 8 : 2);
SetupMachineFunction(MF);
const AMDGPUSubtarget &STM = MF.getSubtarget<AMDGPUSubtarget>();
MCContext &Context = getObjFileLowering().getContext();
// FIXME: This should be an explicit check for Mesa.
if (!STM.isAmdHsaOS() && !STM.isAmdPalOS()) {
MCSectionELF *ConfigSection =
Context.getELFSection(".AMDGPU.config", ELF::SHT_PROGBITS, 0);
OutStreamer->SwitchSection(ConfigSection);
}
if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
if (MFI->isEntryFunction()) {
getSIProgramInfo(CurrentProgramInfo, MF);
} else {
auto I = CallGraphResourceInfo.insert(
std::make_pair(&MF.getFunction(), SIFunctionResourceInfo()));
SIFunctionResourceInfo &Info = I.first->second;
assert(I.second && "should only be called once per function");
Info = analyzeResourceUsage(MF);
}
if (STM.isAmdPalOS())
EmitPALMetadata(MF, CurrentProgramInfo);
else if (!STM.isAmdHsaOS()) {
EmitProgramInfoSI(MF, CurrentProgramInfo);
}
} else {
EmitProgramInfoR600(MF);
}
DisasmLines.clear();
HexLines.clear();
DisasmLineMaxLen = 0;
EmitFunctionBody();
if (isVerbose()) {
MCSectionELF *CommentSection =
Context.getELFSection(".AMDGPU.csdata", ELF::SHT_PROGBITS, 0);
OutStreamer->SwitchSection(CommentSection);
if (STM.getGeneration() >= AMDGPUSubtarget::SOUTHERN_ISLANDS) {
if (!MFI->isEntryFunction()) {
OutStreamer->emitRawComment(" Function info:", false);
SIFunctionResourceInfo &Info = CallGraphResourceInfo[&MF.getFunction()];
emitCommonFunctionComments(
Info.NumVGPR,
Info.getTotalNumSGPRs(MF.getSubtarget<SISubtarget>()),
Info.PrivateSegmentSize,
getFunctionCodeSize(MF));
return false;
}
OutStreamer->emitRawComment(" Kernel info:", false);
emitCommonFunctionComments(CurrentProgramInfo.NumVGPR,
CurrentProgramInfo.NumSGPR,
CurrentProgramInfo.ScratchSize,
getFunctionCodeSize(MF));
OutStreamer->emitRawComment(
" FloatMode: " + Twine(CurrentProgramInfo.FloatMode), false);
OutStreamer->emitRawComment(
" IeeeMode: " + Twine(CurrentProgramInfo.IEEEMode), false);
OutStreamer->emitRawComment(
" LDSByteSize: " + Twine(CurrentProgramInfo.LDSSize) +
" bytes/workgroup (compile time only)", false);
OutStreamer->emitRawComment(
" SGPRBlocks: " + Twine(CurrentProgramInfo.SGPRBlocks), false);
OutStreamer->emitRawComment(
" VGPRBlocks: " + Twine(CurrentProgramInfo.VGPRBlocks), false);
OutStreamer->emitRawComment(
" NumSGPRsForWavesPerEU: " +
Twine(CurrentProgramInfo.NumSGPRsForWavesPerEU), false);
OutStreamer->emitRawComment(
" NumVGPRsForWavesPerEU: " +
Twine(CurrentProgramInfo.NumVGPRsForWavesPerEU), false);
OutStreamer->emitRawComment(
" ReservedVGPRFirst: " + Twine(CurrentProgramInfo.ReservedVGPRFirst),
false);
OutStreamer->emitRawComment(
" ReservedVGPRCount: " + Twine(CurrentProgramInfo.ReservedVGPRCount),
false);
if (MF.getSubtarget<SISubtarget>().debuggerEmitPrologue()) {
OutStreamer->emitRawComment(
" DebuggerWavefrontPrivateSegmentOffsetSGPR: s" +
Twine(CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR), false);
OutStreamer->emitRawComment(
" DebuggerPrivateSegmentBufferSGPR: s" +
Twine(CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR), false);
}
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:USER_SGPR: " +
Twine(G_00B84C_USER_SGPR(CurrentProgramInfo.ComputePGMRSrc2)), false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:TRAP_HANDLER: " +
Twine(G_00B84C_TRAP_HANDLER(CurrentProgramInfo.ComputePGMRSrc2)), false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:TGID_X_EN: " +
Twine(G_00B84C_TGID_X_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:TGID_Y_EN: " +
Twine(G_00B84C_TGID_Y_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:TGID_Z_EN: " +
Twine(G_00B84C_TGID_Z_EN(CurrentProgramInfo.ComputePGMRSrc2)), false);
OutStreamer->emitRawComment(
" COMPUTE_PGM_RSRC2:TIDIG_COMP_CNT: " +
Twine(G_00B84C_TIDIG_COMP_CNT(CurrentProgramInfo.ComputePGMRSrc2)),
false);
} else {
R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
OutStreamer->emitRawComment(
Twine("SQ_PGM_RESOURCES:STACK_SIZE = " + Twine(MFI->CFStackSize)));
}
}
if (STM.dumpCode()) {
OutStreamer->SwitchSection(
Context.getELFSection(".AMDGPU.disasm", ELF::SHT_NOTE, 0));
for (size_t i = 0; i < DisasmLines.size(); ++i) {
std::string Comment = "\n";
if (!HexLines[i].empty()) {
