forked from OSchip/llvm-project
569 lines
19 KiB
C++
569 lines
19 KiB
C++
//===- lib/MC/MCPseudoProbe.cpp - Pseudo probe encoding support ----------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/MC/MCPseudoProbe.h"
|
|
#include "llvm/MC/MCAsmInfo.h"
|
|
#include "llvm/MC/MCContext.h"
|
|
#include "llvm/MC/MCExpr.h"
|
|
#include "llvm/MC/MCFragment.h"
|
|
#include "llvm/MC/MCObjectFileInfo.h"
|
|
#include "llvm/MC/MCObjectStreamer.h"
|
|
#include "llvm/Support/Endian.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <limits>
|
|
#include <memory>
|
|
#include <sstream>
|
|
|
|
#define DEBUG_TYPE "mcpseudoprobe"
|
|
|
|
using namespace llvm;
|
|
using namespace support;
|
|
|
|
#ifndef NDEBUG
|
|
int MCPseudoProbeTable::DdgPrintIndent = 0;
|
|
#endif
|
|
|
|
static const MCExpr *buildSymbolDiff(MCObjectStreamer *MCOS, const MCSymbol *A,
|
|
const MCSymbol *B) {
|
|
MCContext &Context = MCOS->getContext();
|
|
MCSymbolRefExpr::VariantKind Variant = MCSymbolRefExpr::VK_None;
|
|
const MCExpr *ARef = MCSymbolRefExpr::create(A, Variant, Context);
|
|
const MCExpr *BRef = MCSymbolRefExpr::create(B, Variant, Context);
|
|
const MCExpr *AddrDelta =
|
|
MCBinaryExpr::create(MCBinaryExpr::Sub, ARef, BRef, Context);
|
|
return AddrDelta;
|
|
}
|
|
|
|
void MCPseudoProbe::emit(MCObjectStreamer *MCOS,
|
|
const MCPseudoProbe *LastProbe) const {
|
|
// Emit Index
|
|
MCOS->emitULEB128IntValue(Index);
|
|
// Emit Type and the flag:
|
|
// Type (bit 0 to 3), with bit 4 to 6 for attributes.
|
|
// Flag (bit 7, 0 - code address, 1 - address delta). This indicates whether
|
|
// the following field is a symbolic code address or an address delta.
|
|
assert(Type <= 0xF && "Probe type too big to encode, exceeding 15");
|
|
assert(Attributes <= 0x7 &&
|
|
"Probe attributes too big to encode, exceeding 7");
|
|
uint8_t PackedType = Type | (Attributes << 4);
|
|
uint8_t Flag = LastProbe ? ((int8_t)MCPseudoProbeFlag::AddressDelta << 7) : 0;
|
|
MCOS->emitInt8(Flag | PackedType);
|
|
|
|
if (LastProbe) {
|
|
// Emit the delta between the address label and LastProbe.
|
|
const MCExpr *AddrDelta =
|
|
buildSymbolDiff(MCOS, Label, LastProbe->getLabel());
|
|
int64_t Delta;
|
|
if (AddrDelta->evaluateAsAbsolute(Delta, MCOS->getAssemblerPtr())) {
|
|
MCOS->emitSLEB128IntValue(Delta);
|
|
} else {
|
|
MCOS->insert(new MCPseudoProbeAddrFragment(AddrDelta));
|
|
}
|
|
} else {
|
|
// Emit label as a symbolic code address.
|
|
MCOS->emitSymbolValue(
|
|
Label, MCOS->getContext().getAsmInfo()->getCodePointerSize());
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
|
|
dbgs() << "Probe: " << Index << "\n";
|
|
});
|
|
}
|
|
|
|
void MCPseudoProbeInlineTree::addPseudoProbe(
|
|
const MCPseudoProbe &Probe, const MCPseudoProbeInlineStack &InlineStack) {
|
|
// The function should not be called on the root.
