llvm-project/clang/lib/Parse/ParseStmt.cpp

1160 lines
38 KiB
C++

//===--- ParseStmt.cpp - Statement and Block Parser -----------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the Statement and Block portions of the Parser
// interface.
//
//===----------------------------------------------------------------------===//
#include "clang/Parse/Parser.h"
#include "clang/Basic/Diagnostic.h"
#include "clang/Basic/SourceManager.h"
#include "clang/Parse/DeclSpec.h"
#include "clang/Parse/Scope.h"
using namespace clang;
//===----------------------------------------------------------------------===//
// C99 6.8: Statements and Blocks.
//===----------------------------------------------------------------------===//
/// ParseStatementOrDeclaration - Read 'statement' or 'declaration'.
/// StatementOrDeclaration:
/// statement
/// declaration
///
/// statement:
/// labeled-statement
/// compound-statement
/// expression-statement
/// selection-statement
/// iteration-statement
/// jump-statement
/// [OBC] objc-throw-statement
/// [OBC] objc-try-catch-statement
/// [OBC] objc-synchronized-statement
/// [GNU] asm-statement
/// [OMP] openmp-construct [TODO]
///
/// labeled-statement:
/// identifier ':' statement
/// 'case' constant-expression ':' statement
/// 'default' ':' statement
///
/// selection-statement:
/// if-statement
/// switch-statement
///
/// iteration-statement:
/// while-statement
/// do-statement
/// for-statement
///
/// expression-statement:
/// expression[opt] ';'
///
/// jump-statement:
/// 'goto' identifier ';'
/// 'continue' ';'
/// 'break' ';'
/// 'return' expression[opt] ';'
/// [GNU] 'goto' '*' expression ';'
///
/// [OBC] objc-throw-statement:
/// [OBC] '@' 'throw' expression ';'
/// [OBC] '@' 'throw' ';'
///
Parser::StmtResult Parser::ParseStatementOrDeclaration(bool OnlyStatement) {
const char *SemiError = 0;
Parser::StmtResult Res;
// Cases in this switch statement should fall through if the parser expects
// the token to end in a semicolon (in which case SemiError should be set),
// or they directly 'return;' if not.
tok::TokenKind Kind = Tok.getKind();
SourceLocation AtLoc;
switch (Kind) {
case tok::identifier: // C99 6.8.1: labeled-statement
// identifier ':' statement
// declaration (if !OnlyStatement)
// expression[opt] ';'
return ParseIdentifierStatement(OnlyStatement);
case tok::at: // May be a @try or @throw statement
{
AtLoc = ConsumeToken(); // consume @
return ParseObjCAtStatement(AtLoc);
}
default:
if (!OnlyStatement && isDeclarationSpecifier()) {
SourceLocation DeclStart = Tok.getLocation();
DeclTy *Res = ParseDeclaration(Declarator::BlockContext);
// FIXME: Pass in the right location for the end of the declstmt.
return Actions.ActOnDeclStmt(Res, DeclStart, DeclStart);
} else if (Tok.is(tok::r_brace)) {
Diag(Tok, diag::err_expected_statement);
return true;
} else {
// expression[opt] ';'
ExprResult Res = ParseExpression();
if (Res.isInvalid) {
// If the expression is invalid, skip ahead to the next semicolon. Not
// doing this opens us up to the possibility of infinite loops if
// ParseExpression does not consume any tokens.
SkipUntil(tok::semi);
return true;
}
// Otherwise, eat the semicolon.
ExpectAndConsume(tok::semi, diag::err_expected_semi_after_expr);
return Actions.ActOnExprStmt(Res.Val);
}
case tok::kw_case: // C99 6.8.1: labeled-statement
return ParseCaseStatement();
case tok::kw_default: // C99 6.8.1: labeled-statement
return ParseDefaultStatement();
case tok::l_brace: // C99 6.8.2: compound-statement
return ParseCompoundStatement();
case tok::semi: // C99 6.8.3p3: expression[opt] ';'
return Actions.ActOnNullStmt(ConsumeToken());
case tok::kw_if: // C99 6.8.4.1: if-statement
return ParseIfStatement();
case tok::kw_switch: // C99 6.8.4.2: switch-statement
return ParseSwitchStatement();
case tok::kw_while: // C99 6.8.5.1: while-statement
return ParseWhileStatement();
case tok::kw_do: // C99 6.8.5.2: do-statement
Res = ParseDoStatement();
SemiError = "do/while loop";
break;
case tok::kw_for: // C99 6.8.5.3: for-statement
return ParseForStatement();
case tok::kw_goto: // C99 6.8.6.1: goto-statement
Res = ParseGotoStatement();
SemiError = "goto statement";
break;
case tok::kw_continue: // C99 6.8.6.2: continue-statement
Res = ParseContinueStatement();
SemiError = "continue statement";
break;
case tok::kw_break: // C99 6.8.6.3: break-statement
Res = ParseBreakStatement();
SemiError = "break statement";
break;
case tok::kw_return: // C99 6.8.6.4: return-statement
Res = ParseReturnStatement();
SemiError = "return statement";
break;
case tok::kw_asm:
bool msAsm = false;
Res = ParseAsmStatement(msAsm);
if (msAsm) return Res;
SemiError = "asm statement";
break;
}
// If we reached this code, the statement must end in a semicolon.