Comment = std::string(DisasmLineMaxLen - DisasmLines[i].size(), ' ');
Comment += " ; " + HexLines[i] + "\n";
}
OutStreamer->EmitBytes(StringRef(DisasmLines[i]));
OutStreamer->EmitBytes(StringRef(Comment));
}
}
return false;
}
void AMDGPUAsmPrinter::EmitProgramInfoR600(const MachineFunction &MF) {
unsigned MaxGPR = 0;
bool killPixel = false;
const R600Subtarget &STM = MF.getSubtarget<R600Subtarget>();
const R600RegisterInfo *RI = STM.getRegisterInfo();
const R600MachineFunctionInfo *MFI = MF.getInfo<R600MachineFunctionInfo>();
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
if (MI.getOpcode() == AMDGPU::KILLGT)
killPixel = true;
unsigned numOperands = MI.getNumOperands();
for (unsigned op_idx = 0; op_idx < numOperands; op_idx++) {
const MachineOperand &MO = MI.getOperand(op_idx);
if (!MO.isReg())
continue;
unsigned HWReg = RI->getHWRegIndex(MO.getReg());
// Register with value > 127 aren't GPR
if (HWReg > 127)
continue;
MaxGPR = std::max(MaxGPR, HWReg);
}
}
}
unsigned RsrcReg;
if (STM.getGeneration() >= R600Subtarget::EVERGREEN) {
// Evergreen / Northern Islands
switch (MF.getFunction().getCallingConv()) {
default: LLVM_FALLTHROUGH;
case CallingConv::AMDGPU_CS: RsrcReg = R_0288D4_SQ_PGM_RESOURCES_LS; break;
case CallingConv::AMDGPU_GS: RsrcReg = R_028878_SQ_PGM_RESOURCES_GS; break;
case CallingConv::AMDGPU_PS: RsrcReg = R_028844_SQ_PGM_RESOURCES_PS; break;
case CallingConv::AMDGPU_VS: RsrcReg = R_028860_SQ_PGM_RESOURCES_VS; break;
}
} else {
// R600 / R700
switch (MF.getFunction().getCallingConv()) {
default: LLVM_FALLTHROUGH;
case CallingConv::AMDGPU_GS: LLVM_FALLTHROUGH;
case CallingConv::AMDGPU_CS: LLVM_FALLTHROUGH;
case CallingConv::AMDGPU_VS: RsrcReg = R_028868_SQ_PGM_RESOURCES_VS; break;
case CallingConv::AMDGPU_PS: RsrcReg = R_028850_SQ_PGM_RESOURCES_PS; break;
}
}
OutStreamer->EmitIntValue(RsrcReg, 4);
OutStreamer->EmitIntValue(S_NUM_GPRS(MaxGPR + 1) |
S_STACK_SIZE(MFI->CFStackSize), 4);
OutStreamer->EmitIntValue(R_02880C_DB_SHADER_CONTROL, 4);
OutStreamer->EmitIntValue(S_02880C_KILL_ENABLE(killPixel), 4);
if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
OutStreamer->EmitIntValue(R_0288E8_SQ_LDS_ALLOC, 4);
OutStreamer->EmitIntValue(alignTo(MFI->getLDSSize(), 4) >> 2, 4);
}
}
uint64_t AMDGPUAsmPrinter::getFunctionCodeSize(const MachineFunction &MF) const {
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
const SIInstrInfo *TII = STM.getInstrInfo();
uint64_t CodeSize = 0;
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
// TODO: CodeSize should account for multiple functions.
// TODO: Should we count size of debug info?
if (MI.isDebugValue())
continue;
CodeSize += TII->getInstSizeInBytes(MI);
}
}
return CodeSize;
}
static bool hasAnyNonFlatUseOfReg(const MachineRegisterInfo &MRI,
const SIInstrInfo &TII,
unsigned Reg) {
for (const MachineOperand &UseOp : MRI.reg_operands(Reg)) {
if (!UseOp.isImplicit() || !TII.isFLAT(*UseOp.getParent()))
return true;
}
return false;
}
static unsigned getNumExtraSGPRs(const SISubtarget &ST,
bool VCCUsed,
bool FlatScrUsed) {
unsigned ExtraSGPRs = 0;
if (VCCUsed)
ExtraSGPRs = 2;
if (ST.getGeneration() < SISubtarget::VOLCANIC_ISLANDS) {
if (FlatScrUsed)
ExtraSGPRs = 4;
} else {
if (ST.isXNACKEnabled())
ExtraSGPRs = 4;
if (FlatScrUsed)
ExtraSGPRs = 6;
}
return ExtraSGPRs;
}
int32_t AMDGPUAsmPrinter::SIFunctionResourceInfo::getTotalNumSGPRs(
const SISubtarget &ST) const {
return NumExplicitSGPR + getNumExtraSGPRs(ST, UsesVCC, UsesFlatScratch);
}
AMDGPUAsmPrinter::SIFunctionResourceInfo AMDGPUAsmPrinter::analyzeResourceUsage(
const MachineFunction &MF) const {
SIFunctionResourceInfo Info;
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
const SISubtarget &ST = MF.getSubtarget<SISubtarget>();
const MachineFrameInfo &FrameInfo = MF.getFrameInfo();
const MachineRegisterInfo &MRI = MF.getRegInfo();
const SIInstrInfo *TII = ST.getInstrInfo();
const SIRegisterInfo &TRI = TII->getRegisterInfo();
Info.UsesFlatScratch = MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_LO) ||
MRI.isPhysRegUsed(AMDGPU::FLAT_SCR_HI);
// Even if FLAT_SCRATCH is implicitly used, it has no effect if flat
// instructions aren't used to access the scratch buffer. Inline assembly may
// need it though.
