llvm-project/llvm/lib/Target/ARM/ARMExpandPseudoInsts.cpp

2895 lines
118 KiB
C++

//===-- ARMExpandPseudoInsts.cpp - Expand pseudo instructions -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file contains a pass that expands pseudo instructions into target
// instructions to allow proper scheduling, if-conversion, and other late
// optimizations. This pass should be run after register allocation but before
// the post-regalloc scheduling pass.
//
//===----------------------------------------------------------------------===//
#include "ARM.h"
#include "ARMBaseInstrInfo.h"
#include "ARMBaseRegisterInfo.h"
#include "ARMConstantPoolValue.h"
#include "ARMMachineFunctionInfo.h"
#include "ARMSubtarget.h"
#include "MCTargetDesc/ARMAddressingModes.h"
#include "llvm/CodeGen/LivePhysRegs.h"
#include "llvm/CodeGen/MachineFrameInfo.h"
#include "llvm/CodeGen/MachineFunctionPass.h"
#include "llvm/Support/Debug.h"
using namespace llvm;
#define DEBUG_TYPE "arm-pseudo"
static cl::opt<bool>
VerifyARMPseudo("verify-arm-pseudo-expand", cl::Hidden,
cl::desc("Verify machine code after expanding ARM pseudos"));
#define ARM_EXPAND_PSEUDO_NAME "ARM pseudo instruction expansion pass"
namespace {
class ARMExpandPseudo : public MachineFunctionPass {
public:
static char ID;
ARMExpandPseudo() : MachineFunctionPass(ID) {}
const ARMBaseInstrInfo *TII;
const TargetRegisterInfo *TRI;
const ARMSubtarget *STI;
ARMFunctionInfo *AFI;
bool runOnMachineFunction(MachineFunction &Fn) override;
MachineFunctionProperties getRequiredProperties() const override {
return MachineFunctionProperties().set(
MachineFunctionProperties::Property::NoVRegs);
}
StringRef getPassName() const override {
return ARM_EXPAND_PSEUDO_NAME;
}
private:
void TransferImpOps(MachineInstr &OldMI,
MachineInstrBuilder &UseMI, MachineInstrBuilder &DefMI);
bool ExpandMI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI);
bool ExpandMBB(MachineBasicBlock &MBB);
void ExpandVLD(MachineBasicBlock::iterator &MBBI);
void ExpandVST(MachineBasicBlock::iterator &MBBI);
void ExpandLaneOp(MachineBasicBlock::iterator &MBBI);
void ExpandVTBL(MachineBasicBlock::iterator &MBBI,
unsigned Opc, bool IsExt);
void ExpandMOV32BitImm(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI);
void CMSEClearGPRegs(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, const DebugLoc &DL,
const SmallVectorImpl<unsigned> &ClearRegs,
unsigned ClobberReg);
MachineBasicBlock &CMSEClearFPRegs(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI);
MachineBasicBlock &CMSEClearFPRegsV8(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const BitVector &ClearRegs);
MachineBasicBlock &CMSEClearFPRegsV81(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const BitVector &ClearRegs);
void CMSESaveClearFPRegs(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, DebugLoc &DL,
const LivePhysRegs &LiveRegs,
SmallVectorImpl<unsigned> &AvailableRegs);
void CMSESaveClearFPRegsV8(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, DebugLoc &DL,
const LivePhysRegs &LiveRegs,
SmallVectorImpl<unsigned> &ScratchRegs);
void CMSESaveClearFPRegsV81(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, DebugLoc &DL,
const LivePhysRegs &LiveRegs);
void CMSERestoreFPRegs(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, DebugLoc &DL,
SmallVectorImpl<unsigned> &AvailableRegs);
void CMSERestoreFPRegsV8(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, DebugLoc &DL,
SmallVectorImpl<unsigned> &AvailableRegs);
void CMSERestoreFPRegsV81(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, DebugLoc &DL,
SmallVectorImpl<unsigned> &AvailableRegs);
bool ExpandCMP_SWAP(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, unsigned LdrexOp,
unsigned StrexOp, unsigned UxtOp,
MachineBasicBlock::iterator &NextMBBI);
bool ExpandCMP_SWAP_64(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI);
};
char ARMExpandPseudo::ID = 0;
}
INITIALIZE_PASS(ARMExpandPseudo, DEBUG_TYPE, ARM_EXPAND_PSEUDO_NAME, false,
false)
/// TransferImpOps - Transfer implicit operands on the pseudo instruction to
/// the instructions created from the expansion.
void ARMExpandPseudo::TransferImpOps(MachineInstr &OldMI,
MachineInstrBuilder &UseMI,
MachineInstrBuilder &DefMI) {
const MCInstrDesc &Desc = OldMI.getDesc();
for (unsigned i = Desc.getNumOperands(), e = OldMI.getNumOperands();
i != e; ++i) {
const MachineOperand &MO = OldMI.getOperand(i);
assert(MO.isReg() && MO.getReg());
if (MO.isUse())
UseMI.add(MO);
else
DefMI.add(MO);
}
}
namespace {
// Constants for register spacing in NEON load/store instructions.
// For quad-register load-lane and store-lane pseudo instructors, the
// spacing is initially assumed to be EvenDblSpc, and that is changed to
// OddDblSpc depending on the lane number operand.
enum NEONRegSpacing {
SingleSpc,
SingleLowSpc , // Single spacing, low registers, three and four vectors.
SingleHighQSpc, // Single spacing, high registers, four vectors.
SingleHighTSpc, // Single spacing, high registers, three vectors.
EvenDblSpc,
OddDblSpc
};
// Entries for NEON load/store information table. The table is sorted by
// PseudoOpc for fast binary-search lookups.
struct NEONLdStTableEntry {
uint16_t PseudoOpc;
uint16_t RealOpc;
bool IsLoad;
bool isUpdating;
bool hasWritebackOperand;
uint8_t RegSpacing; // One of type NEONRegSpacing
uint8_t NumRegs; // D registers loaded or stored
uint8_t RegElts; // elements per D register; used for lane ops
// FIXME: Temporary flag to denote whether the real instruction takes
// a single register (like the encoding) or all of the registers in
// the list (like the asm syntax and the isel DAG). When all definitions
// are converted to take only the single encoded register, this will
// go away.
bool copyAllListRegs;
// Comparison methods for binary search of the table.
bool operator<(const NEONLdStTableEntry &TE) const {
return PseudoOpc < TE.PseudoOpc;
}
friend bool operator<(const NEONLdStTableEntry &TE, unsigned PseudoOpc) {
return TE.PseudoOpc < PseudoOpc;
}
friend bool LLVM_ATTRIBUTE_UNUSED operator<(unsigned PseudoOpc,
const NEONLdStTableEntry &TE) {
return PseudoOpc < TE.PseudoOpc;
}
};
}
static const NEONLdStTableEntry NEONLdStTable[] = {
{ ARM::VLD1LNq16Pseudo, ARM::VLD1LNd16, true, false, false, EvenDblSpc, 1, 4 ,true},
{ ARM::VLD1LNq16Pseudo_UPD, ARM::VLD1LNd16_UPD, true, true, true, EvenDblSpc, 1, 4 ,true},
{ ARM::VLD1LNq32Pseudo, ARM::VLD1LNd32, true, false, false, EvenDblSpc, 1, 2 ,true},
{ ARM::VLD1LNq32Pseudo_UPD, ARM::VLD1LNd32_UPD, true, true, true, EvenDblSpc, 1, 2 ,true},
{ ARM::VLD1LNq8Pseudo, ARM::VLD1LNd8, true, false, false, EvenDblSpc, 1, 8 ,true},
{ ARM::VLD1LNq8Pseudo_UPD, ARM::VLD1LNd8_UPD, true, true, true, EvenDblSpc, 1, 8 ,true},
{ ARM::VLD1d16QPseudo, ARM::VLD1d16Q, true, false, false, SingleSpc, 4, 4 ,false},
{ ARM::VLD1d16TPseudo, ARM::VLD1d16T, true, false, false, SingleSpc, 3, 4 ,false},
{ ARM::VLD1d32QPseudo, ARM::VLD1d32Q, true, false, false, SingleSpc, 4, 2 ,false},
{ ARM::VLD1d32TPseudo, ARM::VLD1d32T, true, false, false, SingleSpc, 3, 2 ,false},
{ ARM::VLD1d64QPseudo, ARM::VLD1d64Q, true, false, false, SingleSpc, 4, 1 ,false},
{ ARM::VLD1d64QPseudoWB_fixed, ARM::VLD1d64Qwb_fixed, true, true, false, SingleSpc, 4, 1 ,false},
{ ARM::VLD1d64QPseudoWB_register, ARM::VLD1d64Qwb_register, true, true, true, SingleSpc, 4, 1 ,false},
{ ARM::VLD1d64TPseudo, ARM::VLD1d64T, true, false, false, SingleSpc, 3, 1 ,false},
{ ARM::VLD1d64TPseudoWB_fixed, ARM::VLD1d64Twb_fixed, true, true, false, SingleSpc, 3, 1 ,false},
{ ARM::VLD1d64TPseudoWB_register, ARM::VLD1d64Twb_register, true, true, true, SingleSpc, 3, 1 ,false},
{ ARM::VLD1d8QPseudo, ARM::VLD1d8Q, true, false, false, SingleSpc, 4, 8 ,false},
{ ARM::VLD1d8TPseudo, ARM::VLD1d8T, true, false, false, SingleSpc, 3, 8 ,false},
{ ARM::VLD1q16HighQPseudo, ARM::VLD1d16Q, true, false, false, SingleHighQSpc, 4, 4 ,false},
{ ARM::VLD1q16HighTPseudo, ARM::VLD1d16T, true, false, false, SingleHighTSpc, 3, 4 ,false},
{ ARM::VLD1q16LowQPseudo_UPD, ARM::VLD1d16Qwb_fixed, true, true, true, SingleLowSpc, 4, 4 ,false},
{ ARM::VLD1q16LowTPseudo_UPD, ARM::VLD1d16Twb_fixed, true, true, true, SingleLowSpc, 3, 4 ,false},
{ ARM::VLD1q32HighQPseudo, ARM::VLD1d32Q, true, false, false, SingleHighQSpc, 4, 2 ,false},
{ ARM::VLD1q32HighTPseudo, ARM::VLD1d32T, true, false, false, SingleHighTSpc, 3, 2 ,false},
{ ARM::VLD1q32LowQPseudo_UPD, ARM::VLD1d32Qwb_fixed, true, true, true, SingleLowSpc, 4, 2 ,false},
{ ARM::VLD1q32LowTPseudo_UPD, ARM::VLD1d32Twb_fixed, true, true, true, SingleLowSpc, 3, 2 ,false},
{ ARM::VLD1q64HighQPseudo, ARM::VLD1d64Q, true, false, false, SingleHighQSpc, 4, 1 ,false},
{ ARM::VLD1q64HighTPseudo, ARM::VLD1d64T, true, false, false, SingleHighTSpc, 3, 1 ,false},
{ ARM::VLD1q64LowQPseudo_UPD, ARM::VLD1d64Qwb_fixed, true, true, true, SingleLowSpc, 4, 1 ,false},
{ ARM::VLD1q64LowTPseudo_UPD, ARM::VLD1d64Twb_fixed, true, true, true, SingleLowSpc, 3, 1 ,false},
{ ARM::VLD1q8HighQPseudo, ARM::VLD1d8Q, true, false, false, SingleHighQSpc, 4, 8 ,false},
{ ARM::VLD1q8HighTPseudo, ARM::VLD1d8T, true, false, false, SingleHighTSpc, 3, 8 ,false},
{ ARM::VLD1q8LowQPseudo_UPD, ARM::VLD1d8Qwb_fixed, true, true, true, SingleLowSpc, 4, 8 ,false},
{ ARM::VLD1q8LowTPseudo_UPD, ARM::VLD1d8Twb_fixed, true, true, true, SingleLowSpc, 3, 8 ,false},
{ ARM::VLD2DUPq16EvenPseudo, ARM::VLD2DUPd16x2, true, false, false, EvenDblSpc, 2, 4 ,false},
{ ARM::VLD2DUPq16OddPseudo, ARM::VLD2DUPd16x2, true, false, false, OddDblSpc, 2, 4 ,false},
{ ARM::VLD2DUPq32EvenPseudo, ARM::VLD2DUPd32x2, true, false, false, EvenDblSpc, 2, 2 ,false},
{ ARM::VLD2DUPq32OddPseudo, ARM::VLD2DUPd32x2, true, false, false, OddDblSpc, 2, 2 ,false},
{ ARM::VLD2DUPq8EvenPseudo, ARM::VLD2DUPd8x2, true, false, false, EvenDblSpc, 2, 8 ,false},
{ ARM::VLD2DUPq8OddPseudo, ARM::VLD2DUPd8x2, true, false, false, OddDblSpc, 2, 8 ,false},
{ ARM::VLD2LNd16Pseudo, ARM::VLD2LNd16, true, false, false, SingleSpc, 2, 4 ,true},
{ ARM::VLD2LNd16Pseudo_UPD, ARM::VLD2LNd16_UPD, true, true, true, SingleSpc, 2, 4 ,true},
{ ARM::VLD2LNd32Pseudo, ARM::VLD2LNd32, true, false, false, SingleSpc, 2, 2 ,true},
{ ARM::VLD2LNd32Pseudo_UPD, ARM::VLD2LNd32_UPD, true, true, true, SingleSpc, 2, 2 ,true},
{ ARM::VLD2LNd8Pseudo, ARM::VLD2LNd8, true, false, false, SingleSpc, 2, 8 ,true},
{ ARM::VLD2LNd8Pseudo_UPD, ARM::VLD2LNd8_UPD, true, true, true, SingleSpc, 2, 8 ,true},