|
|
assert(isRoot() && "Should not be called on root");
|
|
|
|
// When it comes here, the input look like:
|
|
// Probe: GUID of C, ...
|
|
// InlineStack: [88, A], [66, B]
|
|
// which means, Function A inlines function B at call site with a probe id of
|
|
// 88, and B inlines C at probe 66. The tri-tree expects a tree path like {[0,
|
|
// A], [88, B], [66, C]} to locate the tree node where the probe should be
|
|
// added. Note that the edge [0, A] means A is the top-level function we are
|
|
// emitting probes for.
|
|
|
|
// Make a [0, A] edge.
|
|
// An empty inline stack means the function that the probe originates from
|
|
// is a top-level function.
|
|
InlineSite Top;
|
|
if (InlineStack.empty()) {
|
|
Top = InlineSite(Probe.getGuid(), 0);
|
|
} else {
|
|
Top = InlineSite(std::get<0>(InlineStack.front()), 0);
|
|
}
|
|
|
|
auto *Cur = getOrAddNode(Top);
|
|
|
|
// Make interior edges by walking the inline stack. Once it's done, Cur should
|
|
// point to the node that the probe originates from.
|
|
if (!InlineStack.empty()) {
|
|
auto Iter = InlineStack.begin();
|
|
auto Index = std::get<1>(*Iter);
|
|
Iter++;
|
|
for (; Iter != InlineStack.end(); Iter++) {
|
|
// Make an edge by using the previous probe id and current GUID.
|
|
Cur = Cur->getOrAddNode(InlineSite(std::get<0>(*Iter), Index));
|
|
Index = std::get<1>(*Iter);
|
|
}
|
|
Cur = Cur->getOrAddNode(InlineSite(Probe.getGuid(), Index));
|
|
}
|
|
|
|
Cur->Probes.push_back(Probe);
|
|
}
|
|
|
|
void MCPseudoProbeInlineTree::emit(MCObjectStreamer *MCOS,
|
|
const MCPseudoProbe *&LastProbe) {
|
|
LLVM_DEBUG({
|
|
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
|
|
dbgs() << "Group [\n";
|
|
MCPseudoProbeTable::DdgPrintIndent += 2;
|
|
});
|
|
// Emit probes grouped by GUID.
|
|
if (Guid != 0) {
|
|
LLVM_DEBUG({
|
|
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
|
|
dbgs() << "GUID: " << Guid << "\n";
|
|
});
|
|
// Emit Guid
|
|
MCOS->emitInt64(Guid);
|
|
// Emit number of probes in this node
|
|
MCOS->emitULEB128IntValue(Probes.size());
|
|
// Emit number of direct inlinees
|
|
MCOS->emitULEB128IntValue(Children.size());
|
|
// Emit probes in this group
|
|
for (const auto &Probe : Probes) {
|
|
Probe.emit(MCOS, LastProbe);
|
|
LastProbe = &Probe;
|
|
}
|
|
} else {
|
|
assert(Probes.empty() && "Root should not have probes");
|
|
}
|
|
|
|
// Emit sorted descendant
|
|
// InlineSite is unique for each pair,
|
|
// so there will be no ordering of Inlinee based on MCPseudoProbeInlineTree*
|
|
std::map<InlineSite, MCPseudoProbeInlineTree *> Inlinees;
|
|
for (auto &Child : Children)
|
|
Inlinees[Child.first] = Child.second.get();
|
|
|
|
for (const auto &Inlinee : Inlinees) {
|
|
if (Guid) {
|
|
// Emit probe index
|
|
MCOS->emitULEB128IntValue(std::get<1>(Inlinee.first));
|
|
LLVM_DEBUG({
|
|
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
|
|
dbgs() << "InlineSite: " << std::get<1>(Inlinee.first) << "\n";
|
|
});
|
|
}
|
|
// Emit the group
|
|
Inlinee.second->emit(MCOS, LastProbe);
|
|
}
|
|
|
|
LLVM_DEBUG({
|
|
MCPseudoProbeTable::DdgPrintIndent -= 2;
|
|
dbgs().indent(MCPseudoProbeTable::DdgPrintIndent);
|
|
dbgs() << "]\n";
|
|
});
|
|
}
|
|
|
|
void MCPseudoProbeSection::emit(MCObjectStreamer *MCOS) {
|
|
MCContext &Ctx = MCOS->getContext();
|
|
|
|
for (auto &ProbeSec : MCProbeDivisions) {
|
|
const MCPseudoProbe *LastProbe = nullptr;
|
|
if (auto *S =
|
|
Ctx.getObjectFileInfo()->getPseudoProbeSection(ProbeSec.first)) {
|
|
// Switch to the .pseudoprobe section or a comdat group.