//
// If we only have implicit uses of flat_scr on flat instructions, it is not
// really needed.
if (Info.UsesFlatScratch && !MFI->hasFlatScratchInit() &&
(!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR) &&
!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_LO) &&
!hasAnyNonFlatUseOfReg(MRI, *TII, AMDGPU::FLAT_SCR_HI))) {
Info.UsesFlatScratch = false;
}
Info.HasDynamicallySizedStack = FrameInfo.hasVarSizedObjects();
Info.PrivateSegmentSize = FrameInfo.getStackSize();
if (MFI->isStackRealigned())
Info.PrivateSegmentSize += FrameInfo.getMaxAlignment();
Info.UsesVCC = MRI.isPhysRegUsed(AMDGPU::VCC_LO) ||
MRI.isPhysRegUsed(AMDGPU::VCC_HI);
// If there are no calls, MachineRegisterInfo can tell us the used register
// count easily.
// A tail call isn't considered a call for MachineFrameInfo's purposes.
if (!FrameInfo.hasCalls() && !FrameInfo.hasTailCall()) {
MCPhysReg HighestVGPRReg = AMDGPU::NoRegister;
for (MCPhysReg Reg : reverse(AMDGPU::VGPR_32RegClass.getRegisters())) {
if (MRI.isPhysRegUsed(Reg)) {
HighestVGPRReg = Reg;
break;
}
}
MCPhysReg HighestSGPRReg = AMDGPU::NoRegister;
for (MCPhysReg Reg : reverse(AMDGPU::SGPR_32RegClass.getRegisters())) {
if (MRI.isPhysRegUsed(Reg)) {
HighestSGPRReg = Reg;
break;
}
}
// We found the maximum register index. They start at 0, so add one to get the
// number of registers.
Info.NumVGPR = HighestVGPRReg == AMDGPU::NoRegister ? 0 :
TRI.getHWRegIndex(HighestVGPRReg) + 1;
Info.NumExplicitSGPR = HighestSGPRReg == AMDGPU::NoRegister ? 0 :
TRI.getHWRegIndex(HighestSGPRReg) + 1;
return Info;
}
int32_t MaxVGPR = -1;
int32_t MaxSGPR = -1;
uint64_t CalleeFrameSize = 0;
for (const MachineBasicBlock &MBB : MF) {
for (const MachineInstr &MI : MBB) {
// TODO: Check regmasks? Do they occur anywhere except calls?
for (const MachineOperand &MO : MI.operands()) {
unsigned Width = 0;
bool IsSGPR = false;
if (!MO.isReg())
continue;
unsigned Reg = MO.getReg();
switch (Reg) {
case AMDGPU::EXEC:
case AMDGPU::EXEC_LO:
case AMDGPU::EXEC_HI:
case AMDGPU::SCC:
case AMDGPU::M0:
case AMDGPU::SRC_SHARED_BASE:
case AMDGPU::SRC_SHARED_LIMIT:
case AMDGPU::SRC_PRIVATE_BASE:
case AMDGPU::SRC_PRIVATE_LIMIT:
continue;
case AMDGPU::NoRegister:
assert(MI.isDebugValue());
continue;
case AMDGPU::VCC:
case AMDGPU::VCC_LO:
case AMDGPU::VCC_HI:
Info.UsesVCC = true;
continue;
case AMDGPU::FLAT_SCR:
case AMDGPU::FLAT_SCR_LO:
case AMDGPU::FLAT_SCR_HI:
continue;
case AMDGPU::XNACK_MASK:
case AMDGPU::XNACK_MASK_LO:
case AMDGPU::XNACK_MASK_HI:
llvm_unreachable("xnack_mask registers should not be used");
case AMDGPU::TBA:
case AMDGPU::TBA_LO:
case AMDGPU::TBA_HI:
case AMDGPU::TMA:
case AMDGPU::TMA_LO:
case AMDGPU::TMA_HI:
llvm_unreachable("trap handler registers should not be used");
default:
break;
}
if (AMDGPU::SReg_32RegClass.contains(Reg)) {
assert(!AMDGPU::TTMP_32RegClass.contains(Reg) &&
"trap handler registers should not be used");
IsSGPR = true;
Width = 1;
} else if (AMDGPU::VGPR_32RegClass.contains(Reg)) {
IsSGPR = false;
Width = 1;
} else if (AMDGPU::SReg_64RegClass.contains(Reg)) {
assert(!AMDGPU::TTMP_64RegClass.contains(Reg) &&
"trap handler registers should not be used");
IsSGPR = true;
Width = 2;
} else if (AMDGPU::VReg_64RegClass.contains(Reg)) {
IsSGPR = false;
Width = 2;
} else if (AMDGPU::VReg_96RegClass.contains(Reg)) {
IsSGPR = false;
Width = 3;
} else if (AMDGPU::SReg_128RegClass.contains(Reg)) {
assert(!AMDGPU::TTMP_128RegClass.contains(Reg) &&
"trap handler registers should not be used");
IsSGPR = true;
Width = 4;
} else if (AMDGPU::VReg_128RegClass.contains(Reg)) {
IsSGPR = false;
Width = 4;
} else if (AMDGPU::SReg_256RegClass.contains(Reg)) {
assert(!AMDGPU::TTMP_256RegClass.contains(Reg) &&
"trap handler registers should not be used");
IsSGPR = true;
Width = 8;
} else if (AMDGPU::VReg_256RegClass.contains(Reg)) {
IsSGPR = false;
Width = 8;
} else if (AMDGPU::SReg_512RegClass.contains(Reg)) {
assert(!AMDGPU::TTMP_512RegClass.contains(Reg) &&
"trap handler registers should not be used");
IsSGPR = true;
Width = 16;
} else if (AMDGPU::VReg_512RegClass.contains(Reg)) {
IsSGPR = false;
Width = 16;
} else {
llvm_unreachable("Unknown register class");
}
unsigned HWReg = TRI.getHWRegIndex(Reg);
int MaxUsed = HWReg + Width - 1;
if (IsSGPR) {
MaxSGPR = MaxUsed > MaxSGPR ? MaxUsed : MaxSGPR;
} else {
MaxVGPR = MaxUsed > MaxVGPR ? MaxUsed : MaxVGPR;
}
}
if (MI.isCall()) {
// Pseudo used just to encode the underlying global. Is there a better
// way to track this?