{ ARM::VLD2LNq16Pseudo, ARM::VLD2LNq16, true, false, false, EvenDblSpc, 2, 4 ,true},
{ ARM::VLD2LNq16Pseudo_UPD, ARM::VLD2LNq16_UPD, true, true, true, EvenDblSpc, 2, 4 ,true},
{ ARM::VLD2LNq32Pseudo, ARM::VLD2LNq32, true, false, false, EvenDblSpc, 2, 2 ,true},
{ ARM::VLD2LNq32Pseudo_UPD, ARM::VLD2LNq32_UPD, true, true, true, EvenDblSpc, 2, 2 ,true},
{ ARM::VLD2q16Pseudo, ARM::VLD2q16, true, false, false, SingleSpc, 4, 4 ,false},
{ ARM::VLD2q16PseudoWB_fixed, ARM::VLD2q16wb_fixed, true, true, false, SingleSpc, 4, 4 ,false},
{ ARM::VLD2q16PseudoWB_register, ARM::VLD2q16wb_register, true, true, true, SingleSpc, 4, 4 ,false},
{ ARM::VLD2q32Pseudo, ARM::VLD2q32, true, false, false, SingleSpc, 4, 2 ,false},
{ ARM::VLD2q32PseudoWB_fixed, ARM::VLD2q32wb_fixed, true, true, false, SingleSpc, 4, 2 ,false},
{ ARM::VLD2q32PseudoWB_register, ARM::VLD2q32wb_register, true, true, true, SingleSpc, 4, 2 ,false},
{ ARM::VLD2q8Pseudo, ARM::VLD2q8, true, false, false, SingleSpc, 4, 8 ,false},
{ ARM::VLD2q8PseudoWB_fixed, ARM::VLD2q8wb_fixed, true, true, false, SingleSpc, 4, 8 ,false},
{ ARM::VLD2q8PseudoWB_register, ARM::VLD2q8wb_register, true, true, true, SingleSpc, 4, 8 ,false},
{ ARM::VLD3DUPd16Pseudo, ARM::VLD3DUPd16, true, false, false, SingleSpc, 3, 4,true},
{ ARM::VLD3DUPd16Pseudo_UPD, ARM::VLD3DUPd16_UPD, true, true, true, SingleSpc, 3, 4,true},
{ ARM::VLD3DUPd32Pseudo, ARM::VLD3DUPd32, true, false, false, SingleSpc, 3, 2,true},
{ ARM::VLD3DUPd32Pseudo_UPD, ARM::VLD3DUPd32_UPD, true, true, true, SingleSpc, 3, 2,true},
{ ARM::VLD3DUPd8Pseudo, ARM::VLD3DUPd8, true, false, false, SingleSpc, 3, 8,true},
{ ARM::VLD3DUPd8Pseudo_UPD, ARM::VLD3DUPd8_UPD, true, true, true, SingleSpc, 3, 8,true},
{ ARM::VLD3DUPq16EvenPseudo, ARM::VLD3DUPq16, true, false, false, EvenDblSpc, 3, 4 ,true},
{ ARM::VLD3DUPq16OddPseudo, ARM::VLD3DUPq16, true, false, false, OddDblSpc, 3, 4 ,true},
{ ARM::VLD3DUPq32EvenPseudo, ARM::VLD3DUPq32, true, false, false, EvenDblSpc, 3, 2 ,true},
{ ARM::VLD3DUPq32OddPseudo, ARM::VLD3DUPq32, true, false, false, OddDblSpc, 3, 2 ,true},
{ ARM::VLD3DUPq8EvenPseudo, ARM::VLD3DUPq8, true, false, false, EvenDblSpc, 3, 8 ,true},
{ ARM::VLD3DUPq8OddPseudo, ARM::VLD3DUPq8, true, false, false, OddDblSpc, 3, 8 ,true},
{ ARM::VLD3LNd16Pseudo, ARM::VLD3LNd16, true, false, false, SingleSpc, 3, 4 ,true},
{ ARM::VLD3LNd16Pseudo_UPD, ARM::VLD3LNd16_UPD, true, true, true, SingleSpc, 3, 4 ,true},
{ ARM::VLD3LNd32Pseudo, ARM::VLD3LNd32, true, false, false, SingleSpc, 3, 2 ,true},
{ ARM::VLD3LNd32Pseudo_UPD, ARM::VLD3LNd32_UPD, true, true, true, SingleSpc, 3, 2 ,true},
{ ARM::VLD3LNd8Pseudo, ARM::VLD3LNd8, true, false, false, SingleSpc, 3, 8 ,true},
{ ARM::VLD3LNd8Pseudo_UPD, ARM::VLD3LNd8_UPD, true, true, true, SingleSpc, 3, 8 ,true},
{ ARM::VLD3LNq16Pseudo, ARM::VLD3LNq16, true, false, false, EvenDblSpc, 3, 4 ,true},
{ ARM::VLD3LNq16Pseudo_UPD, ARM::VLD3LNq16_UPD, true, true, true, EvenDblSpc, 3, 4 ,true},
{ ARM::VLD3LNq32Pseudo, ARM::VLD3LNq32, true, false, false, EvenDblSpc, 3, 2 ,true},
{ ARM::VLD3LNq32Pseudo_UPD, ARM::VLD3LNq32_UPD, true, true, true, EvenDblSpc, 3, 2 ,true},
{ ARM::VLD3d16Pseudo, ARM::VLD3d16, true, false, false, SingleSpc, 3, 4 ,true},
{ ARM::VLD3d16Pseudo_UPD, ARM::VLD3d16_UPD, true, true, true, SingleSpc, 3, 4 ,true},
{ ARM::VLD3d32Pseudo, ARM::VLD3d32, true, false, false, SingleSpc, 3, 2 ,true},
{ ARM::VLD3d32Pseudo_UPD, ARM::VLD3d32_UPD, true, true, true, SingleSpc, 3, 2 ,true},
{ ARM::VLD3d8Pseudo, ARM::VLD3d8, true, false, false, SingleSpc, 3, 8 ,true},
{ ARM::VLD3d8Pseudo_UPD, ARM::VLD3d8_UPD, true, true, true, SingleSpc, 3, 8 ,true},
{ ARM::VLD3q16Pseudo_UPD, ARM::VLD3q16_UPD, true, true, true, EvenDblSpc, 3, 4 ,true},
{ ARM::VLD3q16oddPseudo, ARM::VLD3q16, true, false, false, OddDblSpc, 3, 4 ,true},
{ ARM::VLD3q16oddPseudo_UPD, ARM::VLD3q16_UPD, true, true, true, OddDblSpc, 3, 4 ,true},
{ ARM::VLD3q32Pseudo_UPD, ARM::VLD3q32_UPD, true, true, true, EvenDblSpc, 3, 2 ,true},
{ ARM::VLD3q32oddPseudo, ARM::VLD3q32, true, false, false, OddDblSpc, 3, 2 ,true},
{ ARM::VLD3q32oddPseudo_UPD, ARM::VLD3q32_UPD, true, true, true, OddDblSpc, 3, 2 ,true},
{ ARM::VLD3q8Pseudo_UPD, ARM::VLD3q8_UPD, true, true, true, EvenDblSpc, 3, 8 ,true},
{ ARM::VLD3q8oddPseudo, ARM::VLD3q8, true, false, false, OddDblSpc, 3, 8 ,true},
{ ARM::VLD3q8oddPseudo_UPD, ARM::VLD3q8_UPD, true, true, true, OddDblSpc, 3, 8 ,true},
{ ARM::VLD4DUPd16Pseudo, ARM::VLD4DUPd16, true, false, false, SingleSpc, 4, 4,true},
{ ARM::VLD4DUPd16Pseudo_UPD, ARM::VLD4DUPd16_UPD, true, true, true, SingleSpc, 4, 4,true},
{ ARM::VLD4DUPd32Pseudo, ARM::VLD4DUPd32, true, false, false, SingleSpc, 4, 2,true},
{ ARM::VLD4DUPd32Pseudo_UPD, ARM::VLD4DUPd32_UPD, true, true, true, SingleSpc, 4, 2,true},
{ ARM::VLD4DUPd8Pseudo, ARM::VLD4DUPd8, true, false, false, SingleSpc, 4, 8,true},
{ ARM::VLD4DUPd8Pseudo_UPD, ARM::VLD4DUPd8_UPD, true, true, true, SingleSpc, 4, 8,true},
{ ARM::VLD4DUPq16EvenPseudo, ARM::VLD4DUPq16, true, false, false, EvenDblSpc, 4, 4 ,true},
{ ARM::VLD4DUPq16OddPseudo, ARM::VLD4DUPq16, true, false, false, OddDblSpc, 4, 4 ,true},
{ ARM::VLD4DUPq32EvenPseudo, ARM::VLD4DUPq32, true, false, false, EvenDblSpc, 4, 2 ,true},
{ ARM::VLD4DUPq32OddPseudo, ARM::VLD4DUPq32, true, false, false, OddDblSpc, 4, 2 ,true},
{ ARM::VLD4DUPq8EvenPseudo, ARM::VLD4DUPq8, true, false, false, EvenDblSpc, 4, 8 ,true},
{ ARM::VLD4DUPq8OddPseudo, ARM::VLD4DUPq8, true, false, false, OddDblSpc, 4, 8 ,true},
{ ARM::VLD4LNd16Pseudo, ARM::VLD4LNd16, true, false, false, SingleSpc, 4, 4 ,true},
{ ARM::VLD4LNd16Pseudo_UPD, ARM::VLD4LNd16_UPD, true, true, true, SingleSpc, 4, 4 ,true},
{ ARM::VLD4LNd32Pseudo, ARM::VLD4LNd32, true, false, false, SingleSpc, 4, 2 ,true},
{ ARM::VLD4LNd32Pseudo_UPD, ARM::VLD4LNd32_UPD, true, true, true, SingleSpc, 4, 2 ,true},
{ ARM::VLD4LNd8Pseudo, ARM::VLD4LNd8, true, false, false, SingleSpc, 4, 8 ,true},
{ ARM::VLD4LNd8Pseudo_UPD, ARM::VLD4LNd8_UPD, true, true, true, SingleSpc, 4, 8 ,true},
{ ARM::VLD4LNq16Pseudo, ARM::VLD4LNq16, true, false, false, EvenDblSpc, 4, 4 ,true},
{ ARM::VLD4LNq16Pseudo_UPD, ARM::VLD4LNq16_UPD, true, true, true, EvenDblSpc, 4, 4 ,true},
{ ARM::VLD4LNq32Pseudo, ARM::VLD4LNq32, true, false, false, EvenDblSpc, 4, 2 ,true},
{ ARM::VLD4LNq32Pseudo_UPD, ARM::VLD4LNq32_UPD, true, true, true, EvenDblSpc, 4, 2 ,true},
{ ARM::VLD4d16Pseudo, ARM::VLD4d16, true, false, false, SingleSpc, 4, 4 ,true},
{ ARM::VLD4d16Pseudo_UPD, ARM::VLD4d16_UPD, true, true, true, SingleSpc, 4, 4 ,true},
{ ARM::VLD4d32Pseudo, ARM::VLD4d32, true, false, false, SingleSpc, 4, 2 ,true},
{ ARM::VLD4d32Pseudo_UPD, ARM::VLD4d32_UPD, true, true, true, SingleSpc, 4, 2 ,true},
{ ARM::VLD4d8Pseudo, ARM::VLD4d8, true, false, false, SingleSpc, 4, 8 ,true},
{ ARM::VLD4d8Pseudo_UPD, ARM::VLD4d8_UPD, true, true, true, SingleSpc, 4, 8 ,true},
{ ARM::VLD4q16Pseudo_UPD, ARM::VLD4q16_UPD, true, true, true, EvenDblSpc, 4, 4 ,true},
{ ARM::VLD4q16oddPseudo, ARM::VLD4q16, true, false, false, OddDblSpc, 4, 4 ,true},
{ ARM::VLD4q16oddPseudo_UPD, ARM::VLD4q16_UPD, true, true, true, OddDblSpc, 4, 4 ,true},
{ ARM::VLD4q32Pseudo_UPD, ARM::VLD4q32_UPD, true, true, true, EvenDblSpc, 4, 2 ,true},
{ ARM::VLD4q32oddPseudo, ARM::VLD4q32, true, false, false, OddDblSpc, 4, 2 ,true},
{ ARM::VLD4q32oddPseudo_UPD, ARM::VLD4q32_UPD, true, true, true, OddDblSpc, 4, 2 ,true},
{ ARM::VLD4q8Pseudo_UPD, ARM::VLD4q8_UPD, true, true, true, EvenDblSpc, 4, 8 ,true},
{ ARM::VLD4q8oddPseudo, ARM::VLD4q8, true, false, false, OddDblSpc, 4, 8 ,true},
{ ARM::VLD4q8oddPseudo_UPD, ARM::VLD4q8_UPD, true, true, true, OddDblSpc, 4, 8 ,true},
{ ARM::VST1LNq16Pseudo, ARM::VST1LNd16, false, false, false, EvenDblSpc, 1, 4 ,true},
{ ARM::VST1LNq16Pseudo_UPD, ARM::VST1LNd16_UPD, false, true, true, EvenDblSpc, 1, 4 ,true},
{ ARM::VST1LNq32Pseudo, ARM::VST1LNd32, false, false, false, EvenDblSpc, 1, 2 ,true},
{ ARM::VST1LNq32Pseudo_UPD, ARM::VST1LNd32_UPD, false, true, true, EvenDblSpc, 1, 2 ,true},
{ ARM::VST1LNq8Pseudo, ARM::VST1LNd8, false, false, false, EvenDblSpc, 1, 8 ,true},
{ ARM::VST1LNq8Pseudo_UPD, ARM::VST1LNd8_UPD, false, true, true, EvenDblSpc, 1, 8 ,true},
{ ARM::VST1d16QPseudo, ARM::VST1d16Q, false, false, false, SingleSpc, 4, 4 ,false},
{ ARM::VST1d16TPseudo, ARM::VST1d16T, false, false, false, SingleSpc, 3, 4 ,false},
{ ARM::VST1d32QPseudo, ARM::VST1d32Q, false, false, false, SingleSpc, 4, 2 ,false},
{ ARM::VST1d32TPseudo, ARM::VST1d32T, false, false, false, SingleSpc, 3, 2 ,false},
{ ARM::VST1d64QPseudo, ARM::VST1d64Q, false, false, false, SingleSpc, 4, 1 ,false},
{ ARM::VST1d64QPseudoWB_fixed, ARM::VST1d64Qwb_fixed, false, true, false, SingleSpc, 4, 1 ,false},
{ ARM::VST1d64QPseudoWB_register, ARM::VST1d64Qwb_register, false, true, true, SingleSpc, 4, 1 ,false},
{ ARM::VST1d64TPseudo, ARM::VST1d64T, false, false, false, SingleSpc, 3, 1 ,false},
{ ARM::VST1d64TPseudoWB_fixed, ARM::VST1d64Twb_fixed, false, true, false, SingleSpc, 3, 1 ,false},
{ ARM::VST1d64TPseudoWB_register, ARM::VST1d64Twb_register, false, true, true, SingleSpc, 3, 1 ,false},
{ ARM::VST1d8QPseudo, ARM::VST1d8Q, false, false, false, SingleSpc, 4, 8 ,false},
{ ARM::VST1d8TPseudo, ARM::VST1d8T, false, false, false, SingleSpc, 3, 8 ,false},
{ ARM::VST1q16HighQPseudo, ARM::VST1d16Q, false, false, false, SingleHighQSpc, 4, 4 ,false},
{ ARM::VST1q16HighTPseudo, ARM::VST1d16T, false, false, false, SingleHighTSpc, 3, 4 ,false},
{ ARM::VST1q16LowQPseudo_UPD, ARM::VST1d16Qwb_fixed, false, true, true, SingleLowSpc, 4, 4 ,false},
{ ARM::VST1q16LowTPseudo_UPD, ARM::VST1d16Twb_fixed, false, true, true, SingleLowSpc, 3, 4 ,false},
{ ARM::VST1q32HighQPseudo, ARM::VST1d32Q, false, false, false, SingleHighQSpc, 4, 2 ,false},
{ ARM::VST1q32HighTPseudo, ARM::VST1d32T, false, false, false, SingleHighTSpc, 3, 2 ,false},
{ ARM::VST1q32LowQPseudo_UPD, ARM::VST1d32Qwb_fixed, false, true, true, SingleLowSpc, 4, 2 ,false},
{ ARM::VST1q32LowTPseudo_UPD, ARM::VST1d32Twb_fixed, false, true, true, SingleLowSpc, 3, 2 ,false},
{ ARM::VST1q64HighQPseudo, ARM::VST1d64Q, false, false, false, SingleHighQSpc, 4, 1 ,false},
{ ARM::VST1q64HighTPseudo, ARM::VST1d64T, false, false, false, SingleHighTSpc, 3, 1 ,false},
{ ARM::VST1q64LowQPseudo_UPD, ARM::VST1d64Qwb_fixed, false, true, true, SingleLowSpc, 4, 1 ,false},