if (Tok.is(tok::semi)) {
ConsumeToken();
} else {
Diag(Tok, diag::err_expected_semi_after, SemiError);
SkipUntil(tok::semi);
}
return Res;
}
/// ParseIdentifierStatement - Because we don't have two-token lookahead, we
/// have a bit of a quandry here. Reading the identifier is necessary to see if
/// there is a ':' after it. If there is, this is a label, regardless of what
/// else the identifier can mean. If not, this is either part of a declaration
/// (if the identifier is a type-name) or part of an expression.
///
/// labeled-statement:
/// identifier ':' statement
/// [GNU] identifier ':' attributes[opt] statement
/// declaration (if !OnlyStatement)
/// expression[opt] ';'
///
Parser::StmtResult Parser::ParseIdentifierStatement(bool OnlyStatement) {
assert(Tok.is(tok::identifier) && Tok.getIdentifierInfo() &&
"Not an identifier!");
Token IdentTok = Tok; // Save the whole token.
ConsumeToken(); // eat the identifier.
// identifier ':' statement
if (Tok.is(tok::colon)) {
SourceLocation ColonLoc = ConsumeToken();
// Read label attributes, if present.
DeclTy *AttrList = 0;
if (Tok.is(tok::kw___attribute))
// TODO: save these somewhere.
AttrList = ParseAttributes();
StmtResult SubStmt = ParseStatement();
// Broken substmt shouldn't prevent the label from being added to the AST.
if (SubStmt.isInvalid)
SubStmt = Actions.ActOnNullStmt(ColonLoc);
return Actions.ActOnLabelStmt(IdentTok.getLocation(),
IdentTok.getIdentifierInfo(),
ColonLoc, SubStmt.Val);
}
// Check to see if this is a declaration.
void *TypeRep;
if (!OnlyStatement &&
(TypeRep = Actions.isTypeName(*IdentTok.getIdentifierInfo(), CurScope))) {
// Handle this. Warn/disable if in middle of block and !C99.
DeclSpec DS;
// Add the typedef name to the start of the decl-specs.
const char *PrevSpec = 0;
int isInvalid = DS.SetTypeSpecType(DeclSpec::TST_typedef,
IdentTok.getLocation(), PrevSpec,
TypeRep);
assert(!isInvalid && "First declspec can't be invalid!");
SourceLocation endProtoLoc;
if (Tok.is(tok::less)) {
llvm::SmallVector<IdentifierInfo *, 8> ProtocolRefs;
ParseObjCProtocolReferences(ProtocolRefs, endProtoLoc);
llvm::SmallVector<DeclTy *, 8> *ProtocolDecl =
new llvm::SmallVector<DeclTy *, 8>;
DS.setProtocolQualifiers(ProtocolDecl);
Actions.FindProtocolDeclaration(IdentTok.getLocation(),
&ProtocolRefs[0], ProtocolRefs.size(),
*ProtocolDecl);
}
// ParseDeclarationSpecifiers will continue from there.
ParseDeclarationSpecifiers(DS);
// C99 6.7.2.3p6: Handle "struct-or-union identifier;", "enum { X };"
// declaration-specifiers init-declarator-list[opt] ';'
if (Tok.is(tok::semi)) {
// TODO: emit error on 'int;' or 'const enum foo;'.
// if (!DS.isMissingDeclaratorOk()) Diag(...);
ConsumeToken();
// FIXME: Return this as a type decl.
return 0;
}
// Parse all the declarators.
Declarator DeclaratorInfo(DS, Declarator::BlockContext);
ParseDeclarator(DeclaratorInfo);
DeclTy *Decl = ParseInitDeclaratorListAfterFirstDeclarator(DeclaratorInfo);
if (!Decl) return 0;
return Actions.ActOnDeclStmt(Decl, DS.getSourceRange().getBegin(),
DeclaratorInfo.getSourceRange().getEnd());
}
// Otherwise, this is an expression. Seed it with II and parse it.
ExprResult Res = ParseExpressionWithLeadingIdentifier(IdentTok);
if (Res.isInvalid) {
SkipUntil(tok::semi);
return true;
} else if (Tok.isNot(tok::semi)) {
Diag(Tok, diag::err_expected_semi_after, "expression");
SkipUntil(tok::semi);
return true;
} else {
ConsumeToken();
// Convert expr to a stmt.
return Actions.ActOnExprStmt(Res.Val);
}
}
/// ParseCaseStatement
/// labeled-statement:
/// 'case' constant-expression ':' statement
/// [GNU] 'case' constant-expression '...' constant-expression ':' statement
///
/// Note that this does not parse the 'statement' at the end.