const MachineOperand *CalleeOp
= TII->getNamedOperand(MI, AMDGPU::OpName::callee);
const Function *Callee = cast<Function>(CalleeOp->getGlobal());
if (Callee->isDeclaration()) {
// If this is a call to an external function, we can't do much. Make
// conservative guesses.
// 48 SGPRs - vcc, - flat_scr, -xnack
int MaxSGPRGuess = 47 - getNumExtraSGPRs(ST, true,
ST.hasFlatAddressSpace());
MaxSGPR = std::max(MaxSGPR, MaxSGPRGuess);
MaxVGPR = std::max(MaxVGPR, 23);
CalleeFrameSize = std::max(CalleeFrameSize, UINT64_C(16384));
Info.UsesVCC = true;
Info.UsesFlatScratch = ST.hasFlatAddressSpace();
Info.HasDynamicallySizedStack = true;
} else {
// We force CodeGen to run in SCC order, so the callee's register
// usage etc. should be the cumulative usage of all callees.
auto I = CallGraphResourceInfo.find(Callee);
assert(I != CallGraphResourceInfo.end() &&
"callee should have been handled before caller");
MaxSGPR = std::max(I->second.NumExplicitSGPR - 1, MaxSGPR);
MaxVGPR = std::max(I->second.NumVGPR - 1, MaxVGPR);
CalleeFrameSize
= std::max(I->second.PrivateSegmentSize, CalleeFrameSize);
Info.UsesVCC |= I->second.UsesVCC;
Info.UsesFlatScratch |= I->second.UsesFlatScratch;
Info.HasDynamicallySizedStack |= I->second.HasDynamicallySizedStack;
Info.HasRecursion |= I->second.HasRecursion;
}
if (!Callee->doesNotRecurse())
Info.HasRecursion = true;
}
}
}
Info.NumExplicitSGPR = MaxSGPR + 1;
Info.NumVGPR = MaxVGPR + 1;
Info.PrivateSegmentSize += CalleeFrameSize;
return Info;
}
void AMDGPUAsmPrinter::getSIProgramInfo(SIProgramInfo &ProgInfo,
const MachineFunction &MF) {
SIFunctionResourceInfo Info = analyzeResourceUsage(MF);
ProgInfo.NumVGPR = Info.NumVGPR;
ProgInfo.NumSGPR = Info.NumExplicitSGPR;
ProgInfo.ScratchSize = Info.PrivateSegmentSize;
ProgInfo.VCCUsed = Info.UsesVCC;
ProgInfo.FlatUsed = Info.UsesFlatScratch;
ProgInfo.DynamicCallStack = Info.HasDynamicallySizedStack || Info.HasRecursion;
if (!isUInt<32>(ProgInfo.ScratchSize)) {
DiagnosticInfoStackSize DiagStackSize(MF.getFunction(),
ProgInfo.ScratchSize, DS_Error);
MF.getFunction().getContext().diagnose(DiagStackSize);
}
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
const SIInstrInfo *TII = STM.getInstrInfo();
const SIRegisterInfo *RI = &TII->getRegisterInfo();
unsigned ExtraSGPRs = getNumExtraSGPRs(STM,
ProgInfo.VCCUsed,
ProgInfo.FlatUsed);
unsigned ExtraVGPRs = STM.getReservedNumVGPRs(MF);
// Check the addressable register limit before we add ExtraSGPRs.
if (STM.getGeneration() >= AMDGPUSubtarget::VOLCANIC_ISLANDS &&
!STM.hasSGPRInitBug()) {
unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
// This can happen due to a compiler bug or when using inline asm.
LLVMContext &Ctx = MF.getFunction().getContext();
DiagnosticInfoResourceLimit Diag(MF.getFunction(),
"addressable scalar registers",
ProgInfo.NumSGPR, DS_Error,
DK_ResourceLimit,
MaxAddressableNumSGPRs);
Ctx.diagnose(Diag);
ProgInfo.NumSGPR = MaxAddressableNumSGPRs - 1;
}
}
// Account for extra SGPRs and VGPRs reserved for debugger use.
ProgInfo.NumSGPR += ExtraSGPRs;
ProgInfo.NumVGPR += ExtraVGPRs;
// Ensure there are enough SGPRs and VGPRs for wave dispatch, where wave
// dispatch registers are function args.
unsigned WaveDispatchNumSGPR = 0, WaveDispatchNumVGPR = 0;
for (auto &Arg : MF.getFunction().args()) {
unsigned NumRegs = (Arg.getType()->getPrimitiveSizeInBits() + 31) / 32;
if (Arg.hasAttribute(Attribute::InReg))
WaveDispatchNumSGPR += NumRegs;
else
WaveDispatchNumVGPR += NumRegs;
}
ProgInfo.NumSGPR = std::max(ProgInfo.NumSGPR, WaveDispatchNumSGPR);
ProgInfo.NumVGPR = std::max(ProgInfo.NumVGPR, WaveDispatchNumVGPR);
// Adjust number of registers used to meet default/requested minimum/maximum
// number of waves per execution unit request.