{ ARM::VST1q64LowTPseudo_UPD, ARM::VST1d64Twb_fixed, false, true, true, SingleLowSpc, 3, 1 ,false},
{ ARM::VST1q8HighQPseudo, ARM::VST1d8Q, false, false, false, SingleHighQSpc, 4, 8 ,false},
{ ARM::VST1q8HighTPseudo, ARM::VST1d8T, false, false, false, SingleHighTSpc, 3, 8 ,false},
{ ARM::VST1q8LowQPseudo_UPD, ARM::VST1d8Qwb_fixed, false, true, true, SingleLowSpc, 4, 8 ,false},
{ ARM::VST1q8LowTPseudo_UPD, ARM::VST1d8Twb_fixed, false, true, true, SingleLowSpc, 3, 8 ,false},
{ ARM::VST2LNd16Pseudo, ARM::VST2LNd16, false, false, false, SingleSpc, 2, 4 ,true},
{ ARM::VST2LNd16Pseudo_UPD, ARM::VST2LNd16_UPD, false, true, true, SingleSpc, 2, 4 ,true},
{ ARM::VST2LNd32Pseudo, ARM::VST2LNd32, false, false, false, SingleSpc, 2, 2 ,true},
{ ARM::VST2LNd32Pseudo_UPD, ARM::VST2LNd32_UPD, false, true, true, SingleSpc, 2, 2 ,true},
{ ARM::VST2LNd8Pseudo, ARM::VST2LNd8, false, false, false, SingleSpc, 2, 8 ,true},
{ ARM::VST2LNd8Pseudo_UPD, ARM::VST2LNd8_UPD, false, true, true, SingleSpc, 2, 8 ,true},
{ ARM::VST2LNq16Pseudo, ARM::VST2LNq16, false, false, false, EvenDblSpc, 2, 4,true},
{ ARM::VST2LNq16Pseudo_UPD, ARM::VST2LNq16_UPD, false, true, true, EvenDblSpc, 2, 4,true},
{ ARM::VST2LNq32Pseudo, ARM::VST2LNq32, false, false, false, EvenDblSpc, 2, 2,true},
{ ARM::VST2LNq32Pseudo_UPD, ARM::VST2LNq32_UPD, false, true, true, EvenDblSpc, 2, 2,true},
{ ARM::VST2q16Pseudo, ARM::VST2q16, false, false, false, SingleSpc, 4, 4 ,false},
{ ARM::VST2q16PseudoWB_fixed, ARM::VST2q16wb_fixed, false, true, false, SingleSpc, 4, 4 ,false},
{ ARM::VST2q16PseudoWB_register, ARM::VST2q16wb_register, false, true, true, SingleSpc, 4, 4 ,false},
{ ARM::VST2q32Pseudo, ARM::VST2q32, false, false, false, SingleSpc, 4, 2 ,false},
{ ARM::VST2q32PseudoWB_fixed, ARM::VST2q32wb_fixed, false, true, false, SingleSpc, 4, 2 ,false},
{ ARM::VST2q32PseudoWB_register, ARM::VST2q32wb_register, false, true, true, SingleSpc, 4, 2 ,false},
{ ARM::VST2q8Pseudo, ARM::VST2q8, false, false, false, SingleSpc, 4, 8 ,false},
{ ARM::VST2q8PseudoWB_fixed, ARM::VST2q8wb_fixed, false, true, false, SingleSpc, 4, 8 ,false},
{ ARM::VST2q8PseudoWB_register, ARM::VST2q8wb_register, false, true, true, SingleSpc, 4, 8 ,false},
{ ARM::VST3LNd16Pseudo, ARM::VST3LNd16, false, false, false, SingleSpc, 3, 4 ,true},
{ ARM::VST3LNd16Pseudo_UPD, ARM::VST3LNd16_UPD, false, true, true, SingleSpc, 3, 4 ,true},
{ ARM::VST3LNd32Pseudo, ARM::VST3LNd32, false, false, false, SingleSpc, 3, 2 ,true},
{ ARM::VST3LNd32Pseudo_UPD, ARM::VST3LNd32_UPD, false, true, true, SingleSpc, 3, 2 ,true},
{ ARM::VST3LNd8Pseudo, ARM::VST3LNd8, false, false, false, SingleSpc, 3, 8 ,true},
{ ARM::VST3LNd8Pseudo_UPD, ARM::VST3LNd8_UPD, false, true, true, SingleSpc, 3, 8 ,true},
{ ARM::VST3LNq16Pseudo, ARM::VST3LNq16, false, false, false, EvenDblSpc, 3, 4,true},
{ ARM::VST3LNq16Pseudo_UPD, ARM::VST3LNq16_UPD, false, true, true, EvenDblSpc, 3, 4,true},
{ ARM::VST3LNq32Pseudo, ARM::VST3LNq32, false, false, false, EvenDblSpc, 3, 2,true},
{ ARM::VST3LNq32Pseudo_UPD, ARM::VST3LNq32_UPD, false, true, true, EvenDblSpc, 3, 2,true},
{ ARM::VST3d16Pseudo, ARM::VST3d16, false, false, false, SingleSpc, 3, 4 ,true},
{ ARM::VST3d16Pseudo_UPD, ARM::VST3d16_UPD, false, true, true, SingleSpc, 3, 4 ,true},
{ ARM::VST3d32Pseudo, ARM::VST3d32, false, false, false, SingleSpc, 3, 2 ,true},
{ ARM::VST3d32Pseudo_UPD, ARM::VST3d32_UPD, false, true, true, SingleSpc, 3, 2 ,true},
{ ARM::VST3d8Pseudo, ARM::VST3d8, false, false, false, SingleSpc, 3, 8 ,true},
{ ARM::VST3d8Pseudo_UPD, ARM::VST3d8_UPD, false, true, true, SingleSpc, 3, 8 ,true},
{ ARM::VST3q16Pseudo_UPD, ARM::VST3q16_UPD, false, true, true, EvenDblSpc, 3, 4 ,true},
{ ARM::VST3q16oddPseudo, ARM::VST3q16, false, false, false, OddDblSpc, 3, 4 ,true},
{ ARM::VST3q16oddPseudo_UPD, ARM::VST3q16_UPD, false, true, true, OddDblSpc, 3, 4 ,true},
{ ARM::VST3q32Pseudo_UPD, ARM::VST3q32_UPD, false, true, true, EvenDblSpc, 3, 2 ,true},
{ ARM::VST3q32oddPseudo, ARM::VST3q32, false, false, false, OddDblSpc, 3, 2 ,true},
{ ARM::VST3q32oddPseudo_UPD, ARM::VST3q32_UPD, false, true, true, OddDblSpc, 3, 2 ,true},
{ ARM::VST3q8Pseudo_UPD, ARM::VST3q8_UPD, false, true, true, EvenDblSpc, 3, 8 ,true},
{ ARM::VST3q8oddPseudo, ARM::VST3q8, false, false, false, OddDblSpc, 3, 8 ,true},
{ ARM::VST3q8oddPseudo_UPD, ARM::VST3q8_UPD, false, true, true, OddDblSpc, 3, 8 ,true},
{ ARM::VST4LNd16Pseudo, ARM::VST4LNd16, false, false, false, SingleSpc, 4, 4 ,true},
{ ARM::VST4LNd16Pseudo_UPD, ARM::VST4LNd16_UPD, false, true, true, SingleSpc, 4, 4 ,true},
{ ARM::VST4LNd32Pseudo, ARM::VST4LNd32, false, false, false, SingleSpc, 4, 2 ,true},
{ ARM::VST4LNd32Pseudo_UPD, ARM::VST4LNd32_UPD, false, true, true, SingleSpc, 4, 2 ,true},
{ ARM::VST4LNd8Pseudo, ARM::VST4LNd8, false, false, false, SingleSpc, 4, 8 ,true},
{ ARM::VST4LNd8Pseudo_UPD, ARM::VST4LNd8_UPD, false, true, true, SingleSpc, 4, 8 ,true},
{ ARM::VST4LNq16Pseudo, ARM::VST4LNq16, false, false, false, EvenDblSpc, 4, 4,true},
{ ARM::VST4LNq16Pseudo_UPD, ARM::VST4LNq16_UPD, false, true, true, EvenDblSpc, 4, 4,true},
{ ARM::VST4LNq32Pseudo, ARM::VST4LNq32, false, false, false, EvenDblSpc, 4, 2,true},
{ ARM::VST4LNq32Pseudo_UPD, ARM::VST4LNq32_UPD, false, true, true, EvenDblSpc, 4, 2,true},
{ ARM::VST4d16Pseudo, ARM::VST4d16, false, false, false, SingleSpc, 4, 4 ,true},
{ ARM::VST4d16Pseudo_UPD, ARM::VST4d16_UPD, false, true, true, SingleSpc, 4, 4 ,true},
{ ARM::VST4d32Pseudo, ARM::VST4d32, false, false, false, SingleSpc, 4, 2 ,true},
{ ARM::VST4d32Pseudo_UPD, ARM::VST4d32_UPD, false, true, true, SingleSpc, 4, 2 ,true},
{ ARM::VST4d8Pseudo, ARM::VST4d8, false, false, false, SingleSpc, 4, 8 ,true},
{ ARM::VST4d8Pseudo_UPD, ARM::VST4d8_UPD, false, true, true, SingleSpc, 4, 8 ,true},
{ ARM::VST4q16Pseudo_UPD, ARM::VST4q16_UPD, false, true, true, EvenDblSpc, 4, 4 ,true},
{ ARM::VST4q16oddPseudo, ARM::VST4q16, false, false, false, OddDblSpc, 4, 4 ,true},
{ ARM::VST4q16oddPseudo_UPD, ARM::VST4q16_UPD, false, true, true, OddDblSpc, 4, 4 ,true},
{ ARM::VST4q32Pseudo_UPD, ARM::VST4q32_UPD, false, true, true, EvenDblSpc, 4, 2 ,true},
{ ARM::VST4q32oddPseudo, ARM::VST4q32, false, false, false, OddDblSpc, 4, 2 ,true},
{ ARM::VST4q32oddPseudo_UPD, ARM::VST4q32_UPD, false, true, true, OddDblSpc, 4, 2 ,true},
{ ARM::VST4q8Pseudo_UPD, ARM::VST4q8_UPD, false, true, true, EvenDblSpc, 4, 8 ,true},
{ ARM::VST4q8oddPseudo, ARM::VST4q8, false, false, false, OddDblSpc, 4, 8 ,true},
{ ARM::VST4q8oddPseudo_UPD, ARM::VST4q8_UPD, false, true, true, OddDblSpc, 4, 8 ,true}
};
/// LookupNEONLdSt - Search the NEONLdStTable for information about a NEON
/// load or store pseudo instruction.
static const NEONLdStTableEntry *LookupNEONLdSt(unsigned Opcode) {
#ifndef NDEBUG
// Make sure the table is sorted.
static std::atomic<bool> TableChecked(false);
if (!TableChecked.load(std::memory_order_relaxed)) {
assert(llvm::is_sorted(NEONLdStTable) && "NEONLdStTable is not sorted!");
TableChecked.store(true, std::memory_order_relaxed);
}
#endif
auto I = llvm::lower_bound(NEONLdStTable, Opcode);
if (I != std::end(NEONLdStTable) && I->PseudoOpc == Opcode)
return I;
return nullptr;
}
/// GetDSubRegs - Get 4 D subregisters of a Q, QQ, or QQQQ register,
/// corresponding to the specified register spacing. Not all of the results
/// are necessarily valid, e.g., a Q register only has 2 D subregisters.
static void GetDSubRegs(unsigned Reg, NEONRegSpacing RegSpc,
const TargetRegisterInfo *TRI, unsigned &D0,
unsigned &D1, unsigned &D2, unsigned &D3) {
if (RegSpc == SingleSpc || RegSpc == SingleLowSpc) {
D0 = TRI->getSubReg(Reg, ARM::dsub_0);
D1 = TRI->getSubReg(Reg, ARM::dsub_1);
D2 = TRI->getSubReg(Reg, ARM::dsub_2);
D3 = TRI->getSubReg(Reg, ARM::dsub_3);
} else if (RegSpc == SingleHighQSpc) {
D0 = TRI->getSubReg(Reg, ARM::dsub_4);
D1 = TRI->getSubReg(Reg, ARM::dsub_5);
D2 = TRI->getSubReg(Reg, ARM::dsub_6);
D3 = TRI->getSubReg(Reg, ARM::dsub_7);
} else if (RegSpc == SingleHighTSpc) {
D0 = TRI->getSubReg(Reg, ARM::dsub_3);
D1 = TRI->getSubReg(Reg, ARM::dsub_4);
D2 = TRI->getSubReg(Reg, ARM::dsub_5);
D3 = TRI->getSubReg(Reg, ARM::dsub_6);
} else if (RegSpc == EvenDblSpc) {
D0 = TRI->getSubReg(Reg, ARM::dsub_0);
D1 = TRI->getSubReg(Reg, ARM::dsub_2);
D2 = TRI->getSubReg(Reg, ARM::dsub_4);
D3 = TRI->getSubReg(Reg, ARM::dsub_6);
} else {
assert(RegSpc == OddDblSpc && "unknown register spacing");
D0 = TRI->getSubReg(Reg, ARM::dsub_1);
D1 = TRI->getSubReg(Reg, ARM::dsub_3);
D2 = TRI->getSubReg(Reg, ARM::dsub_5);
D3 = TRI->getSubReg(Reg, ARM::dsub_7);
}
}
/// ExpandVLD - Translate VLD pseudo instructions with Q, QQ or QQQQ register
/// operands to real VLD instructions with D register operands.
void ARMExpandPseudo::ExpandVLD(MachineBasicBlock::iterator &MBBI) {
MachineInstr &MI = *MBBI;
MachineBasicBlock &MBB = *MI.getParent();
LLVM_DEBUG(dbgs() << "Expanding: "; MI.dump());
const NEONLdStTableEntry *TableEntry = LookupNEONLdSt(MI.getOpcode());
assert(TableEntry && TableEntry->IsLoad && "NEONLdStTable lookup failed");
NEONRegSpacing RegSpc = (NEONRegSpacing)TableEntry->RegSpacing;
unsigned NumRegs = TableEntry->NumRegs;
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(TableEntry->RealOpc));
unsigned OpIdx = 0;
bool DstIsDead = MI.getOperand(OpIdx).isDead();
Register DstReg = MI.getOperand(OpIdx++).getReg();
if(TableEntry->RealOpc == ARM::VLD2DUPd8x2 ||
TableEntry->RealOpc == ARM::VLD2DUPd16x2 ||
TableEntry->RealOpc == ARM::VLD2DUPd32x2) {
unsigned SubRegIndex;
if (RegSpc == EvenDblSpc) {
SubRegIndex = ARM::dsub_0;
} else {
assert(RegSpc == OddDblSpc && "Unexpected spacing!");
SubRegIndex = ARM::dsub_1;
}
Register SubReg = TRI->getSubReg(DstReg, SubRegIndex);
unsigned DstRegPair = TRI->getMatchingSuperReg(SubReg, ARM::dsub_0,
&ARM::DPairSpcRegClass);
MIB.addReg(DstRegPair, RegState::Define | getDeadRegState(DstIsDead));
} else {
unsigned D0, D1, D2, D3;
GetDSubRegs(DstReg, RegSpc, TRI, D0, D1, D2, D3);
MIB.addReg(D0, RegState::Define | getDeadRegState(DstIsDead));
if (NumRegs > 1 && TableEntry->copyAllListRegs)
MIB.addReg(D1, RegState::Define | getDeadRegState(DstIsDead));
if (NumRegs > 2 && TableEntry->copyAllListRegs)
MIB.addReg(D2, RegState::Define | getDeadRegState(DstIsDead));
if (NumRegs > 3 && TableEntry->copyAllListRegs)
MIB.addReg(D3, RegState::Define | getDeadRegState(DstIsDead));
}
if (TableEntry->isUpdating)
MIB.add(MI.getOperand(OpIdx++));
// Copy the addrmode6 operands.