///
Parser::StmtResult Parser::ParseCaseStatement() {
assert(Tok.is(tok::kw_case) && "Not a case stmt!");
SourceLocation CaseLoc = ConsumeToken(); // eat the 'case'.
ExprResult LHS = ParseConstantExpression();
if (LHS.isInvalid) {
SkipUntil(tok::colon);
return true;
}
// GNU case range extension.
SourceLocation DotDotDotLoc;
ExprTy *RHSVal = 0;
if (Tok.is(tok::ellipsis)) {
Diag(Tok, diag::ext_gnu_case_range);
DotDotDotLoc = ConsumeToken();
ExprResult RHS = ParseConstantExpression();
if (RHS.isInvalid) {
SkipUntil(tok::colon);
return true;
}
RHSVal = RHS.Val;
}
if (Tok.isNot(tok::colon)) {
Diag(Tok, diag::err_expected_colon_after, "'case'");
SkipUntil(tok::colon);
return true;
}
SourceLocation ColonLoc = ConsumeToken();
// Diagnose the common error "switch (X) { case 4: }", which is not valid.
if (Tok.is(tok::r_brace)) {
Diag(Tok, diag::err_label_end_of_compound_statement);
return true;
}
StmtResult SubStmt = ParseStatement();
// Broken substmt shouldn't prevent the case from being added to the AST.
if (SubStmt.isInvalid)
SubStmt = Actions.ActOnNullStmt(ColonLoc);
return Actions.ActOnCaseStmt(CaseLoc, LHS.Val, DotDotDotLoc, RHSVal, ColonLoc,
SubStmt.Val);
}
/// ParseDefaultStatement
/// labeled-statement:
/// 'default' ':' statement
/// Note that this does not parse the 'statement' at the end.
///
Parser::StmtResult Parser::ParseDefaultStatement() {
assert(Tok.is(tok::kw_default) && "Not a default stmt!");
SourceLocation DefaultLoc = ConsumeToken(); // eat the 'default'.
if (Tok.isNot(tok::colon)) {
Diag(Tok, diag::err_expected_colon_after, "'default'");
SkipUntil(tok::colon);
return true;
}
SourceLocation ColonLoc = ConsumeToken();
// Diagnose the common error "switch (X) {... default: }", which is not valid.
if (Tok.is(tok::r_brace)) {
Diag(Tok, diag::err_label_end_of_compound_statement);
return true;
}
StmtResult SubStmt = ParseStatement();
if (SubStmt.isInvalid)
return true;
return Actions.ActOnDefaultStmt(DefaultLoc, ColonLoc, SubStmt.Val, CurScope);
}
/// ParseCompoundStatement - Parse a "{}" block.
///
/// compound-statement: [C99 6.8.2]
/// { block-item-list[opt] }
/// [GNU] { label-declarations block-item-list } [TODO]
///
/// block-item-list:
/// block-item
/// block-item-list block-item
///
/// block-item:
/// declaration
/// [GNU] '__extension__' declaration
/// statement
/// [OMP] openmp-directive [TODO]
///
/// [GNU] label-declarations:
/// [GNU] label-declaration
/// [GNU] label-declarations label-declaration
///
/// [GNU] label-declaration:
/// [GNU] '__label__' identifier-list ';'
///
/// [OMP] openmp-directive: [TODO]
/// [OMP] barrier-directive
/// [OMP] flush-directive
///
Parser::StmtResult Parser::ParseCompoundStatement(bool isStmtExpr) {
assert(Tok.is(tok::l_brace) && "Not a compount stmt!");
// Enter a scope to hold everything within the compound stmt. Compound
// statements can always hold declarations.
EnterScope(Scope::DeclScope);
// Parse the statements in the body.
StmtResult Body = ParseCompoundStatementBody(isStmtExpr);
ExitScope();
return Body;
}
/// ParseCompoundStatementBody - Parse a sequence of statements and invoke the
/// ActOnCompoundStmt action. This expects the '{' to be the current token, and
/// consume the '}' at the end of the block. It does not manipulate the scope
/// stack.
Parser::StmtResult Parser::ParseCompoundStatementBody(bool isStmtExpr) {
SourceLocation LBraceLoc = ConsumeBrace(); // eat the '{'.
// TODO: "__label__ X, Y, Z;" is the GNU "Local Label" extension. These are
// only allowed at the start of a compound stmt regardless of the language.
llvm::SmallVector<StmtTy*, 32> Stmts;
while (Tok.isNot(tok::r_brace) && Tok.isNot(tok::eof)) {
StmtResult R;
if (Tok.isNot(tok::kw___extension__)) {
R = ParseStatementOrDeclaration(false);
} else {
// __extension__ can start declarations and it can also be a unary
// operator for expressions. Consume multiple __extension__ markers here
// until we can determine which is which.