ProgInfo.NumSGPRsForWavesPerEU = std::max(
std::max(ProgInfo.NumSGPR, 1u), STM.getMinNumSGPRs(MFI->getMaxWavesPerEU()));
ProgInfo.NumVGPRsForWavesPerEU = std::max(
std::max(ProgInfo.NumVGPR, 1u), STM.getMinNumVGPRs(MFI->getMaxWavesPerEU()));
if (STM.getGeneration() <= AMDGPUSubtarget::SEA_ISLANDS ||
STM.hasSGPRInitBug()) {
unsigned MaxAddressableNumSGPRs = STM.getAddressableNumSGPRs();
if (ProgInfo.NumSGPR > MaxAddressableNumSGPRs) {
// This can happen due to a compiler bug or when using inline asm to use
// the registers which are usually reserved for vcc etc.
LLVMContext &Ctx = MF.getFunction().getContext();
DiagnosticInfoResourceLimit Diag(MF.getFunction(),
"scalar registers",
ProgInfo.NumSGPR, DS_Error,
DK_ResourceLimit,
MaxAddressableNumSGPRs);
Ctx.diagnose(Diag);
ProgInfo.NumSGPR = MaxAddressableNumSGPRs;
ProgInfo.NumSGPRsForWavesPerEU = MaxAddressableNumSGPRs;
}
}
if (STM.hasSGPRInitBug()) {
ProgInfo.NumSGPR =
AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
ProgInfo.NumSGPRsForWavesPerEU =
AMDGPU::IsaInfo::FIXED_NUM_SGPRS_FOR_INIT_BUG;
}
if (MFI->getNumUserSGPRs() > STM.getMaxNumUserSGPRs()) {
LLVMContext &Ctx = MF.getFunction().getContext();
DiagnosticInfoResourceLimit Diag(MF.getFunction(), "user SGPRs",
MFI->getNumUserSGPRs(), DS_Error);
Ctx.diagnose(Diag);
}
if (MFI->getLDSSize() > static_cast<unsigned>(STM.getLocalMemorySize())) {
LLVMContext &Ctx = MF.getFunction().getContext();
DiagnosticInfoResourceLimit Diag(MF.getFunction(), "local memory",
MFI->getLDSSize(), DS_Error);
Ctx.diagnose(Diag);
}
// SGPRBlocks is actual number of SGPR blocks minus 1.
ProgInfo.SGPRBlocks = alignTo(ProgInfo.NumSGPRsForWavesPerEU,
STM.getSGPREncodingGranule());
ProgInfo.SGPRBlocks = ProgInfo.SGPRBlocks / STM.getSGPREncodingGranule() - 1;
// VGPRBlocks is actual number of VGPR blocks minus 1.
ProgInfo.VGPRBlocks = alignTo(ProgInfo.NumVGPRsForWavesPerEU,
STM.getVGPREncodingGranule());
ProgInfo.VGPRBlocks = ProgInfo.VGPRBlocks / STM.getVGPREncodingGranule() - 1;
// Record first reserved VGPR and number of reserved VGPRs.
ProgInfo.ReservedVGPRFirst = STM.debuggerReserveRegs() ? ProgInfo.NumVGPR : 0;
ProgInfo.ReservedVGPRCount = STM.getReservedNumVGPRs(MF);
// Update DebuggerWavefrontPrivateSegmentOffsetSGPR and
// DebuggerPrivateSegmentBufferSGPR fields if "amdgpu-debugger-emit-prologue"
// attribute was requested.
if (STM.debuggerEmitPrologue()) {
ProgInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR =
RI->getHWRegIndex(MFI->getScratchWaveOffsetReg());
ProgInfo.DebuggerPrivateSegmentBufferSGPR =
RI->getHWRegIndex(MFI->getScratchRSrcReg());
}
// Set the value to initialize FP_ROUND and FP_DENORM parts of the mode
// register.
ProgInfo.FloatMode = getFPMode(MF);
ProgInfo.IEEEMode = STM.enableIEEEBit(MF);
// Make clamp modifier on NaN input returns 0.
ProgInfo.DX10Clamp = STM.enableDX10Clamp();
unsigned LDSAlignShift;
if (STM.getGeneration() < SISubtarget::SEA_ISLANDS) {
// LDS is allocated in 64 dword blocks.
LDSAlignShift = 8;
} else {
// LDS is allocated in 128 dword blocks.
LDSAlignShift = 9;
}
unsigned LDSSpillSize =
MFI->getLDSWaveSpillSize() * MFI->getMaxFlatWorkGroupSize();
ProgInfo.LDSSize = MFI->getLDSSize() + LDSSpillSize;
ProgInfo.LDSBlocks =
alignTo(ProgInfo.LDSSize, 1ULL << LDSAlignShift) >> LDSAlignShift;
// Scratch is allocated in 256 dword blocks.
unsigned ScratchAlignShift = 10;
// We need to program the hardware with the amount of scratch memory that
// is used by the entire wave. ProgInfo.ScratchSize is the amount of
// scratch memory used per thread.