MIB.add(MI.getOperand(OpIdx++));
MIB.add(MI.getOperand(OpIdx++));
// Copy the am6offset operand.
if (TableEntry->hasWritebackOperand) {
// TODO: The writing-back pseudo instructions we translate here are all
// defined to take am6offset nodes that are capable to represent both fixed
// and register forms. Some real instructions, however, do not rely on
// am6offset and have separate definitions for such forms. When this is the
// case, fixed forms do not take any offset nodes, so here we skip them for
// such instructions. Once all real and pseudo writing-back instructions are
// rewritten without use of am6offset nodes, this code will go away.
const MachineOperand &AM6Offset = MI.getOperand(OpIdx++);
if (TableEntry->RealOpc == ARM::VLD1d8Qwb_fixed ||
TableEntry->RealOpc == ARM::VLD1d16Qwb_fixed ||
TableEntry->RealOpc == ARM::VLD1d32Qwb_fixed ||
TableEntry->RealOpc == ARM::VLD1d64Qwb_fixed ||
TableEntry->RealOpc == ARM::VLD1d8Twb_fixed ||
TableEntry->RealOpc == ARM::VLD1d16Twb_fixed ||
TableEntry->RealOpc == ARM::VLD1d32Twb_fixed ||
TableEntry->RealOpc == ARM::VLD1d64Twb_fixed) {
assert(AM6Offset.getReg() == 0 &&
"A fixed writing-back pseudo instruction provides an offset "
"register!");
} else {
MIB.add(AM6Offset);
}
}
// For an instruction writing double-spaced subregs, the pseudo instruction
// has an extra operand that is a use of the super-register. Record the
// operand index and skip over it.
unsigned SrcOpIdx = 0;
if(TableEntry->RealOpc != ARM::VLD2DUPd8x2 &&
TableEntry->RealOpc != ARM::VLD2DUPd16x2 &&
TableEntry->RealOpc != ARM::VLD2DUPd32x2) {
if (RegSpc == EvenDblSpc || RegSpc == OddDblSpc ||
RegSpc == SingleLowSpc || RegSpc == SingleHighQSpc ||
RegSpc == SingleHighTSpc)
SrcOpIdx = OpIdx++;
}
// Copy the predicate operands.
MIB.add(MI.getOperand(OpIdx++));
MIB.add(MI.getOperand(OpIdx++));
// Copy the super-register source operand used for double-spaced subregs over
// to the new instruction as an implicit operand.
if (SrcOpIdx != 0) {
MachineOperand MO = MI.getOperand(SrcOpIdx);
MO.setImplicit(true);
MIB.add(MO);
}
// Add an implicit def for the super-register.
MIB.addReg(DstReg, RegState::ImplicitDefine | getDeadRegState(DstIsDead));
TransferImpOps(MI, MIB, MIB);
// Transfer memoperands.
MIB.cloneMemRefs(MI);
MI.eraseFromParent();
LLVM_DEBUG(dbgs() << "To: "; MIB.getInstr()->dump(););
}
/// ExpandVST - Translate VST pseudo instructions with Q, QQ or QQQQ register
/// operands to real VST instructions with D register operands.
void ARMExpandPseudo::ExpandVST(MachineBasicBlock::iterator &MBBI) {
MachineInstr &MI = *MBBI;
MachineBasicBlock &MBB = *MI.getParent();
LLVM_DEBUG(dbgs() << "Expanding: "; MI.dump());
const NEONLdStTableEntry *TableEntry = LookupNEONLdSt(MI.getOpcode());
assert(TableEntry && !TableEntry->IsLoad && "NEONLdStTable lookup failed");
NEONRegSpacing RegSpc = (NEONRegSpacing)TableEntry->RegSpacing;
unsigned NumRegs = TableEntry->NumRegs;
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(TableEntry->RealOpc));
unsigned OpIdx = 0;
if (TableEntry->isUpdating)
MIB.add(MI.getOperand(OpIdx++));
// Copy the addrmode6 operands.
MIB.add(MI.getOperand(OpIdx++));
MIB.add(MI.getOperand(OpIdx++));
if (TableEntry->hasWritebackOperand) {
// TODO: The writing-back pseudo instructions we translate here are all
// defined to take am6offset nodes that are capable to represent both fixed
// and register forms. Some real instructions, however, do not rely on
// am6offset and have separate definitions for such forms. When this is the
// case, fixed forms do not take any offset nodes, so here we skip them for
// such instructions. Once all real and pseudo writing-back instructions are
// rewritten without use of am6offset nodes, this code will go away.
const MachineOperand &AM6Offset = MI.getOperand(OpIdx++);
if (TableEntry->RealOpc == ARM::VST1d8Qwb_fixed ||
TableEntry->RealOpc == ARM::VST1d16Qwb_fixed ||
TableEntry->RealOpc == ARM::VST1d32Qwb_fixed ||
TableEntry->RealOpc == ARM::VST1d64Qwb_fixed ||
TableEntry->RealOpc == ARM::VST1d8Twb_fixed ||
TableEntry->RealOpc == ARM::VST1d16Twb_fixed ||
TableEntry->RealOpc == ARM::VST1d32Twb_fixed ||
TableEntry->RealOpc == ARM::VST1d64Twb_fixed) {
assert(AM6Offset.getReg() == 0 &&
"A fixed writing-back pseudo instruction provides an offset "
"register!");
} else {
MIB.add(AM6Offset);
}
}
bool SrcIsKill = MI.getOperand(OpIdx).isKill();
bool SrcIsUndef = MI.getOperand(OpIdx).isUndef();
Register SrcReg = MI.getOperand(OpIdx++).getReg();
unsigned D0, D1, D2, D3;
GetDSubRegs(SrcReg, RegSpc, TRI, D0, D1, D2, D3);
MIB.addReg(D0, getUndefRegState(SrcIsUndef));
if (NumRegs > 1 && TableEntry->copyAllListRegs)
MIB.addReg(D1, getUndefRegState(SrcIsUndef));
if (NumRegs > 2 && TableEntry->copyAllListRegs)
MIB.addReg(D2, getUndefRegState(SrcIsUndef));
if (NumRegs > 3 && TableEntry->copyAllListRegs)
MIB.addReg(D3, getUndefRegState(SrcIsUndef));
// Copy the predicate operands.
MIB.add(MI.getOperand(OpIdx++));
MIB.add(MI.getOperand(OpIdx++));
if (SrcIsKill && !SrcIsUndef) // Add an implicit kill for the super-reg.
MIB->addRegisterKilled(SrcReg, TRI, true);
else if (!SrcIsUndef)
MIB.addReg(SrcReg, RegState::Implicit); // Add implicit uses for src reg.
TransferImpOps(MI, MIB, MIB);
// Transfer memoperands.
MIB.cloneMemRefs(MI);
MI.eraseFromParent();
LLVM_DEBUG(dbgs() << "To: "; MIB.getInstr()->dump(););
}
/// ExpandLaneOp - Translate VLD*LN and VST*LN instructions with Q, QQ or QQQQ
/// register operands to real instructions with D register operands.
void ARMExpandPseudo::ExpandLaneOp(MachineBasicBlock::iterator &MBBI) {
MachineInstr &MI = *MBBI;
MachineBasicBlock &MBB = *MI.getParent();
LLVM_DEBUG(dbgs() << "Expanding: "; MI.dump());
const NEONLdStTableEntry *TableEntry = LookupNEONLdSt(MI.getOpcode());
assert(TableEntry && "NEONLdStTable lookup failed");
NEONRegSpacing RegSpc = (NEONRegSpacing)TableEntry->RegSpacing;
unsigned NumRegs = TableEntry->NumRegs;
unsigned RegElts = TableEntry->RegElts;
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(TableEntry->RealOpc));
unsigned OpIdx = 0;
// The lane operand is always the 3rd from last operand, before the 2
// predicate operands.
unsigned Lane = MI.getOperand(MI.getDesc().getNumOperands() - 3).getImm();
// Adjust the lane and spacing as needed for Q registers.
assert(RegSpc != OddDblSpc && "unexpected register spacing for VLD/VST-lane");
if (RegSpc == EvenDblSpc && Lane >= RegElts) {
RegSpc = OddDblSpc;
Lane -= RegElts;
}
assert(Lane < RegElts && "out of range lane for VLD/VST-lane");
unsigned D0 = 0, D1 = 0, D2 = 0, D3 = 0;
unsigned DstReg = 0;
bool DstIsDead = false;
if (TableEntry->IsLoad) {
DstIsDead = MI.getOperand(OpIdx).isDead();
DstReg = MI.getOperand(OpIdx++).getReg();
GetDSubRegs(DstReg, RegSpc, TRI, D0, D1, D2, D3);
MIB.addReg(D0, RegState::Define | getDeadRegState(DstIsDead));
if (NumRegs > 1)
MIB.addReg(D1, RegState::Define | getDeadRegState(DstIsDead));
if (NumRegs > 2)
MIB.addReg(D2, RegState::Define | getDeadRegState(DstIsDead));
if (NumRegs > 3)
MIB.addReg(D3, RegState::Define | getDeadRegState(DstIsDead));
}
if (TableEntry->isUpdating)
MIB.add(MI.getOperand(OpIdx++));
// Copy the addrmode6 operands.
MIB.add(MI.getOperand(OpIdx++));
MIB.add(MI.getOperand(OpIdx++));
// Copy the am6offset operand.
if (TableEntry->hasWritebackOperand)
MIB.add(MI.getOperand(OpIdx++));
// Grab the super-register source.
MachineOperand MO = MI.getOperand(OpIdx++);
if (!TableEntry->IsLoad)
GetDSubRegs(MO.getReg(), RegSpc, TRI, D0, D1, D2, D3);
// Add the subregs as sources of the new instruction.
unsigned SrcFlags = (getUndefRegState(MO.isUndef()) |
getKillRegState(MO.isKill()));
MIB.addReg(D0, SrcFlags);
if (NumRegs > 1)
MIB.addReg(D1, SrcFlags);
if (NumRegs > 2)
MIB.addReg(D2, SrcFlags);
if (NumRegs > 3)
MIB.addReg(D3, SrcFlags);
// Add the lane number operand.
MIB.addImm(Lane);
OpIdx += 1;
// Copy the predicate operands.
MIB.add(MI.getOperand(OpIdx++));
MIB.add(MI.getOperand(OpIdx++));
// Copy the super-register source to be an implicit source.
MO.setImplicit(true);
MIB.add(MO);
if (TableEntry->IsLoad)
// Add an implicit def for the super-register.
MIB.addReg(DstReg, RegState::ImplicitDefine | getDeadRegState(DstIsDead));
TransferImpOps(MI, MIB, MIB);
// Transfer memoperands.
MIB.cloneMemRefs(MI);
MI.eraseFromParent();
}
/// ExpandVTBL - Translate VTBL and VTBX pseudo instructions with Q or QQ
/// register operands to real instructions with D register operands.
void ARMExpandPseudo::ExpandVTBL(MachineBasicBlock::iterator &MBBI,
unsigned Opc, bool IsExt) {
MachineInstr &MI = *MBBI;
MachineBasicBlock &MBB = *MI.getParent();
LLVM_DEBUG(dbgs() << "Expanding: "; MI.dump());
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc));
unsigned OpIdx = 0;
// Transfer the destination register operand.
MIB.add(MI.getOperand(OpIdx++));
if (IsExt) {
MachineOperand VdSrc(MI.getOperand(OpIdx++));
MIB.add(VdSrc);
}
bool SrcIsKill = MI.getOperand(OpIdx).isKill();
Register SrcReg = MI.getOperand(OpIdx++).getReg();
unsigned D0, D1, D2, D3;
GetDSubRegs(SrcReg, SingleSpc, TRI, D0, D1, D2, D3);
MIB.addReg(D0);
// Copy the other source register operand.
MachineOperand VmSrc(MI.getOperand(OpIdx++));
MIB.add(VmSrc);
// Copy the predicate operands.
MIB.add(MI.getOperand(OpIdx++));
MIB.add(MI.getOperand(OpIdx++));
// Add an implicit kill and use for the super-reg.
MIB.addReg(SrcReg, RegState::Implicit | getKillRegState(SrcIsKill));
TransferImpOps(MI, MIB, MIB);
MI.eraseFromParent();
LLVM_DEBUG(dbgs() << "To: "; MIB.getInstr()->dump(););
}
static bool IsAnAddressOperand(const MachineOperand &MO) {
// This check is overly conservative. Unless we are certain that the machine
// operand is not a symbol reference, we return that it is a symbol reference.
// This is important as the load pair may not be split up Windows.
switch (MO.getType()) {
case MachineOperand::MO_Register:
case MachineOperand::MO_Immediate:
case MachineOperand::MO_CImmediate:
case MachineOperand::MO_FPImmediate:
case MachineOperand::MO_ShuffleMask:
return false;
case MachineOperand::MO_MachineBasicBlock:
return true;
case MachineOperand::MO_FrameIndex:
return false;
case MachineOperand::MO_ConstantPoolIndex:
case MachineOperand::MO_TargetIndex:
case MachineOperand::MO_JumpTableIndex:
case MachineOperand::MO_ExternalSymbol:
case MachineOperand::MO_GlobalAddress:
case MachineOperand::MO_BlockAddress:
return true;
case MachineOperand::MO_RegisterMask:
case MachineOperand::MO_RegisterLiveOut:
return false;
case MachineOperand::MO_Metadata:
case MachineOperand::MO_MCSymbol:
return true;
case MachineOperand::MO_CFIIndex:
return false;
case MachineOperand::MO_IntrinsicID:
case MachineOperand::MO_Predicate:
llvm_unreachable("should not exist post-isel");
}
llvm_unreachable("unhandled machine operand type");
}
static MachineOperand makeImplicit(const MachineOperand &MO) {
MachineOperand NewMO = MO;
NewMO.setImplicit();
return NewMO;
}
void ARMExpandPseudo::ExpandMOV32BitImm(MachineBasicBlock &MBB,
MachineBasicBlock::iterator &MBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
Register PredReg;
ARMCC::CondCodes Pred = getInstrPredicate(MI, PredReg);
Register DstReg = MI.getOperand(0).getReg();
bool DstIsDead = MI.getOperand(0).isDead();
bool isCC = Opcode == ARM::MOVCCi32imm || Opcode == ARM::t2MOVCCi32imm;
const MachineOperand &MO = MI.getOperand(isCC ? 2 : 1);
bool RequiresBundling = STI->isTargetWindows() && IsAnAddressOperand(MO);
MachineInstrBuilder LO16, HI16;
LLVM_DEBUG(dbgs() << "Expanding: "; MI.dump());
if (!STI->hasV6T2Ops() &&
(Opcode == ARM::MOVi32imm || Opcode == ARM::MOVCCi32imm)) {
// FIXME Windows CE supports older ARM CPUs
assert(!STI->isTargetWindows() && "Windows on ARM requires ARMv7+");
assert (MO.isImm() && "MOVi32imm w/ non-immediate source operand!");
unsigned ImmVal = (unsigned)MO.getImm();
unsigned SOImmValV1 = 0, SOImmValV2 = 0;
if (ARM_AM::isSOImmTwoPartVal(ImmVal)) { // Expand into a movi + orr.
LO16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVi), DstReg);
HI16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::ORRri))
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
.addReg(DstReg);
SOImmValV1 = ARM_AM::getSOImmTwoPartFirst(ImmVal);
SOImmValV2 = ARM_AM::getSOImmTwoPartSecond(ImmVal);
} else { // Expand into a mvn + sub.