SourceLocation ExtLoc = ConsumeToken();
while (Tok.is(tok::kw___extension__))
ConsumeToken();
// __extension__ silences extension warnings in the subexpression.
bool SavedExtWarn = Diags.getWarnOnExtensions();
Diags.setWarnOnExtensions(false);
// If this is the start of a declaration, parse it as such.
if (isDeclarationSpecifier()) {
// FIXME: Save the __extension__ on the decl as a node somehow.
SourceLocation DeclStart = Tok.getLocation();
DeclTy *Res = ParseDeclaration(Declarator::BlockContext);
// FIXME: Pass in the right location for the end of the declstmt.
R = Actions.ActOnDeclStmt(Res, DeclStart, DeclStart);
Diags.setWarnOnExtensions(SavedExtWarn);
} else {
// Otherwise this was a unary __extension__ marker. Parse the
// subexpression and add the __extension__ unary op.
ExprResult Res = ParseCastExpression(false);
Diags.setWarnOnExtensions(SavedExtWarn);
if (Res.isInvalid) {
SkipUntil(tok::semi);
continue;
}
// Add the __extension__ node to the AST.
Res = Actions.ActOnUnaryOp(ExtLoc, tok::kw___extension__, Res.Val);
if (Res.isInvalid)
continue;
// Eat the semicolon at the end of stmt and convert the expr into a stmt.
ExpectAndConsume(tok::semi, diag::err_expected_semi_after_expr);
R = Actions.ActOnExprStmt(Res.Val);
}
}
if (!R.isInvalid && R.Val)
Stmts.push_back(R.Val);
}
// We broke out of the while loop because we found a '}' or EOF.
if (Tok.isNot(tok::r_brace)) {
Diag(Tok, diag::err_expected_rbrace);
return true;
}
SourceLocation RBraceLoc = ConsumeBrace();
return Actions.ActOnCompoundStmt(LBraceLoc, RBraceLoc,
&Stmts[0], Stmts.size(), isStmtExpr);
}
/// ParseIfStatement
/// if-statement: [C99 6.8.4.1]
/// 'if' '(' expression ')' statement
/// 'if' '(' expression ')' statement 'else' statement
///
Parser::StmtResult Parser::ParseIfStatement() {
assert(Tok.is(tok::kw_if) && "Not an if stmt!");
SourceLocation IfLoc = ConsumeToken(); // eat the 'if'.
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen_after, "if");
SkipUntil(tok::semi);
return true;
}
// C99 6.8.4p3 - In C99, the if statement is a block. This is not
// the case for C90.
if (getLang().C99)
EnterScope(Scope::DeclScope);
// Parse the condition.
ExprResult CondExp = ParseSimpleParenExpression();
if (CondExp.isInvalid) {
SkipUntil(tok::semi);
if (getLang().C99)
ExitScope();
return true;
}
// C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
bool NeedsInnerScope = getLang().C99 && Tok.isNot(tok::l_brace);
if (NeedsInnerScope) EnterScope(Scope::DeclScope);
// Read the 'then' stmt.
SourceLocation ThenStmtLoc = Tok.getLocation();
StmtResult ThenStmt = ParseStatement();
// Pop the 'if' scope if needed.
if (NeedsInnerScope) ExitScope();
// If it has an else, parse it.
SourceLocation ElseLoc;
SourceLocation ElseStmtLoc;
StmtResult ElseStmt(false);
if (Tok.is(tok::kw_else)) {
ElseLoc = ConsumeToken();
// C99 6.8.4p3 - In C99, the body of the if statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do
// this if the body isn't a compound statement to avoid push/pop in common
// cases.
NeedsInnerScope = getLang().C99 && Tok.isNot(tok::l_brace);
if (NeedsInnerScope) EnterScope(Scope::DeclScope);
ElseStmtLoc = Tok.getLocation();
ElseStmt = ParseStatement();
// Pop the 'else' scope if needed.
if (NeedsInnerScope) ExitScope();
}
if (getLang().C99)
ExitScope();
// If the then or else stmt is invalid and the other is valid (and present),
// make turn the invalid one into a null stmt to avoid dropping the other
// part. If both are invalid, return error.
if ((ThenStmt.isInvalid && ElseStmt.isInvalid) ||
(ThenStmt.isInvalid && ElseStmt.Val == 0) ||
(ThenStmt.Val == 0 && ElseStmt.isInvalid)) {
// Both invalid, or one is invalid and other is non-present: delete cond and
// return error.
Actions.DeleteExpr(CondExp.Val);
return true;
}
// Now if either are invalid, replace with a ';'.
if (ThenStmt.isInvalid)
ThenStmt = Actions.ActOnNullStmt(ThenStmtLoc);
if (ElseStmt.isInvalid)
ElseStmt = Actions.ActOnNullStmt(ElseStmtLoc);
return Actions.ActOnIfStmt(IfLoc, CondExp.Val, ThenStmt.Val,
ElseLoc, ElseStmt.Val);
}
/// ParseSwitchStatement
/// switch-statement:
/// 'switch' '(' expression ')' statement
Parser::StmtResult Parser::ParseSwitchStatement() {
assert(Tok.is(tok::kw_switch) && "Not a switch stmt!");
SourceLocation SwitchLoc = ConsumeToken(); // eat the 'switch'.