ProgInfo.ScratchBlocks =
alignTo(ProgInfo.ScratchSize * STM.getWavefrontSize(),
1ULL << ScratchAlignShift) >>
ScratchAlignShift;
ProgInfo.ComputePGMRSrc1 =
S_00B848_VGPRS(ProgInfo.VGPRBlocks) |
S_00B848_SGPRS(ProgInfo.SGPRBlocks) |
S_00B848_PRIORITY(ProgInfo.Priority) |
S_00B848_FLOAT_MODE(ProgInfo.FloatMode) |
S_00B848_PRIV(ProgInfo.Priv) |
S_00B848_DX10_CLAMP(ProgInfo.DX10Clamp) |
S_00B848_DEBUG_MODE(ProgInfo.DebugMode) |
S_00B848_IEEE_MODE(ProgInfo.IEEEMode);
// 0 = X, 1 = XY, 2 = XYZ
unsigned TIDIGCompCnt = 0;
if (MFI->hasWorkItemIDZ())
TIDIGCompCnt = 2;
else if (MFI->hasWorkItemIDY())
TIDIGCompCnt = 1;
ProgInfo.ComputePGMRSrc2 =
S_00B84C_SCRATCH_EN(ProgInfo.ScratchBlocks > 0) |
S_00B84C_USER_SGPR(MFI->getNumUserSGPRs()) |
S_00B84C_TRAP_HANDLER(STM.isTrapHandlerEnabled()) |
S_00B84C_TGID_X_EN(MFI->hasWorkGroupIDX()) |
S_00B84C_TGID_Y_EN(MFI->hasWorkGroupIDY()) |
S_00B84C_TGID_Z_EN(MFI->hasWorkGroupIDZ()) |
S_00B84C_TG_SIZE_EN(MFI->hasWorkGroupInfo()) |
S_00B84C_TIDIG_COMP_CNT(TIDIGCompCnt) |
S_00B84C_EXCP_EN_MSB(0) |
// For AMDHSA, LDS_SIZE must be zero, as it is populated by the CP.
S_00B84C_LDS_SIZE(STM.isAmdHsaOS() ? 0 : ProgInfo.LDSBlocks) |
S_00B84C_EXCP_EN(0);
}
static unsigned getRsrcReg(CallingConv::ID CallConv) {
switch (CallConv) {
default: LLVM_FALLTHROUGH;
case CallingConv::AMDGPU_CS: return R_00B848_COMPUTE_PGM_RSRC1;
case CallingConv::AMDGPU_LS: return R_00B528_SPI_SHADER_PGM_RSRC1_LS;
case CallingConv::AMDGPU_HS: return R_00B428_SPI_SHADER_PGM_RSRC1_HS;
case CallingConv::AMDGPU_ES: return R_00B328_SPI_SHADER_PGM_RSRC1_ES;
case CallingConv::AMDGPU_GS: return R_00B228_SPI_SHADER_PGM_RSRC1_GS;
case CallingConv::AMDGPU_VS: return R_00B128_SPI_SHADER_PGM_RSRC1_VS;
case CallingConv::AMDGPU_PS: return R_00B028_SPI_SHADER_PGM_RSRC1_PS;
}
}
void AMDGPUAsmPrinter::EmitProgramInfoSI(const MachineFunction &MF,
const SIProgramInfo &CurrentProgramInfo) {
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
unsigned RsrcReg = getRsrcReg(MF.getFunction().getCallingConv());
if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
OutStreamer->EmitIntValue(R_00B848_COMPUTE_PGM_RSRC1, 4);
OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc1, 4);
OutStreamer->EmitIntValue(R_00B84C_COMPUTE_PGM_RSRC2, 4);
OutStreamer->EmitIntValue(CurrentProgramInfo.ComputePGMRSrc2, 4);
OutStreamer->EmitIntValue(R_00B860_COMPUTE_TMPRING_SIZE, 4);
OutStreamer->EmitIntValue(S_00B860_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4);
// TODO: Should probably note flat usage somewhere. SC emits a "FlatPtr32 =
// 0" comment but I don't see a corresponding field in the register spec.
} else {
OutStreamer->EmitIntValue(RsrcReg, 4);
OutStreamer->EmitIntValue(S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) |
S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks), 4);
if (STM.isVGPRSpillingEnabled(MF.getFunction())) {
OutStreamer->EmitIntValue(R_0286E8_SPI_TMPRING_SIZE, 4);
OutStreamer->EmitIntValue(S_0286E8_WAVESIZE(CurrentProgramInfo.ScratchBlocks), 4);
}
}
if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) {
OutStreamer->EmitIntValue(R_00B02C_SPI_SHADER_PGM_RSRC2_PS, 4);
OutStreamer->EmitIntValue(S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks), 4);
OutStreamer->EmitIntValue(R_0286CC_SPI_PS_INPUT_ENA, 4);
OutStreamer->EmitIntValue(MFI->getPSInputEnable(), 4);
OutStreamer->EmitIntValue(R_0286D0_SPI_PS_INPUT_ADDR, 4);
OutStreamer->EmitIntValue(MFI->getPSInputAddr(), 4);
}
OutStreamer->EmitIntValue(R_SPILLED_SGPRS, 4);
OutStreamer->EmitIntValue(MFI->getNumSpilledSGPRs(), 4);
OutStreamer->EmitIntValue(R_SPILLED_VGPRS, 4);
OutStreamer->EmitIntValue(MFI->getNumSpilledVGPRs(), 4);
}
// This is the equivalent of EmitProgramInfoSI above, but for when the OS type
// is AMDPAL. It stores each compute/SPI register setting and other PAL
// metadata items into the PALMetadataMap, combining with any provided by the
// frontend as LLVM metadata. Once all functions are written, PALMetadataMap is
// then written as a single block in the .note section.
void AMDGPUAsmPrinter::EmitPALMetadata(const MachineFunction &MF,
const SIProgramInfo &CurrentProgramInfo) {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
// Given the calling convention, calculate the register number for rsrc1. In
// principle the register number could change in future hardware, but we know
// it is the same for gfx6-9 (except that LS and ES don't exist on gfx9), so
// we can use the same fixed value that .AMDGPU.config has for Mesa. Note
// that we use a register number rather than a byte offset, so we need to
// divide by 4.