LO16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MVNi), DstReg);
HI16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::SUBri))
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
.addReg(DstReg);
SOImmValV1 = ARM_AM::getSOImmTwoPartFirst(-ImmVal);
SOImmValV2 = ARM_AM::getSOImmTwoPartSecond(-ImmVal);
SOImmValV1 = ~(-SOImmValV1);
}
unsigned MIFlags = MI.getFlags();
LO16 = LO16.addImm(SOImmValV1);
HI16 = HI16.addImm(SOImmValV2);
LO16.cloneMemRefs(MI);
HI16.cloneMemRefs(MI);
LO16.setMIFlags(MIFlags);
HI16.setMIFlags(MIFlags);
LO16.addImm(Pred).addReg(PredReg).add(condCodeOp());
HI16.addImm(Pred).addReg(PredReg).add(condCodeOp());
if (isCC)
LO16.add(makeImplicit(MI.getOperand(1)));
TransferImpOps(MI, LO16, HI16);
MI.eraseFromParent();
return;
}
unsigned LO16Opc = 0;
unsigned HI16Opc = 0;
unsigned MIFlags = MI.getFlags();
if (Opcode == ARM::t2MOVi32imm || Opcode == ARM::t2MOVCCi32imm) {
LO16Opc = ARM::t2MOVi16;
HI16Opc = ARM::t2MOVTi16;
} else {
LO16Opc = ARM::MOVi16;
HI16Opc = ARM::MOVTi16;
}
LO16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(LO16Opc), DstReg);
HI16 = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(HI16Opc))
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
.addReg(DstReg);
LO16.setMIFlags(MIFlags);
HI16.setMIFlags(MIFlags);
switch (MO.getType()) {
case MachineOperand::MO_Immediate: {
unsigned Imm = MO.getImm();
unsigned Lo16 = Imm & 0xffff;
unsigned Hi16 = (Imm >> 16) & 0xffff;
LO16 = LO16.addImm(Lo16);
HI16 = HI16.addImm(Hi16);
break;
}
case MachineOperand::MO_ExternalSymbol: {
const char *ES = MO.getSymbolName();
unsigned TF = MO.getTargetFlags();
LO16 = LO16.addExternalSymbol(ES, TF | ARMII::MO_LO16);
HI16 = HI16.addExternalSymbol(ES, TF | ARMII::MO_HI16);
break;
}
default: {
const GlobalValue *GV = MO.getGlobal();
unsigned TF = MO.getTargetFlags();
LO16 = LO16.addGlobalAddress(GV, MO.getOffset(), TF | ARMII::MO_LO16);
HI16 = HI16.addGlobalAddress(GV, MO.getOffset(), TF | ARMII::MO_HI16);
break;
}
}
LO16.cloneMemRefs(MI);
HI16.cloneMemRefs(MI);
LO16.addImm(Pred).addReg(PredReg);
HI16.addImm(Pred).addReg(PredReg);
if (RequiresBundling)
finalizeBundle(MBB, LO16->getIterator(), MBBI->getIterator());
if (isCC)
LO16.add(makeImplicit(MI.getOperand(1)));
TransferImpOps(MI, LO16, HI16);
MI.eraseFromParent();
LLVM_DEBUG(dbgs() << "To: "; LO16.getInstr()->dump(););
LLVM_DEBUG(dbgs() << "And: "; HI16.getInstr()->dump(););
}
// The size of the area, accessed by that VLSTM/VLLDM
// S0-S31 + FPSCR + 8 more bytes (VPR + pad, or just pad)
static const int CMSE_FP_SAVE_SIZE = 136;
static void determineGPRegsToClear(const MachineInstr &MI,
const std::initializer_list<unsigned> &Regs,
SmallVectorImpl<unsigned> &ClearRegs) {
SmallVector<unsigned, 4> OpRegs;
for (const MachineOperand &Op : MI.operands()) {
if (!Op.isReg() || !Op.isUse())
continue;
OpRegs.push_back(Op.getReg());
}
llvm::sort(OpRegs);
std::set_difference(Regs.begin(), Regs.end(), OpRegs.begin(), OpRegs.end(),
std::back_inserter(ClearRegs));
}
void ARMExpandPseudo::CMSEClearGPRegs(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI,
const DebugLoc &DL, const SmallVectorImpl<unsigned> &ClearRegs,
unsigned ClobberReg) {
if (STI->hasV8_1MMainlineOps()) {
// Clear the registers using the CLRM instruction.
MachineInstrBuilder CLRM =
BuildMI(MBB, MBBI, DL, TII->get(ARM::t2CLRM)).add(predOps(ARMCC::AL));
for (unsigned R : ClearRegs)
CLRM.addReg(R, RegState::Define);
CLRM.addReg(ARM::APSR, RegState::Define);
CLRM.addReg(ARM::CPSR, RegState::Define | RegState::Implicit);
} else {
// Clear the registers and flags by copying ClobberReg into them.
// (Baseline can't do a high register clear in one instruction).
for (unsigned Reg : ClearRegs) {
if (Reg == ClobberReg)
continue;
BuildMI(MBB, MBBI, DL, TII->get(ARM::tMOVr), Reg)
.addReg(ClobberReg)
.add(predOps(ARMCC::AL));
}
BuildMI(MBB, MBBI, DL, TII->get(ARM::t2MSR_M))
.addImm(STI->hasDSP() ? 0xc00 : 0x800)
.addReg(ClobberReg)
.add(predOps(ARMCC::AL));
}
}
// Find which FP registers need to be cleared. The parameter `ClearRegs` is
// initialised with all elements set to true, and this function resets all the
// bits, which correspond to register uses. Returns true if any floating point
// register is defined, false otherwise.
static bool determineFPRegsToClear(const MachineInstr &MI,
BitVector &ClearRegs) {
bool DefFP = false;
for (const MachineOperand &Op : MI.operands()) {
if (!Op.isReg())
continue;
unsigned Reg = Op.getReg();
if (Op.isDef()) {
if ((Reg >= ARM::Q0 && Reg <= ARM::Q7) ||
(Reg >= ARM::D0 && Reg <= ARM::D15) ||
(Reg >= ARM::S0 && Reg <= ARM::S31))
DefFP = true;
continue;
}
if (Reg >= ARM::Q0 && Reg <= ARM::Q7) {
int R = Reg - ARM::Q0;
ClearRegs.reset(R * 4, (R + 1) * 4);
} else if (Reg >= ARM::D0 && Reg <= ARM::D15) {
int R = Reg - ARM::D0;
ClearRegs.reset(R * 2, (R + 1) * 2);
} else if (Reg >= ARM::S0 && Reg <= ARM::S31) {
ClearRegs[Reg - ARM::S0] = false;
}
}
return DefFP;
}
MachineBasicBlock &
ARMExpandPseudo::CMSEClearFPRegs(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI) {
BitVector ClearRegs(16, true);
(void)determineFPRegsToClear(*MBBI, ClearRegs);
if (STI->hasV8_1MMainlineOps())
return CMSEClearFPRegsV81(MBB, MBBI, ClearRegs);
else
return CMSEClearFPRegsV8(MBB, MBBI, ClearRegs);
}
// Clear the FP registers for v8.0-M, by copying over the content
// of LR. Uses R12 as a scratch register.
MachineBasicBlock &
ARMExpandPseudo::CMSEClearFPRegsV8(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const BitVector &ClearRegs) {
if (!STI->hasFPRegs())
return MBB;
auto &RetI = *MBBI;
const DebugLoc &DL = RetI.getDebugLoc();
// If optimising for minimum size, clear FP registers unconditionally.
// Otherwise, check the CONTROL.SFPA (Secure Floating-Point Active) bit and
// don't clear them if they belong to the non-secure state.
MachineBasicBlock *ClearBB, *DoneBB;
if (STI->hasMinSize()) {
ClearBB = DoneBB = &MBB;
} else {
MachineFunction *MF = MBB.getParent();
ClearBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
MF->insert(++MBB.getIterator(), ClearBB);
MF->insert(++ClearBB->getIterator(), DoneBB);
DoneBB->splice(DoneBB->end(), &MBB, MBBI, MBB.end());
DoneBB->transferSuccessors(&MBB);
MBB.addSuccessor(ClearBB);
MBB.addSuccessor(DoneBB);
ClearBB->addSuccessor(DoneBB);
// At the new basic blocks we need to have live-in the registers, used
// for the return value as well as LR, used to clear registers.
for (const MachineOperand &Op : RetI.operands()) {
if (!Op.isReg())
continue;
Register Reg = Op.getReg();
if (Reg == ARM::NoRegister || Reg == ARM::LR)
continue;
assert(Register::isPhysicalRegister(Reg) && "Unallocated register");
ClearBB->addLiveIn(Reg);
DoneBB->addLiveIn(Reg);
}
ClearBB->addLiveIn(ARM::LR);
DoneBB->addLiveIn(ARM::LR);
// Read the CONTROL register.
BuildMI(MBB, MBB.end(), DL, TII->get(ARM::t2MRS_M), ARM::R12)
.addImm(20)
.add(predOps(ARMCC::AL));
// Check bit 3 (SFPA).
BuildMI(MBB, MBB.end(), DL, TII->get(ARM::t2TSTri))
.addReg(ARM::R12)
.addImm(8)
.add(predOps(ARMCC::AL));
// If SFPA is clear, jump over ClearBB to DoneBB.
BuildMI(MBB, MBB.end(), DL, TII->get(ARM::tBcc))
.addMBB(DoneBB)
.addImm(ARMCC::EQ)
.addReg(ARM::CPSR, RegState::Kill);
}
// Emit the clearing sequence
for (unsigned D = 0; D < 8; D++) {
// Attempt to clear as double
if (ClearRegs[D * 2 + 0] && ClearRegs[D * 2 + 1]) {
unsigned Reg = ARM::D0 + D;
BuildMI(ClearBB, DL, TII->get(ARM::VMOVDRR), Reg)
.addReg(ARM::LR)
.addReg(ARM::LR)
.add(predOps(ARMCC::AL));
} else {
// Clear first part as single
if (ClearRegs[D * 2 + 0]) {
unsigned Reg = ARM::S0 + D * 2;
BuildMI(ClearBB, DL, TII->get(ARM::VMOVSR), Reg)
.addReg(ARM::LR)
.add(predOps(ARMCC::AL));
}
// Clear second part as single
if (ClearRegs[D * 2 + 1]) {
unsigned Reg = ARM::S0 + D * 2 + 1;
BuildMI(ClearBB, DL, TII->get(ARM::VMOVSR), Reg)
.addReg(ARM::LR)
.add(predOps(ARMCC::AL));
}
}
}
// Clear FPSCR bits 0-4, 7, 28-31
// The other bits are program global according to the AAPCS
BuildMI(ClearBB, DL, TII->get(ARM::VMRS), ARM::R12)
.add(predOps(ARMCC::AL));
BuildMI(ClearBB, DL, TII->get(ARM::t2BICri), ARM::R12)
.addReg(ARM::R12)
.addImm(0x0000009F)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
BuildMI(ClearBB, DL, TII->get(ARM::t2BICri), ARM::R12)
.addReg(ARM::R12)
.addImm(0xF0000000)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
BuildMI(ClearBB, DL, TII->get(ARM::VMSR))
.addReg(ARM::R12)
.add(predOps(ARMCC::AL));
return *DoneBB;
}
MachineBasicBlock &
ARMExpandPseudo::CMSEClearFPRegsV81(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
const BitVector &ClearRegs) {
auto &RetI = *MBBI;
// Emit a sequence of VSCCLRM <sreglist> instructions, one instruction for
// each contiguous sequence of S-registers.
int Start = -1, End = -1;
for (int S = 0, E = ClearRegs.size(); S != E; ++S) {
if (ClearRegs[S] && S == End + 1) {
End = S; // extend range
continue;
}
// Emit current range.
if (Start < End) {
MachineInstrBuilder VSCCLRM =
BuildMI(MBB, MBBI, RetI.getDebugLoc(), TII->get(ARM::VSCCLRMS))
.add(predOps(ARMCC::AL));
while (++Start <= End)
VSCCLRM.addReg(ARM::S0 + Start, RegState::Define);
VSCCLRM.addReg(ARM::VPR, RegState::Define);
}
Start = End = S;
}
// Emit last range.
if (Start < End) {
MachineInstrBuilder VSCCLRM =
BuildMI(MBB, MBBI, RetI.getDebugLoc(), TII->get(ARM::VSCCLRMS))
.add(predOps(ARMCC::AL));
while (++Start <= End)
VSCCLRM.addReg(ARM::S0 + Start, RegState::Define);
VSCCLRM.addReg(ARM::VPR, RegState::Define);
}
return MBB;
}
void ARMExpandPseudo::CMSESaveClearFPRegs(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL,
const LivePhysRegs &LiveRegs, SmallVectorImpl<unsigned> &ScratchRegs) {
if (STI->hasV8_1MMainlineOps())
CMSESaveClearFPRegsV81(MBB, MBBI, DL, LiveRegs);
else
CMSESaveClearFPRegsV8(MBB, MBBI, DL, LiveRegs, ScratchRegs);
}
// Save and clear FP registers if present
void ARMExpandPseudo::CMSESaveClearFPRegsV8(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL,
const LivePhysRegs &LiveRegs, SmallVectorImpl<unsigned> &ScratchRegs) {
if (!STI->hasFPRegs())
return;
// Store an available register for FPSCR clearing
assert(!ScratchRegs.empty());
unsigned SpareReg = ScratchRegs.front();
// save space on stack for VLSTM
BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBspi), ARM::SP)
.addReg(ARM::SP)
.addImm(CMSE_FP_SAVE_SIZE >> 2)
.add(predOps(ARMCC::AL));
// Use ScratchRegs to store the fp regs
std::vector<std::tuple<unsigned, unsigned, unsigned>> ClearedFPRegs;
std::vector<unsigned> NonclearedFPRegs;
for (const MachineOperand &Op : MBBI->operands()) {
if (Op.isReg() && Op.isUse()) {
unsigned Reg = Op.getReg();
assert(!ARM::DPRRegClass.contains(Reg) ||
ARM::DPR_VFP2RegClass.contains(Reg));
assert(!ARM::QPRRegClass.contains(Reg));
if (ARM::DPR_VFP2RegClass.contains(Reg)) {
if (ScratchRegs.size() >= 2) {
unsigned SaveReg2 = ScratchRegs.pop_back_val();
unsigned SaveReg1 = ScratchRegs.pop_back_val();
ClearedFPRegs.emplace_back(Reg, SaveReg1, SaveReg2);
// Save the fp register to the normal registers
BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVRRD))
.addReg(SaveReg1, RegState::Define)
.addReg(SaveReg2, RegState::Define)
.addReg(Reg)
.add(predOps(ARMCC::AL));
} else {
NonclearedFPRegs.push_back(Reg);
}
} else if (ARM::SPRRegClass.contains(Reg)) {
if (ScratchRegs.size() >= 1) {
unsigned SaveReg = ScratchRegs.pop_back_val();
ClearedFPRegs.emplace_back(Reg, SaveReg, 0);
// Save the fp register to the normal registers
BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVRS), SaveReg)
.addReg(Reg)
.add(predOps(ARMCC::AL));
} else {
NonclearedFPRegs.push_back(Reg);
}
}
}
}
bool passesFPReg = (!NonclearedFPRegs.empty() || !ClearedFPRegs.empty());
// Lazy store all fp registers to the stack
MachineInstrBuilder VLSTM = BuildMI(MBB, MBBI, DL, TII->get(ARM::VLSTM))
.addReg(ARM::SP)
.add(predOps(ARMCC::AL));
for (auto R : {ARM::VPR, ARM::FPSCR, ARM::FPSCR_NZCV, ARM::Q0, ARM::Q1,
ARM::Q2, ARM::Q3, ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7})
VLSTM.addReg(R, RegState::Implicit |
(LiveRegs.contains(R) ? 0 : RegState::Undef));
// Restore all arguments
for (const auto &Regs : ClearedFPRegs) {
unsigned Reg, SaveReg1, SaveReg2;
std::tie(Reg, SaveReg1, SaveReg2) = Regs;
if (ARM::DPR_VFP2RegClass.contains(Reg))
BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVDRR), Reg)
.addReg(SaveReg1)
.addReg(SaveReg2)
.add(predOps(ARMCC::AL));
else if (ARM::SPRRegClass.contains(Reg))
BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVSR), Reg)
.addReg(SaveReg1)
.add(predOps(ARMCC::AL));
}
for (unsigned Reg : NonclearedFPRegs) {
if (ARM::DPR_VFP2RegClass.contains(Reg)) {
if (STI->isLittle()) {
BuildMI(MBB, MBBI, DL, TII->get(ARM::VLDRD), Reg)
.addReg(ARM::SP)
.addImm((Reg - ARM::D0) * 2)
.add(predOps(ARMCC::AL));
} else {
// For big-endian targets we need to load the two subregisters of Reg
// manually because VLDRD would load them in wrong order
unsigned SReg0 = TRI->getSubReg(Reg, ARM::ssub_0);
BuildMI(MBB, MBBI, DL, TII->get(ARM::VLDRS), SReg0)
.addReg(ARM::SP)
.addImm((Reg - ARM::D0) * 2)
.add(predOps(ARMCC::AL));
BuildMI(MBB, MBBI, DL, TII->get(ARM::VLDRS), SReg0 + 1)
.addReg(ARM::SP)
.addImm((Reg - ARM::D0) * 2 + 1)
.add(predOps(ARMCC::AL));
}
} else if (ARM::SPRRegClass.contains(Reg)) {
BuildMI(MBB, MBBI, DL, TII->get(ARM::VLDRS), Reg)
.addReg(ARM::SP)
.addImm(Reg - ARM::S0)
.add(predOps(ARMCC::AL));
}
}
// restore FPSCR from stack and clear bits 0-4, 7, 28-31
// The other bits are program global according to the AAPCS
if (passesFPReg) {
BuildMI(MBB, MBBI, DL, TII->get(ARM::t2LDRi8), SpareReg)
.addReg(ARM::SP)
.addImm(0x40)
.add(predOps(ARMCC::AL));
BuildMI(MBB, MBBI, DL, TII->get(ARM::t2BICri), SpareReg)
.addReg(SpareReg)
.addImm(0x0000009F)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
BuildMI(MBB, MBBI, DL, TII->get(ARM::t2BICri), SpareReg)
.addReg(SpareReg)
.addImm(0xF0000000)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
BuildMI(MBB, MBBI, DL, TII->get(ARM::VMSR))
.addReg(SpareReg)
.add(predOps(ARMCC::AL));
// The ldr must happen after a floating point instruction. To prevent the
// post-ra scheduler to mess with the order, we create a bundle.