|
|
MCOS->SwitchSection(S);
|
|
// Emit probes grouped by GUID.
|
|
ProbeSec.second.emit(MCOS, LastProbe);
|
|
}
|
|
}
|
|
}
|
|
|
|
//
|
|
// This emits the pseudo probe tables.
|
|
//
|
|
void MCPseudoProbeTable::emit(MCObjectStreamer *MCOS) {
|
|
MCContext &Ctx = MCOS->getContext();
|
|
auto &ProbeTable = Ctx.getMCPseudoProbeTable();
|
|
|
|
// Bail out early so we don't switch to the pseudo_probe section needlessly
|
|
// and in doing so create an unnecessary (if empty) section.
|
|
auto &ProbeSections = ProbeTable.getProbeSections();
|
|
if (ProbeSections.empty())
|
|
return;
|
|
|
|
LLVM_DEBUG(MCPseudoProbeTable::DdgPrintIndent = 0);
|
|
|
|
// Put out the probe.
|
|
ProbeSections.emit(MCOS);
|
|
}
|
|
|
|
static StringRef getProbeFNameForGUID(const GUIDProbeFunctionMap &GUID2FuncMAP,
|
|
uint64_t GUID) {
|
|
auto It = GUID2FuncMAP.find(GUID);
|
|
assert(It != GUID2FuncMAP.end() &&
|
|
"Probe function must exist for a valid GUID");
|
|
return It->second.FuncName;
|
|
}
|
|
|
|
void MCPseudoProbeFuncDesc::print(raw_ostream &OS) {
|
|
OS << "GUID: " << FuncGUID << " Name: " << FuncName << "\n";
|
|
OS << "Hash: " << FuncHash << "\n";
|
|
}
|
|
|
|
void MCDecodedPseudoProbe::getInlineContext(
|
|
SmallVectorImpl<MCPseduoProbeFrameLocation> &ContextStack,
|
|
const GUIDProbeFunctionMap &GUID2FuncMAP) const {
|
|
uint32_t Begin = ContextStack.size();
|
|
MCDecodedPseudoProbeInlineTree *Cur = InlineTree;
|
|
// It will add the string of each node's inline site during iteration.