unsigned Rsrc1Reg = getRsrcReg(MF.getFunction().getCallingConv()) / 4;
unsigned Rsrc2Reg = Rsrc1Reg + 1;
// Also calculate the PAL metadata key for *S_SCRATCH_SIZE. It can be used
// with a constant offset to access any non-register shader-specific PAL
// metadata key.
unsigned ScratchSizeKey = PALMD::Key::CS_SCRATCH_SIZE;
switch (MF.getFunction().getCallingConv()) {
case CallingConv::AMDGPU_PS:
ScratchSizeKey = PALMD::Key::PS_SCRATCH_SIZE;
break;
case CallingConv::AMDGPU_VS:
ScratchSizeKey = PALMD::Key::VS_SCRATCH_SIZE;
break;
case CallingConv::AMDGPU_GS:
ScratchSizeKey = PALMD::Key::GS_SCRATCH_SIZE;
break;
case CallingConv::AMDGPU_ES:
ScratchSizeKey = PALMD::Key::ES_SCRATCH_SIZE;
break;
case CallingConv::AMDGPU_HS:
ScratchSizeKey = PALMD::Key::HS_SCRATCH_SIZE;
break;
case CallingConv::AMDGPU_LS:
ScratchSizeKey = PALMD::Key::LS_SCRATCH_SIZE;
break;
}
unsigned NumUsedVgprsKey = ScratchSizeKey +
PALMD::Key::VS_NUM_USED_VGPRS - PALMD::Key::VS_SCRATCH_SIZE;
unsigned NumUsedSgprsKey = ScratchSizeKey +
PALMD::Key::VS_NUM_USED_SGPRS - PALMD::Key::VS_SCRATCH_SIZE;
PALMetadataMap[NumUsedVgprsKey] = CurrentProgramInfo.NumVGPRsForWavesPerEU;
PALMetadataMap[NumUsedSgprsKey] = CurrentProgramInfo.NumSGPRsForWavesPerEU;
if (AMDGPU::isCompute(MF.getFunction().getCallingConv())) {
PALMetadataMap[Rsrc1Reg] |= CurrentProgramInfo.ComputePGMRSrc1;
PALMetadataMap[Rsrc2Reg] |= CurrentProgramInfo.ComputePGMRSrc2;
// ScratchSize is in bytes, 16 aligned.
PALMetadataMap[ScratchSizeKey] |=
alignTo(CurrentProgramInfo.ScratchSize, 16);
} else {
PALMetadataMap[Rsrc1Reg] |= S_00B028_VGPRS(CurrentProgramInfo.VGPRBlocks) |
S_00B028_SGPRS(CurrentProgramInfo.SGPRBlocks);
if (CurrentProgramInfo.ScratchBlocks > 0)
PALMetadataMap[Rsrc2Reg] |= S_00B84C_SCRATCH_EN(1);
// ScratchSize is in bytes, 16 aligned.
PALMetadataMap[ScratchSizeKey] |=
alignTo(CurrentProgramInfo.ScratchSize, 16);
}
if (MF.getFunction().getCallingConv() == CallingConv::AMDGPU_PS) {
PALMetadataMap[Rsrc2Reg] |=
S_00B02C_EXTRA_LDS_SIZE(CurrentProgramInfo.LDSBlocks);
PALMetadataMap[R_0286CC_SPI_PS_INPUT_ENA / 4] |= MFI->getPSInputEnable();
PALMetadataMap[R_0286D0_SPI_PS_INPUT_ADDR / 4] |= MFI->getPSInputAddr();
}
}
// This is supposed to be log2(Size)
static amd_element_byte_size_t getElementByteSizeValue(unsigned Size) {
switch (Size) {
case 4:
return AMD_ELEMENT_4_BYTES;
case 8:
return AMD_ELEMENT_8_BYTES;
case 16:
return AMD_ELEMENT_16_BYTES;
default:
llvm_unreachable("invalid private_element_size");
}
}
void AMDGPUAsmPrinter::getAmdKernelCode(amd_kernel_code_t &Out,
const SIProgramInfo &CurrentProgramInfo,
const MachineFunction &MF) const {
const SIMachineFunctionInfo *MFI = MF.getInfo<SIMachineFunctionInfo>();
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
AMDGPU::initDefaultAMDKernelCodeT(Out, STM.getFeatureBits());
Out.compute_pgm_resource_registers =
CurrentProgramInfo.ComputePGMRSrc1 |
(CurrentProgramInfo.ComputePGMRSrc2 << 32);
Out.code_properties = AMD_CODE_PROPERTY_IS_PTR64;
if (CurrentProgramInfo.DynamicCallStack)
Out.code_properties |= AMD_CODE_PROPERTY_IS_DYNAMIC_CALLSTACK;
AMD_HSA_BITS_SET(Out.code_properties,
AMD_CODE_PROPERTY_PRIVATE_ELEMENT_SIZE,
getElementByteSizeValue(STM.getMaxPrivateElementSize()));
if (MFI->hasPrivateSegmentBuffer()) {
Out.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_PRIVATE_SEGMENT_BUFFER;
}
if (MFI->hasDispatchPtr())
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
if (MFI->hasQueuePtr())
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_QUEUE_PTR;
if (MFI->hasKernargSegmentPtr())
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_KERNARG_SEGMENT_PTR;
if (MFI->hasDispatchID())
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_ID;
if (MFI->hasFlatScratchInit())
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_FLAT_SCRATCH_INIT;
if (MFI->hasGridWorkgroupCountX()) {
Out.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_X;
}
if (MFI->hasGridWorkgroupCountY()) {
Out.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Y;
}
if (MFI->hasGridWorkgroupCountZ()) {
Out.code_properties |=
AMD_CODE_PROPERTY_ENABLE_SGPR_GRID_WORKGROUP_COUNT_Z;
}
if (MFI->hasDispatchPtr())
Out.code_properties |= AMD_CODE_PROPERTY_ENABLE_SGPR_DISPATCH_PTR;
if (STM.debuggerSupported())
Out.code_properties |= AMD_CODE_PROPERTY_IS_DEBUG_SUPPORTED;
if (STM.isXNACKEnabled())
Out.code_properties |= AMD_CODE_PROPERTY_IS_XNACK_SUPPORTED;
// FIXME: Should use getKernArgSize
Out.kernarg_segment_byte_size =
STM.getKernArgSegmentSize(MF, MFI->getABIArgOffset());
Out.wavefront_sgpr_count = CurrentProgramInfo.NumSGPR;
Out.workitem_vgpr_count = CurrentProgramInfo.NumVGPR;
Out.workitem_private_segment_byte_size = CurrentProgramInfo.ScratchSize;
Out.workgroup_group_segment_byte_size = CurrentProgramInfo.LDSSize;
Out.reserved_vgpr_first = CurrentProgramInfo.ReservedVGPRFirst;
Out.reserved_vgpr_count = CurrentProgramInfo.ReservedVGPRCount;
// These alignment values are specified in powers of two, so alignment =
// 2^n. The minimum alignment is 2^4 = 16.