finalizeBundle(MBB, VLSTM->getIterator(), MBBI->getIterator());
}
}
void ARMExpandPseudo::CMSESaveClearFPRegsV81(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
DebugLoc &DL,
const LivePhysRegs &LiveRegs) {
BitVector ClearRegs(32, true);
bool DefFP = determineFPRegsToClear(*MBBI, ClearRegs);
// If the instruction does not write to a FP register and no elements were
// removed from the set, then no FP registers were used to pass
// arguments/returns.
if (!DefFP && ClearRegs.count() == ClearRegs.size()) {
// save space on stack for VLSTM
BuildMI(MBB, MBBI, DL, TII->get(ARM::tSUBspi), ARM::SP)
.addReg(ARM::SP)
.addImm(CMSE_FP_SAVE_SIZE >> 2)
.add(predOps(ARMCC::AL));
// Lazy store all FP registers to the stack
MachineInstrBuilder VLSTM = BuildMI(MBB, MBBI, DL, TII->get(ARM::VLSTM))
.addReg(ARM::SP)
.add(predOps(ARMCC::AL));
for (auto R : {ARM::VPR, ARM::FPSCR, ARM::FPSCR_NZCV, ARM::Q0, ARM::Q1,
ARM::Q2, ARM::Q3, ARM::Q4, ARM::Q5, ARM::Q6, ARM::Q7})
VLSTM.addReg(R, RegState::Implicit |
(LiveRegs.contains(R) ? 0 : RegState::Undef));
} else {
// Push all the callee-saved registers (s16-s31).
MachineInstrBuilder VPUSH =
BuildMI(MBB, MBBI, DL, TII->get(ARM::VSTMSDB_UPD), ARM::SP)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL));
for (int Reg = ARM::S16; Reg <= ARM::S31; ++Reg)
VPUSH.addReg(Reg);
// Clear FP registers with a VSCCLRM.
(void)CMSEClearFPRegsV81(MBB, MBBI, ClearRegs);
// Save floating-point context.
BuildMI(MBB, MBBI, DL, TII->get(ARM::VSTR_FPCXTS_pre), ARM::SP)
.addReg(ARM::SP)
.addImm(-8)
.add(predOps(ARMCC::AL));
}
}
// Restore FP registers if present
void ARMExpandPseudo::CMSERestoreFPRegs(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL,
SmallVectorImpl<unsigned> &AvailableRegs) {
if (STI->hasV8_1MMainlineOps())
CMSERestoreFPRegsV81(MBB, MBBI, DL, AvailableRegs);
else
CMSERestoreFPRegsV8(MBB, MBBI, DL, AvailableRegs);
}
void ARMExpandPseudo::CMSERestoreFPRegsV8(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL,
SmallVectorImpl<unsigned> &AvailableRegs) {
if (!STI->hasFPRegs())
return;
// Use AvailableRegs to store the fp regs
std::vector<std::tuple<unsigned, unsigned, unsigned>> ClearedFPRegs;
std::vector<unsigned> NonclearedFPRegs;
for (const MachineOperand &Op : MBBI->operands()) {
if (Op.isReg() && Op.isDef()) {
unsigned Reg = Op.getReg();
assert(!ARM::DPRRegClass.contains(Reg) ||
ARM::DPR_VFP2RegClass.contains(Reg));
assert(!ARM::QPRRegClass.contains(Reg));
if (ARM::DPR_VFP2RegClass.contains(Reg)) {
if (AvailableRegs.size() >= 2) {
unsigned SaveReg2 = AvailableRegs.pop_back_val();
unsigned SaveReg1 = AvailableRegs.pop_back_val();
ClearedFPRegs.emplace_back(Reg, SaveReg1, SaveReg2);
// Save the fp register to the normal registers
BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVRRD))
.addReg(SaveReg1, RegState::Define)
.addReg(SaveReg2, RegState::Define)
.addReg(Reg)
.add(predOps(ARMCC::AL));
} else {
NonclearedFPRegs.push_back(Reg);
}
} else if (ARM::SPRRegClass.contains(Reg)) {
if (AvailableRegs.size() >= 1) {
unsigned SaveReg = AvailableRegs.pop_back_val();
ClearedFPRegs.emplace_back(Reg, SaveReg, 0);
// Save the fp register to the normal registers
BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVRS), SaveReg)
.addReg(Reg)
.add(predOps(ARMCC::AL));
} else {
NonclearedFPRegs.push_back(Reg);
}
}
}
}
// Push FP regs that cannot be restored via normal registers on the stack
for (unsigned Reg : NonclearedFPRegs) {
if (ARM::DPR_VFP2RegClass.contains(Reg))
BuildMI(MBB, MBBI, DL, TII->get(ARM::VSTRD), Reg)
.addReg(ARM::SP)
.addImm((Reg - ARM::D0) * 2)
.add(predOps(ARMCC::AL));
else if (ARM::SPRRegClass.contains(Reg))
BuildMI(MBB, MBBI, DL, TII->get(ARM::VSTRS), Reg)
.addReg(ARM::SP)
.addImm(Reg - ARM::S0)
.add(predOps(ARMCC::AL));
}
// Lazy load fp regs from stack
BuildMI(MBB, MBBI, DL, TII->get(ARM::VLLDM))
.addReg(ARM::SP)
.add(predOps(ARMCC::AL));
// Restore all FP registers via normal registers
for (const auto &Regs : ClearedFPRegs) {
unsigned Reg, SaveReg1, SaveReg2;
std::tie(Reg, SaveReg1, SaveReg2) = Regs;
if (ARM::DPR_VFP2RegClass.contains(Reg))
BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVDRR), Reg)
.addReg(SaveReg1)
.addReg(SaveReg2)
.add(predOps(ARMCC::AL));
else if (ARM::SPRRegClass.contains(Reg))
BuildMI(MBB, MBBI, DL, TII->get(ARM::VMOVSR), Reg)
.addReg(SaveReg1)
.add(predOps(ARMCC::AL));
}
// Pop the stack space
BuildMI(MBB, MBBI, DL, TII->get(ARM::tADDspi), ARM::SP)
.addReg(ARM::SP)
.addImm(CMSE_FP_SAVE_SIZE >> 2)
.add(predOps(ARMCC::AL));
}
static bool definesOrUsesFPReg(const MachineInstr &MI) {
for (const MachineOperand &Op : MI.operands()) {
if (!Op.isReg())
continue;
unsigned Reg = Op.getReg();
if ((Reg >= ARM::Q0 && Reg <= ARM::Q7) ||
(Reg >= ARM::D0 && Reg <= ARM::D15) ||
(Reg >= ARM::S0 && Reg <= ARM::S31))
return true;
}
return false;
}
void ARMExpandPseudo::CMSERestoreFPRegsV81(
MachineBasicBlock &MBB, MachineBasicBlock::iterator MBBI, DebugLoc &DL,
SmallVectorImpl<unsigned> &AvailableRegs) {
if (!definesOrUsesFPReg(*MBBI)) {
// Load FP registers from stack.
BuildMI(MBB, MBBI, DL, TII->get(ARM::VLLDM))
.addReg(ARM::SP)
.add(predOps(ARMCC::AL));
// Pop the stack space
BuildMI(MBB, MBBI, DL, TII->get(ARM::tADDspi), ARM::SP)
.addReg(ARM::SP)
.addImm(CMSE_FP_SAVE_SIZE >> 2)
.add(predOps(ARMCC::AL));
} else {
// Restore the floating point context.
BuildMI(MBB, MBBI, MBBI->getDebugLoc(), TII->get(ARM::VLDR_FPCXTS_post),
ARM::SP)
.addReg(ARM::SP)
.addImm(8)
.add(predOps(ARMCC::AL));
// Pop all the callee-saved registers (s16-s31).
MachineInstrBuilder VPOP =
BuildMI(MBB, MBBI, DL, TII->get(ARM::VLDMSIA_UPD), ARM::SP)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL));
for (int Reg = ARM::S16; Reg <= ARM::S31; ++Reg)
VPOP.addReg(Reg, RegState::Define);
}
}
/// Expand a CMP_SWAP pseudo-inst to an ldrex/strex loop as simply as
/// possible. This only gets used at -O0 so we don't care about efficiency of
/// the generated code.
bool ARMExpandPseudo::ExpandCMP_SWAP(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
unsigned LdrexOp, unsigned StrexOp,
unsigned UxtOp,
MachineBasicBlock::iterator &NextMBBI) {
bool IsThumb = STI->isThumb();
MachineInstr &MI = *MBBI;
DebugLoc DL = MI.getDebugLoc();
const MachineOperand &Dest = MI.getOperand(0);
Register TempReg = MI.getOperand(1).getReg();
// Duplicating undef operands into 2 instructions does not guarantee the same
// value on both; However undef should be replaced by xzr anyway.
assert(!MI.getOperand(2).isUndef() && "cannot handle undef");
Register AddrReg = MI.getOperand(2).getReg();
Register DesiredReg = MI.getOperand(3).getReg();
Register NewReg = MI.getOperand(4).getReg();
MachineFunction *MF = MBB.getParent();
auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
MF->insert(++MBB.getIterator(), LoadCmpBB);
MF->insert(++LoadCmpBB->getIterator(), StoreBB);
MF->insert(++StoreBB->getIterator(), DoneBB);
if (UxtOp) {
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, DL, TII->get(UxtOp), DesiredReg)
.addReg(DesiredReg, RegState::Kill);
if (!IsThumb)
MIB.addImm(0);
MIB.add(predOps(ARMCC::AL));
}
// .Lloadcmp:
// ldrex rDest, [rAddr]
// cmp rDest, rDesired
// bne .Ldone
MachineInstrBuilder MIB;
MIB = BuildMI(LoadCmpBB, DL, TII->get(LdrexOp), Dest.getReg());
MIB.addReg(AddrReg);
if (LdrexOp == ARM::t2LDREX)
MIB.addImm(0); // a 32-bit Thumb ldrex (only) allows an offset.
MIB.add(predOps(ARMCC::AL));
unsigned CMPrr = IsThumb ? ARM::tCMPhir : ARM::CMPrr;
BuildMI(LoadCmpBB, DL, TII->get(CMPrr))
.addReg(Dest.getReg(), getKillRegState(Dest.isDead()))
.addReg(DesiredReg)
.add(predOps(ARMCC::AL));
unsigned Bcc = IsThumb ? ARM::tBcc : ARM::Bcc;
BuildMI(LoadCmpBB, DL, TII->get(Bcc))
.addMBB(DoneBB)
.addImm(ARMCC::NE)
.addReg(ARM::CPSR, RegState::Kill);
LoadCmpBB->addSuccessor(DoneBB);
LoadCmpBB->addSuccessor(StoreBB);
// .Lstore:
// strex rTempReg, rNew, [rAddr]
// cmp rTempReg, #0
// bne .Lloadcmp
MIB = BuildMI(StoreBB, DL, TII->get(StrexOp), TempReg)
.addReg(NewReg)
.addReg(AddrReg);
if (StrexOp == ARM::t2STREX)
MIB.addImm(0); // a 32-bit Thumb strex (only) allows an offset.
MIB.add(predOps(ARMCC::AL));
unsigned CMPri = IsThumb ? ARM::t2CMPri : ARM::CMPri;
BuildMI(StoreBB, DL, TII->get(CMPri))
.addReg(TempReg, RegState::Kill)
.addImm(0)
.add(predOps(ARMCC::AL));
BuildMI(StoreBB, DL, TII->get(Bcc))
.addMBB(LoadCmpBB)
.addImm(ARMCC::NE)
.addReg(ARM::CPSR, RegState::Kill);
StoreBB->addSuccessor(LoadCmpBB);
StoreBB->addSuccessor(DoneBB);
DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
DoneBB->transferSuccessors(&MBB);
MBB.addSuccessor(LoadCmpBB);
NextMBBI = MBB.end();
MI.eraseFromParent();
// Recompute livein lists.
LivePhysRegs LiveRegs;
computeAndAddLiveIns(LiveRegs, *DoneBB);
computeAndAddLiveIns(LiveRegs, *StoreBB);
computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
// Do an extra pass around the loop to get loop carried registers right.