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen_after, "switch");
SkipUntil(tok::semi);
return true;
}
// C99 6.8.4p3 - In C99, the switch statement is a block. This is
// not the case for C90. Start the switch scope.
if (getLang().C99)
EnterScope(Scope::BreakScope|Scope::DeclScope);
else
EnterScope(Scope::BreakScope);
// Parse the condition.
ExprResult Cond = ParseSimpleParenExpression();
if (Cond.isInvalid) {
ExitScope();
return true;
}
StmtResult Switch = Actions.ActOnStartOfSwitchStmt(Cond.Val);
// C99 6.8.4p3 - In C99, the body of the switch statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
bool NeedsInnerScope = getLang().C99 && Tok.isNot(tok::l_brace);
if (NeedsInnerScope) EnterScope(Scope::DeclScope);
// Read the body statement.
StmtResult Body = ParseStatement();
// Pop the body scope if needed.
if (NeedsInnerScope) ExitScope();
if (Body.isInvalid) {
Body = Actions.ActOnNullStmt(Tok.getLocation());
// FIXME: Remove the case statement list from the Switch statement.
}
ExitScope();
return Actions.ActOnFinishSwitchStmt(SwitchLoc, Switch.Val, Body.Val);
}
/// ParseWhileStatement
/// while-statement: [C99 6.8.5.1]
/// 'while' '(' expression ')' statement
Parser::StmtResult Parser::ParseWhileStatement() {
assert(Tok.is(tok::kw_while) && "Not a while stmt!");
SourceLocation WhileLoc = Tok.getLocation();
ConsumeToken(); // eat the 'while'.
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen_after, "while");
SkipUntil(tok::semi);
return true;
}
// C99 6.8.5p5 - In C99, the while statement is a block. This is not
// the case for C90. Start the loop scope.
if (getLang().C99)
EnterScope(Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope);
else
EnterScope(Scope::BreakScope | Scope::ContinueScope);
// Parse the condition.
ExprResult Cond = ParseSimpleParenExpression();
// C99 6.8.5p5 - In C99, the body of the if statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
bool NeedsInnerScope = getLang().C99 && Tok.isNot(tok::l_brace);
if (NeedsInnerScope) EnterScope(Scope::DeclScope);
// Read the body statement.
StmtResult Body = ParseStatement();
// Pop the body scope if needed.
if (NeedsInnerScope) ExitScope();
ExitScope();
if (Cond.isInvalid || Body.isInvalid) return true;
return Actions.ActOnWhileStmt(WhileLoc, Cond.Val, Body.Val);
}
/// ParseDoStatement
/// do-statement: [C99 6.8.5.2]
/// 'do' statement 'while' '(' expression ')' ';'
/// Note: this lets the caller parse the end ';'.
Parser::StmtResult Parser::ParseDoStatement() {
assert(Tok.is(tok::kw_do) && "Not a do stmt!");
SourceLocation DoLoc = ConsumeToken(); // eat the 'do'.
// C99 6.8.5p5 - In C99, the do statement is a block. This is not
// the case for C90. Start the loop scope.
if (getLang().C99)
EnterScope(Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope);
else
EnterScope(Scope::BreakScope | Scope::ContinueScope);
// C99 6.8.5p5 - In C99, the body of the if statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
bool NeedsInnerScope = getLang().C99 && Tok.isNot(tok::l_brace);
if (NeedsInnerScope) EnterScope(Scope::DeclScope);
// Read the body statement.
StmtResult Body = ParseStatement();
// Pop the body scope if needed.
if (NeedsInnerScope) ExitScope();
if (Tok.isNot(tok::kw_while)) {
ExitScope();
Diag(Tok, diag::err_expected_while);
Diag(DoLoc, diag::err_matching, "do");
SkipUntil(tok::semi);
return true;
}
SourceLocation WhileLoc = ConsumeToken();
if (Tok.isNot(tok::l_paren)) {
ExitScope();
Diag(Tok, diag::err_expected_lparen_after, "do/while");
SkipUntil(tok::semi);
return true;
}
// Parse the condition.
ExprResult Cond = ParseSimpleParenExpression();
ExitScope();
if (Cond.isInvalid || Body.isInvalid) return true;
return Actions.ActOnDoStmt(DoLoc, Body.Val, WhileLoc, Cond.Val);
}
/// ParseForStatement
/// for-statement: [C99 6.8.5.3]
/// 'for' '(' expr[opt] ';' expr[opt] ';' expr[opt] ')' statement
/// 'for' '(' declaration expr[opt] ';' expr[opt] ')' statement
/// [OBJC2] 'for' '(' declaration 'in' expr ')' statement
/// [OBJC2] 'for' '(' expr 'in' expr ')' statement
Parser::StmtResult Parser::ParseForStatement() {
assert(Tok.is(tok::kw_for) && "Not a for stmt!");
SourceLocation ForLoc = ConsumeToken(); // eat the 'for'.