|
|
// Note that it won't include the probe's belonging function(leaf location)
|
|
while (Cur->hasInlineSite()) {
|
|
StringRef FuncName =
|
|
getProbeFNameForGUID(GUID2FuncMAP, std::get<0>(Cur->ISite));
|
|
ContextStack.emplace_back(
|
|
MCPseduoProbeFrameLocation(FuncName, std::get<1>(Cur->ISite)));
|
|
Cur = static_cast<MCDecodedPseudoProbeInlineTree *>(Cur->Parent);
|
|
}
|
|
// Make the ContextStack in caller-callee order
|
|
std::reverse(ContextStack.begin() + Begin, ContextStack.end());
|
|
}
|
|
|
|
std::string MCDecodedPseudoProbe::getInlineContextStr(
|
|
const GUIDProbeFunctionMap &GUID2FuncMAP) const {
|
|
std::ostringstream OContextStr;
|
|
SmallVector<MCPseduoProbeFrameLocation, 16> ContextStack;
|
|
getInlineContext(ContextStack, GUID2FuncMAP);
|
|
for (auto &Cxt : ContextStack) {
|
|
if (OContextStr.str().size())
|
|
OContextStr << " @ ";
|
|
OContextStr << Cxt.first.str() << ":" << Cxt.second;
|
|
}
|
|
return OContextStr.str();
|
|
}
|
|
|
|
static const char *PseudoProbeTypeStr[3] = {"Block", "IndirectCall",
|
|
"DirectCall"};
|
|
|
|
void MCDecodedPseudoProbe::print(raw_ostream &OS,
|
|
const GUIDProbeFunctionMap &GUID2FuncMAP,
|
|
bool ShowName) const {
|
|
OS << "FUNC: ";
|
|
if (ShowName) {
|
|
StringRef FuncName = getProbeFNameForGUID(GUID2FuncMAP, Guid);
|
|
OS << FuncName.str() << " ";
|
|
} else {
|
|
OS << Guid << " ";
|
|
}
|
|
OS << "Index: " << Index << " ";
|
|
OS << "Type: " << PseudoProbeTypeStr[static_cast<uint8_t>(Type)] << " ";
|
|
std::string InlineContextStr = getInlineContextStr(GUID2FuncMAP);
|
|
if (InlineContextStr.size()) {
|
|
OS << "Inlined: @ ";
|
|
OS << InlineContextStr;
|
|
}
|
|
OS << "\n";
|
|
}
|
|
|
|
template <typename T> ErrorOr<T> MCPseudoProbeDecoder::readUnencodedNumber() {
|
|
if (Data + sizeof(T) > End) {
|
|
return std::error_code();
|
|
}
|
|
T Val = endian::readNext<T, little, unaligned>(Data);
|
|
return ErrorOr<T>(Val);
|
|
}
|
|
|
|
template <typename T> ErrorOr<T> MCPseudoProbeDecoder::readUnsignedNumber() {
|
|
unsigned NumBytesRead = 0;
|
|
uint64_t Val = decodeULEB128(Data, &NumBytesRead);
|
|
if (Val > std::numeric_limits<T>::max() || (Data + NumBytesRead > End)) {
|
|
return std::error_code();
|
|
}
|
|
Data += NumBytesRead;
|
|
return ErrorOr<T>(static_cast<T>(Val));
|
|
}
|
|
|
|
template <typename T> ErrorOr<T> MCPseudoProbeDecoder::readSignedNumber() {
|
|
unsigned NumBytesRead = 0;
|
|
int64_t Val = decodeSLEB128(Data, &NumBytesRead);
|
|
if (Val > std::numeric_limits<T>::max() || (Data + NumBytesRead > End)) {
|
|
return std::error_code();
|
|
}
|
|
Data += NumBytesRead;
|
|
return ErrorOr<T>(static_cast<T>(Val));
|
|
}
|
|
|
|
ErrorOr<StringRef> MCPseudoProbeDecoder::readString(uint32_t Size) {
|
|
StringRef Str(reinterpret_cast<const char *>(Data), Size);
|
|
if (Data + Size > End) {
|
|
return std::error_code();
|
|
}
|
|
Data += Size;
|
|
return ErrorOr<StringRef>(Str);
|
|
}
|
|
|
|