StoreBB->clearLiveIns();
computeAndAddLiveIns(LiveRegs, *StoreBB);
LoadCmpBB->clearLiveIns();
computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
return true;
}
/// ARM's ldrexd/strexd take a consecutive register pair (represented as a
/// single GPRPair register), Thumb's take two separate registers so we need to
/// extract the subregs from the pair.
static void addExclusiveRegPair(MachineInstrBuilder &MIB, MachineOperand &Reg,
unsigned Flags, bool IsThumb,
const TargetRegisterInfo *TRI) {
if (IsThumb) {
Register RegLo = TRI->getSubReg(Reg.getReg(), ARM::gsub_0);
Register RegHi = TRI->getSubReg(Reg.getReg(), ARM::gsub_1);
MIB.addReg(RegLo, Flags);
MIB.addReg(RegHi, Flags);
} else
MIB.addReg(Reg.getReg(), Flags);
}
/// Expand a 64-bit CMP_SWAP to an ldrexd/strexd loop.
bool ARMExpandPseudo::ExpandCMP_SWAP_64(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI) {
bool IsThumb = STI->isThumb();
MachineInstr &MI = *MBBI;
DebugLoc DL = MI.getDebugLoc();
MachineOperand &Dest = MI.getOperand(0);
Register TempReg = MI.getOperand(1).getReg();
// Duplicating undef operands into 2 instructions does not guarantee the same
// value on both; However undef should be replaced by xzr anyway.
assert(!MI.getOperand(2).isUndef() && "cannot handle undef");
Register AddrReg = MI.getOperand(2).getReg();
Register DesiredReg = MI.getOperand(3).getReg();
MachineOperand New = MI.getOperand(4);
New.setIsKill(false);
Register DestLo = TRI->getSubReg(Dest.getReg(), ARM::gsub_0);
Register DestHi = TRI->getSubReg(Dest.getReg(), ARM::gsub_1);
Register DesiredLo = TRI->getSubReg(DesiredReg, ARM::gsub_0);
Register DesiredHi = TRI->getSubReg(DesiredReg, ARM::gsub_1);
MachineFunction *MF = MBB.getParent();
auto LoadCmpBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
auto StoreBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
auto DoneBB = MF->CreateMachineBasicBlock(MBB.getBasicBlock());
MF->insert(++MBB.getIterator(), LoadCmpBB);
MF->insert(++LoadCmpBB->getIterator(), StoreBB);
MF->insert(++StoreBB->getIterator(), DoneBB);
// .Lloadcmp:
// ldrexd rDestLo, rDestHi, [rAddr]
// cmp rDestLo, rDesiredLo
// sbcs dead rTempReg, rDestHi, rDesiredHi
// bne .Ldone
unsigned LDREXD = IsThumb ? ARM::t2LDREXD : ARM::LDREXD;
MachineInstrBuilder MIB;
MIB = BuildMI(LoadCmpBB, DL, TII->get(LDREXD));
addExclusiveRegPair(MIB, Dest, RegState::Define, IsThumb, TRI);
MIB.addReg(AddrReg).add(predOps(ARMCC::AL));
unsigned CMPrr = IsThumb ? ARM::tCMPhir : ARM::CMPrr;
BuildMI(LoadCmpBB, DL, TII->get(CMPrr))
.addReg(DestLo, getKillRegState(Dest.isDead()))
.addReg(DesiredLo)
.add(predOps(ARMCC::AL));
BuildMI(LoadCmpBB, DL, TII->get(CMPrr))
.addReg(DestHi, getKillRegState(Dest.isDead()))
.addReg(DesiredHi)
.addImm(ARMCC::EQ).addReg(ARM::CPSR, RegState::Kill);
unsigned Bcc = IsThumb ? ARM::tBcc : ARM::Bcc;
BuildMI(LoadCmpBB, DL, TII->get(Bcc))
.addMBB(DoneBB)
.addImm(ARMCC::NE)
.addReg(ARM::CPSR, RegState::Kill);
LoadCmpBB->addSuccessor(DoneBB);
LoadCmpBB->addSuccessor(StoreBB);
// .Lstore:
// strexd rTempReg, rNewLo, rNewHi, [rAddr]
// cmp rTempReg, #0
// bne .Lloadcmp
unsigned STREXD = IsThumb ? ARM::t2STREXD : ARM::STREXD;
MIB = BuildMI(StoreBB, DL, TII->get(STREXD), TempReg);
unsigned Flags = getKillRegState(New.isDead());
addExclusiveRegPair(MIB, New, Flags, IsThumb, TRI);
MIB.addReg(AddrReg).add(predOps(ARMCC::AL));
unsigned CMPri = IsThumb ? ARM::t2CMPri : ARM::CMPri;
BuildMI(StoreBB, DL, TII->get(CMPri))
.addReg(TempReg, RegState::Kill)
.addImm(0)
.add(predOps(ARMCC::AL));
BuildMI(StoreBB, DL, TII->get(Bcc))
.addMBB(LoadCmpBB)
.addImm(ARMCC::NE)
.addReg(ARM::CPSR, RegState::Kill);
StoreBB->addSuccessor(LoadCmpBB);
StoreBB->addSuccessor(DoneBB);
DoneBB->splice(DoneBB->end(), &MBB, MI, MBB.end());
DoneBB->transferSuccessors(&MBB);
MBB.addSuccessor(LoadCmpBB);
NextMBBI = MBB.end();
MI.eraseFromParent();
// Recompute livein lists.
LivePhysRegs LiveRegs;
computeAndAddLiveIns(LiveRegs, *DoneBB);
computeAndAddLiveIns(LiveRegs, *StoreBB);
computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
// Do an extra pass around the loop to get loop carried registers right.
StoreBB->clearLiveIns();
computeAndAddLiveIns(LiveRegs, *StoreBB);
LoadCmpBB->clearLiveIns();
computeAndAddLiveIns(LiveRegs, *LoadCmpBB);
return true;
}
static void CMSEPushCalleeSaves(const TargetInstrInfo &TII,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, int JumpReg,
const LivePhysRegs &LiveRegs, bool Thumb1Only) {
const DebugLoc &DL = MBBI->getDebugLoc();
if (Thumb1Only) { // push Lo and Hi regs separately
MachineInstrBuilder PushMIB =
BuildMI(MBB, MBBI, DL, TII.get(ARM::tPUSH)).add(predOps(ARMCC::AL));
for (int Reg = ARM::R4; Reg < ARM::R8; ++Reg) {
PushMIB.addReg(
Reg, Reg == JumpReg || LiveRegs.contains(Reg) ? 0 : RegState::Undef);
}
// Thumb1 can only tPUSH low regs, so we copy the high regs to the low
// regs that we just saved and push the low regs again, taking care to
// not clobber JumpReg. If JumpReg is one of the low registers, push first
// the values of r9-r11, and then r8. That would leave them ordered in
// memory, and allow us to later pop them with a single instructions.
// FIXME: Could also use any of r0-r3 that are free (including in the
// first PUSH above).
for (int LoReg = ARM::R7, HiReg = ARM::R11; LoReg >= ARM::R4; --LoReg) {
if (JumpReg == LoReg)
continue;
BuildMI(MBB, MBBI, DL, TII.get(ARM::tMOVr), LoReg)
.addReg(HiReg, LiveRegs.contains(HiReg) ? 0 : RegState::Undef)
.add(predOps(ARMCC::AL));
--HiReg;
}
MachineInstrBuilder PushMIB2 =
BuildMI(MBB, MBBI, DL, TII.get(ARM::tPUSH)).add(predOps(ARMCC::AL));
for (int Reg = ARM::R4; Reg < ARM::R8; ++Reg) {
if (Reg == JumpReg)
continue;
PushMIB2.addReg(Reg, RegState::Kill);
}
// If we couldn't use a low register for temporary storage (because it was
// the JumpReg), use r4 or r5, whichever is not JumpReg. It has already been
// saved.
if (JumpReg >= ARM::R4 && JumpReg <= ARM::R7) {
int LoReg = JumpReg == ARM::R4 ? ARM::R5 : ARM::R4;
BuildMI(MBB, MBBI, DL, TII.get(ARM::tMOVr), LoReg)
.addReg(ARM::R8, LiveRegs.contains(ARM::R8) ? 0 : RegState::Undef)
.add(predOps(ARMCC::AL));
BuildMI(MBB, MBBI, DL, TII.get(ARM::tPUSH))
.add(predOps(ARMCC::AL))
.addReg(LoReg, RegState::Kill);
}
} else { // push Lo and Hi registers with a single instruction
MachineInstrBuilder PushMIB =
BuildMI(MBB, MBBI, DL, TII.get(ARM::t2STMDB_UPD), ARM::SP)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL));
for (int Reg = ARM::R4; Reg < ARM::R12; ++Reg) {
PushMIB.addReg(
Reg, Reg == JumpReg || LiveRegs.contains(Reg) ? 0 : RegState::Undef);
}
}
}
static void CMSEPopCalleeSaves(const TargetInstrInfo &TII,
MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI, int JumpReg,
bool Thumb1Only) {
const DebugLoc &DL = MBBI->getDebugLoc();
if (Thumb1Only) {
MachineInstrBuilder PopMIB =
BuildMI(MBB, MBBI, DL, TII.get(ARM::tPOP)).add(predOps(ARMCC::AL));
for (int R = 0; R < 4; ++R) {
PopMIB.addReg(ARM::R4 + R, RegState::Define);
BuildMI(MBB, MBBI, DL, TII.get(ARM::tMOVr), ARM::R8 + R)
.addReg(ARM::R4 + R, RegState::Kill)
.add(predOps(ARMCC::AL));
}
MachineInstrBuilder PopMIB2 =
BuildMI(MBB, MBBI, DL, TII.get(ARM::tPOP)).add(predOps(ARMCC::AL));
for (int R = 0; R < 4; ++R)
PopMIB2.addReg(ARM::R4 + R, RegState::Define);
} else { // pop Lo and Hi registers with a single instruction
MachineInstrBuilder PopMIB =
BuildMI(MBB, MBBI, DL, TII.get(ARM::t2LDMIA_UPD), ARM::SP)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL));
for (int Reg = ARM::R4; Reg < ARM::R12; ++Reg)
PopMIB.addReg(Reg, RegState::Define);
}
}
bool ARMExpandPseudo::ExpandMI(MachineBasicBlock &MBB,
MachineBasicBlock::iterator MBBI,
MachineBasicBlock::iterator &NextMBBI) {
MachineInstr &MI = *MBBI;
unsigned Opcode = MI.getOpcode();
switch (Opcode) {
default:
return false;
case ARM::VBSPd:
case ARM::VBSPq: {
Register DstReg = MI.getOperand(0).getReg();
if (DstReg == MI.getOperand(3).getReg()) {
// Expand to VBIT
unsigned NewOpc = Opcode == ARM::VBSPd ? ARM::VBITd : ARM::VBITq;
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc))
.add(MI.getOperand(0))
.add(MI.getOperand(3))
.add(MI.getOperand(2))
.add(MI.getOperand(1))
.addImm(MI.getOperand(4).getImm())
.add(MI.getOperand(5));
} else if (DstReg == MI.getOperand(2).getReg()) {
// Expand to VBIF
unsigned NewOpc = Opcode == ARM::VBSPd ? ARM::VBIFd : ARM::VBIFq;
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc))
.add(MI.getOperand(0))
.add(MI.getOperand(2))
.add(MI.getOperand(3))
.add(MI.getOperand(1))
.addImm(MI.getOperand(4).getImm())
.add(MI.getOperand(5));
} else {
// Expand to VBSL
unsigned NewOpc = Opcode == ARM::VBSPd ? ARM::VBSLd : ARM::VBSLq;
if (DstReg == MI.getOperand(1).getReg()) {
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc))
.add(MI.getOperand(0))
.add(MI.getOperand(1))
.add(MI.getOperand(2))
.add(MI.getOperand(3))
.addImm(MI.getOperand(4).getImm())
.add(MI.getOperand(5));
} else {
// Use move to satisfy constraints
unsigned MoveOpc = Opcode == ARM::VBSPd ? ARM::VORRd : ARM::VORRq;
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(MoveOpc))
.addReg(DstReg,
RegState::Define |
getRenamableRegState(MI.getOperand(0).isRenamable()))
.add(MI.getOperand(1))
.add(MI.getOperand(1))
.addImm(MI.getOperand(4).getImm())
.add(MI.getOperand(5));
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc))
.add(MI.getOperand(0))
.addReg(DstReg,
RegState::Kill |
getRenamableRegState(MI.getOperand(0).isRenamable()))
.add(MI.getOperand(2))
.add(MI.getOperand(3))
.addImm(MI.getOperand(4).getImm())
.add(MI.getOperand(5));
}
}
MI.eraseFromParent();
return true;
}
case ARM::TCRETURNdi:
case ARM::TCRETURNri: {
MachineBasicBlock::iterator MBBI = MBB.getLastNonDebugInstr();
assert(MBBI->isReturn() &&
"Can only insert epilog into returning blocks");
unsigned RetOpcode = MBBI->getOpcode();
DebugLoc dl = MBBI->getDebugLoc();
const ARMBaseInstrInfo &TII = *static_cast<const ARMBaseInstrInfo *>(
MBB.getParent()->getSubtarget().getInstrInfo());
// Tail call return: adjust the stack pointer and jump to callee.
MBBI = MBB.getLastNonDebugInstr();
MachineOperand &JumpTarget = MBBI->getOperand(0);
// Jump to label or value in register.
if (RetOpcode == ARM::TCRETURNdi) {
unsigned TCOpcode =
STI->isThumb()
? (STI->isTargetMachO() ? ARM::tTAILJMPd : ARM::tTAILJMPdND)
: ARM::TAILJMPd;
MachineInstrBuilder MIB = BuildMI(MBB, MBBI, dl, TII.get(TCOpcode));
if (JumpTarget.isGlobal())
MIB.addGlobalAddress(JumpTarget.getGlobal(), JumpTarget.getOffset(),
JumpTarget.getTargetFlags());
else {
assert(JumpTarget.isSymbol());
MIB.addExternalSymbol(JumpTarget.getSymbolName(),
JumpTarget.getTargetFlags());
}
// Add the default predicate in Thumb mode.
if (STI->isThumb())
MIB.add(predOps(ARMCC::AL));
} else if (RetOpcode == ARM::TCRETURNri) {
unsigned Opcode =
STI->isThumb() ? ARM::tTAILJMPr
: (STI->hasV4TOps() ? ARM::TAILJMPr : ARM::TAILJMPr4);
BuildMI(MBB, MBBI, dl,
TII.get(Opcode))
.addReg(JumpTarget.getReg(), RegState::Kill);
}
auto NewMI = std::prev(MBBI);
for (unsigned i = 1, e = MBBI->getNumOperands(); i != e; ++i)
NewMI->addOperand(MBBI->getOperand(i));
// Update call site info and delete the pseudo instruction TCRETURN.
if (MI.isCandidateForCallSiteEntry())
MI.getMF()->moveCallSiteInfo(&MI, &*NewMI);
MBB.erase(MBBI);
MBBI = NewMI;
return true;
}
case ARM::tBXNS_RET: {
MachineBasicBlock &AfterBB = CMSEClearFPRegs(MBB, MBBI);
if (STI->hasV8_1MMainlineOps()) {
// Restore the non-secure floating point context.
BuildMI(MBB, MBBI, MBBI->getDebugLoc(),
TII->get(ARM::VLDR_FPCXTNS_post), ARM::SP)
.addReg(ARM::SP)
.addImm(4)
.add(predOps(ARMCC::AL));
}
// Clear all GPR that are not a use of the return instruction.
assert(llvm::all_of(MBBI->operands(), [](const MachineOperand &Op) {
return !Op.isReg() || Op.getReg() != ARM::R12;
}));
SmallVector<unsigned, 5> ClearRegs;
determineGPRegsToClear(
*MBBI, {ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R12}, ClearRegs);
CMSEClearGPRegs(AfterBB, AfterBB.end(), MBBI->getDebugLoc(), ClearRegs,
ARM::LR);
MachineInstrBuilder NewMI =
BuildMI(AfterBB, AfterBB.end(), MBBI->getDebugLoc(),
TII->get(ARM::tBXNS))
.addReg(ARM::LR)
.add(predOps(ARMCC::AL));
for (const MachineOperand &Op : MI.operands())
NewMI->addOperand(Op);
MI.eraseFromParent();
return true;
}
case ARM::tBLXNS_CALL: {
DebugLoc DL = MBBI->getDebugLoc();
unsigned JumpReg = MBBI->getOperand(0).getReg();
// Figure out which registers are live at the point immediately before the
// call. When we indiscriminately push a set of registers, the live
// registers are added as ordinary use operands, whereas dead registers
// are "undef".