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen_after, "for");
SkipUntil(tok::semi);
return true;
}
// C99 6.8.5p5 - In C99, the for statement is a block. This is not
// the case for C90. Start the loop scope.
if (getLang().C99)
EnterScope(Scope::BreakScope | Scope::ContinueScope | Scope::DeclScope);
else
EnterScope(Scope::BreakScope | Scope::ContinueScope);
SourceLocation LParenLoc = ConsumeParen();
ExprResult Value;
StmtTy *FirstPart = 0;
ExprTy *SecondPart = 0;
StmtTy *ThirdPart = 0;
bool ForEach = false;
// Parse the first part of the for specifier.
if (Tok.is(tok::semi)) { // for (;
// no first part, eat the ';'.
ConsumeToken();
} else if (isDeclarationSpecifier()) { // for (int X = 4;
// Parse declaration, which eats the ';'.
if (!getLang().C99) // Use of C99-style for loops in C90 mode?
Diag(Tok, diag::ext_c99_variable_decl_in_for_loop);
SourceLocation DeclStart = Tok.getLocation();
DeclTy *aBlockVarDecl = ParseDeclaration(Declarator::ForContext);
// FIXME: Pass in the right location for the end of the declstmt.
StmtResult stmtResult = Actions.ActOnDeclStmt(aBlockVarDecl, DeclStart,
DeclStart);
FirstPart = stmtResult.isInvalid ? 0 : stmtResult.Val;
if ((ForEach = isTokIdentifier_in())) {
ConsumeToken(); // consume 'in'
Value = ParseExpression();
if (!Value.isInvalid)
SecondPart = Value.Val;
}
} else {
Value = ParseExpression();
// Turn the expression into a stmt.
if (!Value.isInvalid) {
StmtResult R = Actions.ActOnExprStmt(Value.Val);
if (!R.isInvalid)
FirstPart = R.Val;
}
if (Tok.is(tok::semi)) {
ConsumeToken();
}
else if ((ForEach = isTokIdentifier_in())) {
ConsumeToken(); // consume 'in'
Value = ParseExpression();
if (!Value.isInvalid)
SecondPart = Value.Val;
}
else {
if (!Value.isInvalid) Diag(Tok, diag::err_expected_semi_for);
SkipUntil(tok::semi);
}
}
if (!ForEach) {
// Parse the second part of the for specifier.
if (Tok.is(tok::semi)) { // for (...;;
// no second part.
Value = ExprResult();
} else {
Value = ParseExpression();
if (!Value.isInvalid)
SecondPart = Value.Val;
}
if (Tok.is(tok::semi)) {
ConsumeToken();
} else {
if (!Value.isInvalid) Diag(Tok, diag::err_expected_semi_for);
SkipUntil(tok::semi);
}
// Parse the third part of the for specifier.
if (Tok.is(tok::r_paren)) { // for (...;...;)
// no third part.
Value = ExprResult();
} else {
Value = ParseExpression();
if (!Value.isInvalid) {
// Turn the expression into a stmt.
StmtResult R = Actions.ActOnExprStmt(Value.Val);
if (!R.isInvalid)
ThirdPart = R.Val;
}
}
}
// Match the ')'.
SourceLocation RParenLoc = MatchRHSPunctuation(tok::r_paren, LParenLoc);
// C99 6.8.5p5 - In C99, the body of the if statement is a scope, even if
// there is no compound stmt. C90 does not have this clause. We only do this
// if the body isn't a compound statement to avoid push/pop in common cases.
bool NeedsInnerScope = getLang().C99 && Tok.isNot(tok::l_brace);
if (NeedsInnerScope) EnterScope(Scope::DeclScope);
// Read the body statement.
StmtResult Body = ParseStatement();
// Pop the body scope if needed.
if (NeedsInnerScope) ExitScope();
// Leave the for-scope.
ExitScope();
if (Body.isInvalid)
return Body;
if (!ForEach)
return Actions.ActOnForStmt(ForLoc, LParenLoc, FirstPart,
SecondPart, ThirdPart, RParenLoc, Body.Val);
else
return Actions.ActOnObjCForCollectionStmt(ForLoc, LParenLoc, FirstPart,
SecondPart, RParenLoc, Body.Val);
}
/// ParseGotoStatement
/// jump-statement:
/// 'goto' identifier ';'
/// [GNU] 'goto' '*' expression ';'
///
/// Note: this lets the caller parse the end ';'.
///
Parser::StmtResult Parser::ParseGotoStatement() {
assert(Tok.is(tok::kw_goto) && "Not a goto stmt!");
SourceLocation GotoLoc = ConsumeToken(); // eat the 'goto'.
StmtResult Res;
if (Tok.is(tok::identifier)) {
Res = Actions.ActOnGotoStmt(GotoLoc, Tok.getLocation(),
Tok.getIdentifierInfo());
ConsumeToken();
} else if (Tok.is(tok::star) && !getLang().NoExtensions) {
// GNU indirect goto extension.