bool MCPseudoProbeDecoder::buildGUID2FuncDescMap(const uint8_t *Start,
|
|
std::size_t Size) {
|
|
// The pseudo_probe_desc section has a format like:
|
|
// .section .pseudo_probe_desc,"",@progbits
|
|
// .quad -5182264717993193164 // GUID
|
|
// .quad 4294967295 // Hash
|
|
// .uleb 3 // Name size
|
|
// .ascii "foo" // Name
|
|
// .quad -2624081020897602054
|
|
// .quad 174696971957
|
|
// .uleb 34
|
|
// .ascii "main"
|
|
|
|
Data = Start;
|
|
End = Data + Size;
|
|
|
|
while (Data < End) {
|
|
auto ErrorOrGUID = readUnencodedNumber<uint64_t>();
|
|
if (!ErrorOrGUID)
|
|
return false;
|
|
|
|
auto ErrorOrHash = readUnencodedNumber<uint64_t>();
|
|
if (!ErrorOrHash)
|
|
return false;
|
|
|
|
auto ErrorOrNameSize = readUnsignedNumber<uint32_t>();
|
|
if (!ErrorOrNameSize)
|
|
return false;
|
|
uint32_t NameSize = std::move(*ErrorOrNameSize);
|
|
|
|
auto ErrorOrName = readString(NameSize);
|
|
if (!ErrorOrName)
|
|
return false;
|
|
|
|
uint64_t GUID = std::move(*ErrorOrGUID);
|
|
uint64_t Hash = std::move(*ErrorOrHash);
|
|
StringRef Name = std::move(*ErrorOrName);
|
|
|
|
// Initialize PseudoProbeFuncDesc and populate it into GUID2FuncDescMap
|
|
GUID2FuncDescMap.emplace(GUID, MCPseudoProbeFuncDesc(GUID, Hash, Name));
|
|
}
|
|
assert(Data == End && "Have unprocessed data in pseudo_probe_desc section");
|
|
return true;
|
|
}
|
|
|
|
bool MCPseudoProbeDecoder::buildAddress2ProbeMap(const uint8_t *Start,
|
|
std::size_t Size) {
|
|
// The pseudo_probe section encodes an inline forest and each tree has a
|
|
// format like:
|
|
// FUNCTION BODY (one for each uninlined function present in the text
|
|
// section)
|
|
// GUID (uint64)
|
|
// GUID of the function
|
|
// NPROBES (ULEB128)
|
|
// Number of probes originating from this function.
|
|
// NUM_INLINED_FUNCTIONS (ULEB128)
|
|
// Number of callees inlined into this function, aka number of
|
|
// first-level inlinees
|
|
// PROBE RECORDS
|
|
// A list of NPROBES entries. Each entry contains:
|
|
// INDEX (ULEB128)
|
|
// TYPE (uint4)
|
|
// 0 - block probe, 1 - indirect call, 2 - direct call
|
|
// ATTRIBUTE (uint3)
|
|
// 1 - tail call, 2 - dangling
|
|
// ADDRESS_TYPE (uint1)
|
|
// 0 - code address, 1 - address delta
|
|
// CODE_ADDRESS (uint64 or ULEB128)
|
|
// code address or address delta, depending on Flag
|
|
// INLINED FUNCTION RECORDS
|
|
// A list of NUM_INLINED_FUNCTIONS entries describing each of the
|
|
// inlined callees. Each record contains:
|
|
// INLINE SITE
|
|
// Index of the callsite probe (ULEB128)
|
|
// FUNCTION BODY
|
|
// A FUNCTION BODY entry describing the inlined function.
|
|
|
|
Data = Start;
|
|
End = Data + Size;
|
|
|
|
MCDecodedPseudoProbeInlineTree *Root = &DummyInlineRoot;
|
|
MCDecodedPseudoProbeInlineTree *Cur = &DummyInlineRoot;
|
|
uint64_t LastAddr = 0;
|
|
uint32_t Index = 0;
|
|
// A DFS-based decoding
|
|
while (Data < End) {
|
|
if (Root == Cur) {
|
|
// Use a sequential id for top level inliner.