Out.kernarg_segment_alignment = std::max((size_t)4,
countTrailingZeros(MFI->getMaxKernArgAlign()));
if (STM.debuggerEmitPrologue()) {
Out.debug_wavefront_private_segment_offset_sgpr =
CurrentProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR;
Out.debug_private_segment_buffer_sgpr =
CurrentProgramInfo.DebuggerPrivateSegmentBufferSGPR;
}
}
AMDGPU::HSAMD::Kernel::CodeProps::Metadata AMDGPUAsmPrinter::getHSACodeProps(
const MachineFunction &MF,
const SIProgramInfo &ProgramInfo) const {
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
const SIMachineFunctionInfo &MFI = *MF.getInfo<SIMachineFunctionInfo>();
HSAMD::Kernel::CodeProps::Metadata HSACodeProps;
HSACodeProps.mKernargSegmentSize =
STM.getKernArgSegmentSize(MF, MFI.getABIArgOffset());
HSACodeProps.mGroupSegmentFixedSize = ProgramInfo.LDSSize;
HSACodeProps.mPrivateSegmentFixedSize = ProgramInfo.ScratchSize;
HSACodeProps.mKernargSegmentAlign =
std::max(uint32_t(4), MFI.getMaxKernArgAlign());
HSACodeProps.mWavefrontSize = STM.getWavefrontSize();
HSACodeProps.mNumSGPRs = CurrentProgramInfo.NumSGPR;
HSACodeProps.mNumVGPRs = CurrentProgramInfo.NumVGPR;
HSACodeProps.mMaxFlatWorkGroupSize = MFI.getMaxFlatWorkGroupSize();
HSACodeProps.mIsDynamicCallStack = ProgramInfo.DynamicCallStack;
HSACodeProps.mIsXNACKEnabled = STM.isXNACKEnabled();
HSACodeProps.mNumSpilledSGPRs = MFI.getNumSpilledSGPRs();
HSACodeProps.mNumSpilledVGPRs = MFI.getNumSpilledVGPRs();
return HSACodeProps;
}
AMDGPU::HSAMD::Kernel::DebugProps::Metadata AMDGPUAsmPrinter::getHSADebugProps(
const MachineFunction &MF,
const SIProgramInfo &ProgramInfo) const {
const SISubtarget &STM = MF.getSubtarget<SISubtarget>();
HSAMD::Kernel::DebugProps::Metadata HSADebugProps;
if (!STM.debuggerSupported())
return HSADebugProps;
HSADebugProps.mDebuggerABIVersion.push_back(1);
HSADebugProps.mDebuggerABIVersion.push_back(0);
HSADebugProps.mReservedNumVGPRs = ProgramInfo.ReservedVGPRCount;
HSADebugProps.mReservedFirstVGPR = ProgramInfo.ReservedVGPRFirst;
if (STM.debuggerEmitPrologue()) {
HSADebugProps.mPrivateSegmentBufferSGPR =
ProgramInfo.DebuggerPrivateSegmentBufferSGPR;
HSADebugProps.mWavefrontPrivateSegmentOffsetSGPR =
ProgramInfo.DebuggerWavefrontPrivateSegmentOffsetSGPR;
}
return HSADebugProps;
}
bool AMDGPUAsmPrinter::PrintAsmOperand(const MachineInstr *MI, unsigned OpNo,
unsigned AsmVariant,
const char *ExtraCode, raw_ostream &O) {
// First try the generic code, which knows about modifiers like 'c' and 'n'.
if (!AsmPrinter::PrintAsmOperand(MI, OpNo, AsmVariant, ExtraCode, O))
return false;
if (ExtraCode && ExtraCode[0]) {
if (ExtraCode[1] != 0)
return true; // Unknown modifier.
switch (ExtraCode[0]) {
case 'r':
break;
default:
return true;
}
}
// TODO: Should be able to support other operand types like globals.
const MachineOperand &MO = MI->getOperand(OpNo);
if (MO.isReg()) {
AMDGPUInstPrinter::printRegOperand(MO.getReg(), O,
*MF->getSubtarget().getRegisterInfo());
return false;
}
return true;
}