Diag(Tok, diag::ext_gnu_indirect_goto);
SourceLocation StarLoc = ConsumeToken();
ExprResult R = ParseExpression();
if (R.isInvalid) { // Skip to the semicolon, but don't consume it.
SkipUntil(tok::semi, false, true);
return true;
}
Res = Actions.ActOnIndirectGotoStmt(GotoLoc, StarLoc, R.Val);
} else {
Diag(Tok, diag::err_expected_ident);
return true;
}
return Res;
}
/// ParseContinueStatement
/// jump-statement:
/// 'continue' ';'
///
/// Note: this lets the caller parse the end ';'.
///
Parser::StmtResult Parser::ParseContinueStatement() {
SourceLocation ContinueLoc = ConsumeToken(); // eat the 'continue'.
return Actions.ActOnContinueStmt(ContinueLoc, CurScope);
}
/// ParseBreakStatement
/// jump-statement:
/// 'break' ';'
///
/// Note: this lets the caller parse the end ';'.
///
Parser::StmtResult Parser::ParseBreakStatement() {
SourceLocation BreakLoc = ConsumeToken(); // eat the 'break'.
return Actions.ActOnBreakStmt(BreakLoc, CurScope);
}
/// ParseReturnStatement
/// jump-statement:
/// 'return' expression[opt] ';'
Parser::StmtResult Parser::ParseReturnStatement() {
assert(Tok.is(tok::kw_return) && "Not a return stmt!");
SourceLocation ReturnLoc = ConsumeToken(); // eat the 'return'.
ExprResult R(0);
if (Tok.isNot(tok::semi)) {
R = ParseExpression();
if (R.isInvalid) { // Skip to the semicolon, but don't consume it.
SkipUntil(tok::semi, false, true);
return true;
}
}
return Actions.ActOnReturnStmt(ReturnLoc, R.Val);
}
/// FuzzyParseMicrosoftAsmStatement. When -fms-extensions is enabled, this
/// routine is called to skip/ignore tokens that comprise the MS asm statement.
Parser::StmtResult Parser::FuzzyParseMicrosoftAsmStatement() {
if (Tok.is(tok::l_brace)) {
unsigned short savedBraceCount = BraceCount;
do {
ConsumeAnyToken();
} while (BraceCount > savedBraceCount && Tok.isNot(tok::eof));
} else {
// From the MS website: If used without braces, the __asm keyword means
// that the rest of the line is an assembly-language statement.
SourceManager &SrcMgr = PP.getSourceManager();
SourceLocation TokLoc = Tok.getLocation();
unsigned lineNo = SrcMgr.getLogicalLineNumber(TokLoc);
do {
ConsumeAnyToken();
TokLoc = Tok.getLocation();
} while ((SrcMgr.getLogicalLineNumber(TokLoc) == lineNo) &&
Tok.isNot(tok::r_brace) && Tok.isNot(tok::semi) &&
Tok.isNot(tok::eof));
}
return Actions.ActOnNullStmt(Tok.getLocation());
}
/// ParseAsmStatement - Parse a GNU extended asm statement.
/// asm-statement:
/// gnu-asm-statement
/// ms-asm-statement
///
/// [GNU] gnu-asm-statement:
/// 'asm' type-qualifier[opt] '(' asm-argument ')' ';'
///
/// [GNU] asm-argument:
/// asm-string-literal
/// asm-string-literal ':' asm-operands[opt]
/// asm-string-literal ':' asm-operands[opt] ':' asm-operands[opt]
/// asm-string-literal ':' asm-operands[opt] ':' asm-operands[opt]
/// ':' asm-clobbers
///
/// [GNU] asm-clobbers:
/// asm-string-literal
/// asm-clobbers ',' asm-string-literal
///
/// [MS] ms-asm-statement:
/// '__asm' assembly-instruction ';'[opt]
/// '__asm' '{' assembly-instruction-list '}' ';'[opt]
///
/// [MS] assembly-instruction-list:
/// assembly-instruction ';'[opt]
/// assembly-instruction-list ';' assembly-instruction ';'[opt]
///
Parser::StmtResult Parser::ParseAsmStatement(bool &msAsm) {
assert(Tok.is(tok::kw_asm) && "Not an asm stmt");
SourceLocation AsmLoc = ConsumeToken();
if (getLang().Microsoft && Tok.isNot(tok::l_paren) && !isTypeQualifier()) {
msAsm = true;
return FuzzyParseMicrosoftAsmStatement();
}
DeclSpec DS;
SourceLocation Loc = Tok.getLocation();
ParseTypeQualifierListOpt(DS);
// GNU asms accept, but warn, about type-qualifiers other than volatile.
if (DS.getTypeQualifiers() & DeclSpec::TQ_const)
Diag(Loc, diag::w_asm_qualifier_ignored, "const");
if (DS.getTypeQualifiers() & DeclSpec::TQ_restrict)
Diag(Loc, diag::w_asm_qualifier_ignored, "restrict");
// Remember if this was a volatile asm.