|
|
Index = Root->getChildren().size();
|
|
} else {
|
|
// Read inline site for inlinees
|
|
auto ErrorOrIndex = readUnsignedNumber<uint32_t>();
|
|
if (!ErrorOrIndex)
|
|
return false;
|
|
Index = std::move(*ErrorOrIndex);
|
|
}
|
|
// Switch/add to a new tree node(inlinee)
|
|
Cur = Cur->getOrAddNode(std::make_tuple(Cur->Guid, Index));
|
|
// Read guid
|
|
auto ErrorOrCurGuid = readUnencodedNumber<uint64_t>();
|
|
if (!ErrorOrCurGuid)
|
|
return false;
|
|
Cur->Guid = std::move(*ErrorOrCurGuid);
|
|
// Read number of probes in the current node.
|
|
auto ErrorOrNodeCount = readUnsignedNumber<uint32_t>();
|
|
if (!ErrorOrNodeCount)
|
|
return false;
|
|
uint32_t NodeCount = std::move(*ErrorOrNodeCount);
|
|
// Read number of direct inlinees
|
|
auto ErrorOrCurChildrenToProcess = readUnsignedNumber<uint32_t>();
|
|
if (!ErrorOrCurChildrenToProcess)
|
|
return false;
|
|
Cur->ChildrenToProcess = std::move(*ErrorOrCurChildrenToProcess);
|
|
// Read all probes in this node
|
|
for (std::size_t I = 0; I < NodeCount; I++) {
|
|
// Read index
|
|
auto ErrorOrIndex = readUnsignedNumber<uint32_t>();
|
|
if (!ErrorOrIndex)
|
|
return false;
|
|
uint32_t Index = std::move(*ErrorOrIndex);
|
|
// Read type | flag.
|
|
auto ErrorOrValue = readUnencodedNumber<uint8_t>();
|
|
if (!ErrorOrValue)
|
|
return false;
|
|
uint8_t Value = std::move(*ErrorOrValue);
|
|
uint8_t Kind = Value & 0xf;
|
|
uint8_t Attr = (Value & 0x70) >> 4;
|
|
// Read address
|
|
uint64_t Addr = 0;
|
|
if (Value & 0x80) {
|
|
auto ErrorOrOffset = readSignedNumber<int64_t>();
|
|
if (!ErrorOrOffset)
|
|
return false;
|
|
int64_t Offset = std::move(*ErrorOrOffset);
|
|
Addr = LastAddr + Offset;
|
|
} else {
|
|
auto ErrorOrAddr = readUnencodedNumber<int64_t>();
|
|
if (!ErrorOrAddr)
|
|
return false;
|
|
Addr = std::move(*ErrorOrAddr);
|
|
}
|
|
// Populate Address2ProbesMap
|
|
auto &Probes = Address2ProbesMap[Addr];
|
|
Probes.emplace_back(Addr, Cur->Guid, Index, PseudoProbeType(Kind), Attr,
|
|
Cur);
|
|
Cur->addProbes(&Probes.back());
|
|
LastAddr = Addr;
|
|
}
|
|
|
|
// Look for the parent for the next node by subtracting the current
|
|
// node count from tree counts along the parent chain. The first node
|
|
// in the chain that has a non-zero tree count is the target.