bool isVolatile = DS.getTypeQualifiers() & DeclSpec::TQ_volatile;
bool isSimple = false;
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen_after, "asm");
SkipUntil(tok::r_paren);
return true;
}
Loc = ConsumeParen();
ExprResult AsmString = ParseAsmStringLiteral();
if (AsmString.isInvalid)
return true;
llvm::SmallVector<std::string, 4> Names;
llvm::SmallVector<ExprTy*, 4> Constraints;
llvm::SmallVector<ExprTy*, 4> Exprs;
llvm::SmallVector<ExprTy*, 4> Clobbers;
unsigned NumInputs = 0, NumOutputs = 0;
SourceLocation RParenLoc;
if (Tok.is(tok::r_paren)) {
// We have a simple asm expression
isSimple = true;
RParenLoc = ConsumeParen();
} else {
// Parse Outputs, if present.
if (ParseAsmOperandsOpt(Names, Constraints, Exprs))
return true;
NumOutputs = Names.size();
// Parse Inputs, if present.
if (ParseAsmOperandsOpt(Names, Constraints, Exprs))
return true;
assert(Names.size() == Constraints.size() &&
Constraints.size() == Exprs.size()
&& "Input operand size mismatch!");
NumInputs = Names.size() - NumOutputs;
// Parse the clobbers, if present.
if (Tok.is(tok::colon)) {
ConsumeToken();
// Parse the asm-string list for clobbers.
while (1) {
ExprResult Clobber = ParseAsmStringLiteral();
if (Clobber.isInvalid)
break;
Clobbers.push_back(Clobber.Val);
if (Tok.isNot(tok::comma)) break;
ConsumeToken();
}
}
RParenLoc = MatchRHSPunctuation(tok::r_paren, Loc);
}
return Actions.ActOnAsmStmt(AsmLoc, isSimple, isVolatile,
NumOutputs, NumInputs,
&Names[0], &Constraints[0], &Exprs[0],
AsmString.Val,
Clobbers.size(), &Clobbers[0],
RParenLoc);
}
/// ParseAsmOperands - Parse the asm-operands production as used by
/// asm-statement. We also parse a leading ':' token. If the leading colon is
/// not present, we do not parse anything.
///
/// [GNU] asm-operands:
/// asm-operand
/// asm-operands ',' asm-operand
///
/// [GNU] asm-operand:
/// asm-string-literal '(' expression ')'
/// '[' identifier ']' asm-string-literal '(' expression ')'
///
bool Parser::ParseAsmOperandsOpt(llvm::SmallVectorImpl<std::string> &Names,
llvm::SmallVectorImpl<ExprTy*> &Constraints,
llvm::SmallVectorImpl<ExprTy*> &Exprs) {
// Only do anything if this operand is present.
if (Tok.isNot(tok::colon)) return false;
ConsumeToken();
// 'asm-operands' isn't present?
if (!isTokenStringLiteral() && Tok.isNot(tok::l_square))
return false;
while (1) {
// Read the [id] if present.
if (Tok.is(tok::l_square)) {
SourceLocation Loc = ConsumeBracket();
if (Tok.isNot(tok::identifier)) {
Diag(Tok, diag::err_expected_ident);
SkipUntil(tok::r_paren);
return true;
}
IdentifierInfo *II = Tok.getIdentifierInfo();
ConsumeToken();
Names.push_back(std::string(II->getName(), II->getLength()));
MatchRHSPunctuation(tok::r_square, Loc);
} else
Names.push_back(std::string());
ExprResult Constraint = ParseAsmStringLiteral();
if (Constraint.isInvalid) {
SkipUntil(tok::r_paren);
return true;
}
Constraints.push_back(Constraint.Val);
if (Tok.isNot(tok::l_paren)) {
Diag(Tok, diag::err_expected_lparen_after, "asm operand");
SkipUntil(tok::r_paren);
return true;
}
// Read the parenthesized expression.
ExprResult Res = ParseSimpleParenExpression();
if (Res.isInvalid) {
SkipUntil(tok::r_paren);
return true;
}
Exprs.push_back(Res.Val);
// Eat the comma and continue parsing if it exists.
if (Tok.isNot(tok::comma)) return false;
ConsumeToken();
}
return true;
}
Parser::DeclTy *Parser::ParseFunctionStatementBody(DeclTy *Decl,
SourceLocation L, SourceLocation R) {
// Do not enter a scope for the brace, as the arguments are in the same scope
// (the function body) as the body itself. Instead, just read the statement
// list and put it into a CompoundStmt for safe keeping.
StmtResult FnBody = ParseCompoundStatementBody();
// If the function body could not be parsed, make a bogus compoundstmt.
if (FnBody.isInvalid)
FnBody = Actions.ActOnCompoundStmt(L, R, 0, 0, false);
// Leave the function body scope.
ExitScope();
return Actions.ActOnFinishFunctionBody(Decl, FnBody.Val);
}