|
|
while (Cur != Root) {
|
|
if (Cur->ChildrenToProcess == 0) {
|
|
Cur = static_cast<MCDecodedPseudoProbeInlineTree *>(Cur->Parent);
|
|
if (Cur != Root) {
|
|
assert(Cur->ChildrenToProcess > 0 &&
|
|
"Should have some unprocessed nodes");
|
|
Cur->ChildrenToProcess -= 1;
|
|
}
|
|
} else {
|
|
break;
|
|
}
|
|
}
|
|
}
|
|
|
|
assert(Data == End && "Have unprocessed data in pseudo_probe section");
|
|
assert(Cur == Root &&
|
|
" Cur should point to root when the forest is fully built up");
|
|
return true;
|
|
}
|
|
|
|
void MCPseudoProbeDecoder::printGUID2FuncDescMap(raw_ostream &OS) {
|
|
OS << "Pseudo Probe Desc:\n";
|
|
// Make the output deterministic
|
|
std::map<uint64_t, MCPseudoProbeFuncDesc> OrderedMap(GUID2FuncDescMap.begin(),
|
|
GUID2FuncDescMap.end());
|
|
for (auto &I : OrderedMap) {
|
|
I.second.print(OS);
|
|
}
|
|
}
|
|
|
|
void MCPseudoProbeDecoder::printProbeForAddress(raw_ostream &OS,
|
|
uint64_t Address) {
|
|
auto It = Address2ProbesMap.find(Address);
|
|
if (It != Address2ProbesMap.end()) {
|
|
for (auto &Probe : It->second) {
|
|
OS << " [Probe]:\t";
|
|
Probe.print(OS, GUID2FuncDescMap, true);
|
|
}
|
|
}
|
|
}
|
|
|
|
void MCPseudoProbeDecoder::printProbesForAllAddresses(raw_ostream &OS) {
|
|
std::vector<uint64_t> Addresses;
|
|
for (auto Entry : Address2ProbesMap)
|
|
Addresses.push_back(Entry.first);
|
|
std::sort(Addresses.begin(), Addresses.end());
|
|
for (auto K : Addresses) {
|
|
OS << "Address:\t";
|
|
OS << K;
|
|
OS << "\n";
|
|
printProbeForAddress(OS, K);
|
|
}
|
|
}
|
|
|
|
const MCDecodedPseudoProbe *
|
|
MCPseudoProbeDecoder::getCallProbeForAddr(uint64_t Address) const {
|
|
auto It = Address2ProbesMap.find(Address);
|
|
if (It == Address2ProbesMap.end())
|
|
return nullptr;
|
|
const auto &Probes = It->second;
|
|
|
|
const MCDecodedPseudoProbe *CallProbe = nullptr;
|
|
for (const auto &Probe : Probes) {
|
|
if (Probe.isCall()) {
|
|
assert(!CallProbe &&
|
|
"There should be only one call probe corresponding to address "
|
|
"which is a callsite.");
|
|
CallProbe = &Probe;
|
|
}
|
|
}
|
|
return CallProbe;
|
|
}
|
|
|
|
const MCPseudoProbeFuncDesc *
|
|
MCPseudoProbeDecoder::getFuncDescForGUID(uint64_t GUID) const {
|
|
auto It = GUID2FuncDescMap.find(GUID);
|
|
assert(It != GUID2FuncDescMap.end() && "Function descriptor doesn't exist");
|
|
return &It->second;
|
|
}
|
|
|
|
void MCPseudoProbeDecoder::getInlineContextForProbe(
|
|
const MCDecodedPseudoProbe *Probe,
|
|
SmallVectorImpl<MCPseduoProbeFrameLocation> &InlineContextStack,
|
|
bool IncludeLeaf) const {
|
|
Probe->getInlineContext(InlineContextStack, GUID2FuncDescMap);
|
|
if (!IncludeLeaf)
|
|
return;
|
|
// Note that the context from probe doesn't include leaf frame,
|
|
// hence we need to retrieve and prepend leaf if requested.
|
|
const auto *FuncDesc = getFuncDescForGUID(Probe->getGuid());
|
|
InlineContextStack.emplace_back(
|
|
MCPseduoProbeFrameLocation(FuncDesc->FuncName, Probe->getIndex()));
|
|
}
|
|
|
|
const MCPseudoProbeFuncDesc *MCPseudoProbeDecoder::getInlinerDescForProbe(
|
|
const MCDecodedPseudoProbe *Probe) const {
|
|
MCDecodedPseudoProbeInlineTree *InlinerNode = Probe->getInlineTreeNode();
|
|
if (!InlinerNode->hasInlineSite())
|
|
return nullptr;
|
|
return getFuncDescForGUID(std::get<0>(InlinerNode->ISite));
|
|
}
|