LivePhysRegs LiveRegs(*TRI);
LiveRegs.addLiveOuts(MBB);
for (const MachineInstr &MI : make_range(MBB.rbegin(), MBBI.getReverse()))
LiveRegs.stepBackward(MI);
LiveRegs.stepBackward(*MBBI);
CMSEPushCalleeSaves(*TII, MBB, MBBI, JumpReg, LiveRegs,
AFI->isThumb1OnlyFunction());
SmallVector<unsigned, 16> ClearRegs;
determineGPRegsToClear(*MBBI,
{ARM::R0, ARM::R1, ARM::R2, ARM::R3, ARM::R4,
ARM::R5, ARM::R6, ARM::R7, ARM::R8, ARM::R9,
ARM::R10, ARM::R11, ARM::R12},
ClearRegs);
auto OriginalClearRegs = ClearRegs;
// Get the first cleared register as a scratch (to use later with tBIC).
// We need to use the first so we can ensure it is a low register.
unsigned ScratchReg = ClearRegs.front();
// Clear LSB of JumpReg
if (AFI->isThumb2Function()) {
BuildMI(MBB, MBBI, DL, TII->get(ARM::t2BICri), JumpReg)
.addReg(JumpReg)
.addImm(1)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
} else {
// We need to use an extra register to cope with 8M Baseline,
// since we have saved all of the registers we are ok to trash a non
// argument register here.
BuildMI(MBB, MBBI, DL, TII->get(ARM::tMOVi8), ScratchReg)
.add(condCodeOp())
.addImm(1)
.add(predOps(ARMCC::AL));
BuildMI(MBB, MBBI, DL, TII->get(ARM::tBIC), JumpReg)
.addReg(ARM::CPSR, RegState::Define)
.addReg(JumpReg)
.addReg(ScratchReg)
.add(predOps(ARMCC::AL));
}
CMSESaveClearFPRegs(MBB, MBBI, DL, LiveRegs,
ClearRegs); // save+clear FP regs with ClearRegs
CMSEClearGPRegs(MBB, MBBI, DL, ClearRegs, JumpReg);
const MachineInstrBuilder NewCall =
BuildMI(MBB, MBBI, DL, TII->get(ARM::tBLXNSr))
.add(predOps(ARMCC::AL))
.addReg(JumpReg, RegState::Kill);
for (int I = 1, E = MI.getNumOperands(); I != E; ++I)
NewCall->addOperand(MI.getOperand(I));
if (MI.isCandidateForCallSiteEntry())
MI.getMF()->moveCallSiteInfo(&MI, NewCall.getInstr());
CMSERestoreFPRegs(MBB, MBBI, DL, OriginalClearRegs); // restore FP registers
CMSEPopCalleeSaves(*TII, MBB, MBBI, JumpReg, AFI->isThumb1OnlyFunction());
MI.eraseFromParent();
return true;
}
case ARM::VMOVHcc:
case ARM::VMOVScc:
case ARM::VMOVDcc: {
unsigned newOpc = Opcode != ARM::VMOVDcc ? ARM::VMOVS : ARM::VMOVD;
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(newOpc),
MI.getOperand(1).getReg())
.add(MI.getOperand(2))
.addImm(MI.getOperand(3).getImm()) // 'pred'
.add(MI.getOperand(4))
.add(makeImplicit(MI.getOperand(1)));
MI.eraseFromParent();
return true;
}
case ARM::t2MOVCCr:
case ARM::MOVCCr: {
unsigned Opc = AFI->isThumbFunction() ? ARM::t2MOVr : ARM::MOVr;
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc),
MI.getOperand(1).getReg())
.add(MI.getOperand(2))
.addImm(MI.getOperand(3).getImm()) // 'pred'
.add(MI.getOperand(4))
.add(condCodeOp()) // 's' bit
.add(makeImplicit(MI.getOperand(1)));
MI.eraseFromParent();
return true;
}
case ARM::MOVCCsi: {
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVsi),
(MI.getOperand(1).getReg()))
.add(MI.getOperand(2))
.addImm(MI.getOperand(3).getImm())
.addImm(MI.getOperand(4).getImm()) // 'pred'
.add(MI.getOperand(5))
.add(condCodeOp()) // 's' bit
.add(makeImplicit(MI.getOperand(1)));
MI.eraseFromParent();
return true;
}
case ARM::MOVCCsr: {
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVsr),
(MI.getOperand(1).getReg()))
.add(MI.getOperand(2))
.add(MI.getOperand(3))
.addImm(MI.getOperand(4).getImm())
.addImm(MI.getOperand(5).getImm()) // 'pred'
.add(MI.getOperand(6))
.add(condCodeOp()) // 's' bit
.add(makeImplicit(MI.getOperand(1)));
MI.eraseFromParent();
return true;
}
case ARM::t2MOVCCi16:
case ARM::MOVCCi16: {
unsigned NewOpc = AFI->isThumbFunction() ? ARM::t2MOVi16 : ARM::MOVi16;
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc),
MI.getOperand(1).getReg())
.addImm(MI.getOperand(2).getImm())
.addImm(MI.getOperand(3).getImm()) // 'pred'
.add(MI.getOperand(4))
.add(makeImplicit(MI.getOperand(1)));
MI.eraseFromParent();
return true;
}
case ARM::t2MOVCCi:
case ARM::MOVCCi: {
unsigned Opc = AFI->isThumbFunction() ? ARM::t2MOVi : ARM::MOVi;
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc),
MI.getOperand(1).getReg())
.addImm(MI.getOperand(2).getImm())
.addImm(MI.getOperand(3).getImm()) // 'pred'
.add(MI.getOperand(4))
.add(condCodeOp()) // 's' bit
.add(makeImplicit(MI.getOperand(1)));
MI.eraseFromParent();
return true;
}
case ARM::t2MVNCCi:
case ARM::MVNCCi: {
unsigned Opc = AFI->isThumbFunction() ? ARM::t2MVNi : ARM::MVNi;
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(Opc),
MI.getOperand(1).getReg())
.addImm(MI.getOperand(2).getImm())
.addImm(MI.getOperand(3).getImm()) // 'pred'
.add(MI.getOperand(4))
.add(condCodeOp()) // 's' bit
.add(makeImplicit(MI.getOperand(1)));
MI.eraseFromParent();
return true;
}
case ARM::t2MOVCClsl:
case ARM::t2MOVCClsr:
case ARM::t2MOVCCasr:
case ARM::t2MOVCCror: {
unsigned NewOpc;
switch (Opcode) {
case ARM::t2MOVCClsl: NewOpc = ARM::t2LSLri; break;
case ARM::t2MOVCClsr: NewOpc = ARM::t2LSRri; break;
case ARM::t2MOVCCasr: NewOpc = ARM::t2ASRri; break;
case ARM::t2MOVCCror: NewOpc = ARM::t2RORri; break;
default: llvm_unreachable("unexpeced conditional move");
}
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc),
MI.getOperand(1).getReg())
.add(MI.getOperand(2))
.addImm(MI.getOperand(3).getImm())
.addImm(MI.getOperand(4).getImm()) // 'pred'
.add(MI.getOperand(5))
.add(condCodeOp()) // 's' bit
.add(makeImplicit(MI.getOperand(1)));
MI.eraseFromParent();
return true;
}
case ARM::Int_eh_sjlj_dispatchsetup: {
MachineFunction &MF = *MI.getParent()->getParent();
const ARMBaseInstrInfo *AII =
static_cast<const ARMBaseInstrInfo*>(TII);
const ARMBaseRegisterInfo &RI = AII->getRegisterInfo();
// For functions using a base pointer, we rematerialize it (via the frame
// pointer) here since eh.sjlj.setjmp and eh.sjlj.longjmp don't do it
// for us. Otherwise, expand to nothing.
if (RI.hasBasePointer(MF)) {
int32_t NumBytes = AFI->getFramePtrSpillOffset();
Register FramePtr = RI.getFrameRegister(MF);
assert(MF.getSubtarget().getFrameLowering()->hasFP(MF) &&
"base pointer without frame pointer?");
if (AFI->isThumb2Function()) {
emitT2RegPlusImmediate(MBB, MBBI, MI.getDebugLoc(), ARM::R6,
FramePtr, -NumBytes, ARMCC::AL, 0, *TII);
} else if (AFI->isThumbFunction()) {
emitThumbRegPlusImmediate(MBB, MBBI, MI.getDebugLoc(), ARM::R6,
FramePtr, -NumBytes, *TII, RI);
} else {
emitARMRegPlusImmediate(MBB, MBBI, MI.getDebugLoc(), ARM::R6,
FramePtr, -NumBytes, ARMCC::AL, 0,
*TII);
}
// If there's dynamic realignment, adjust for it.
if (RI.needsStackRealignment(MF)) {
MachineFrameInfo &MFI = MF.getFrameInfo();
Align MaxAlign = MFI.getMaxAlign();
assert (!AFI->isThumb1OnlyFunction());
// Emit bic r6, r6, MaxAlign
assert(MaxAlign <= Align(256) &&
"The BIC instruction cannot encode "
"immediates larger than 256 with all lower "
"bits set.");
unsigned bicOpc = AFI->isThumbFunction() ?
ARM::t2BICri : ARM::BICri;
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(bicOpc), ARM::R6)
.addReg(ARM::R6, RegState::Kill)
.addImm(MaxAlign.value() - 1)
.add(predOps(ARMCC::AL))
.add(condCodeOp());
}
}
MI.eraseFromParent();
return true;
}
case ARM::MOVsrl_flag:
case ARM::MOVsra_flag: {
// These are just fancy MOVs instructions.
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVsi),
MI.getOperand(0).getReg())
.add(MI.getOperand(1))
.addImm(ARM_AM::getSORegOpc(
(Opcode == ARM::MOVsrl_flag ? ARM_AM::lsr : ARM_AM::asr), 1))
.add(predOps(ARMCC::AL))
.addReg(ARM::CPSR, RegState::Define);
MI.eraseFromParent();
return true;
}
case ARM::RRX: {
// This encodes as "MOVs Rd, Rm, rrx
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::MOVsi),
MI.getOperand(0).getReg())
.add(MI.getOperand(1))
.addImm(ARM_AM::getSORegOpc(ARM_AM::rrx, 0))
.add(predOps(ARMCC::AL))
.add(condCodeOp());
TransferImpOps(MI, MIB, MIB);
MI.eraseFromParent();
return true;
}
case ARM::tTPsoft:
case ARM::TPsoft: {
const bool Thumb = Opcode == ARM::tTPsoft;
MachineInstrBuilder MIB;
MachineFunction *MF = MBB.getParent();
if (STI->genLongCalls()) {
MachineConstantPool *MCP = MF->getConstantPool();
unsigned PCLabelID = AFI->createPICLabelUId();
MachineConstantPoolValue *CPV =
ARMConstantPoolSymbol::Create(MF->getFunction().getContext(),
"__aeabi_read_tp", PCLabelID, 0);
Register Reg = MI.getOperand(0).getReg();
MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(Thumb ? ARM::tLDRpci : ARM::LDRi12), Reg)
.addConstantPoolIndex(MCP->getConstantPoolIndex(CPV, Align(4)));
if (!Thumb)
MIB.addImm(0);
MIB.add(predOps(ARMCC::AL));
MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(Thumb ? gettBLXrOpcode(*MF) : getBLXOpcode(*MF)));
if (Thumb)
MIB.add(predOps(ARMCC::AL));
MIB.addReg(Reg, RegState::Kill);
} else {
MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(Thumb ? ARM::tBL : ARM::BL));
if (Thumb)
MIB.add(predOps(ARMCC::AL));
MIB.addExternalSymbol("__aeabi_read_tp", 0);
}
MIB.cloneMemRefs(MI);
TransferImpOps(MI, MIB, MIB);
// Update the call site info.
if (MI.isCandidateForCallSiteEntry())
MF->moveCallSiteInfo(&MI, &*MIB);
MI.eraseFromParent();
return true;
}
case ARM::tLDRpci_pic:
case ARM::t2LDRpci_pic: {
unsigned NewLdOpc = (Opcode == ARM::tLDRpci_pic)
? ARM::tLDRpci : ARM::t2LDRpci;
Register DstReg = MI.getOperand(0).getReg();
bool DstIsDead = MI.getOperand(0).isDead();
MachineInstrBuilder MIB1 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewLdOpc), DstReg)
.add(MI.getOperand(1))
.add(predOps(ARMCC::AL));
MIB1.cloneMemRefs(MI);
MachineInstrBuilder MIB2 =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::tPICADD))
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
.addReg(DstReg)
.add(MI.getOperand(2));
TransferImpOps(MI, MIB1, MIB2);
MI.eraseFromParent();
return true;
}
case ARM::LDRLIT_ga_abs:
case ARM::LDRLIT_ga_pcrel:
case ARM::LDRLIT_ga_pcrel_ldr:
case ARM::tLDRLIT_ga_abs:
case ARM::tLDRLIT_ga_pcrel: {
Register DstReg = MI.getOperand(0).getReg();
bool DstIsDead = MI.getOperand(0).isDead();
const MachineOperand &MO1 = MI.getOperand(1);
auto Flags = MO1.getTargetFlags();
const GlobalValue *GV = MO1.getGlobal();
bool IsARM =
Opcode != ARM::tLDRLIT_ga_pcrel && Opcode != ARM::tLDRLIT_ga_abs;
bool IsPIC =
Opcode != ARM::LDRLIT_ga_abs && Opcode != ARM::tLDRLIT_ga_abs;
unsigned LDRLITOpc = IsARM ? ARM::LDRi12 : ARM::tLDRpci;
unsigned PICAddOpc =
IsARM
? (Opcode == ARM::LDRLIT_ga_pcrel_ldr ? ARM::PICLDR : ARM::PICADD)
: ARM::tPICADD;
// We need a new const-pool entry to load from.
MachineConstantPool *MCP = MBB.getParent()->getConstantPool();
unsigned ARMPCLabelIndex = 0;
MachineConstantPoolValue *CPV;
if (IsPIC) {
unsigned PCAdj = IsARM ? 8 : 4;
auto Modifier = (Flags & ARMII::MO_GOT)
? ARMCP::GOT_PREL
: ARMCP::no_modifier;
ARMPCLabelIndex = AFI->createPICLabelUId();
CPV = ARMConstantPoolConstant::Create(
GV, ARMPCLabelIndex, ARMCP::CPValue, PCAdj, Modifier,
/*AddCurrentAddr*/ Modifier == ARMCP::GOT_PREL);
} else
CPV = ARMConstantPoolConstant::Create(GV, ARMCP::no_modifier);
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(LDRLITOpc), DstReg)
.addConstantPoolIndex(MCP->getConstantPoolIndex(CPV, Align(4)));
if (IsARM)
MIB.addImm(0);
MIB.add(predOps(ARMCC::AL));
if (IsPIC) {
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(PICAddOpc))
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
.addReg(DstReg)
.addImm(ARMPCLabelIndex);
if (IsARM)
MIB.add(predOps(ARMCC::AL));
}
MI.eraseFromParent();
return true;
}
case ARM::MOV_ga_pcrel:
case ARM::MOV_ga_pcrel_ldr:
case ARM::t2MOV_ga_pcrel: {
// Expand into movw + movw. Also "add pc" / ldr [pc] in PIC mode.
unsigned LabelId = AFI->createPICLabelUId();
Register DstReg = MI.getOperand(0).getReg();
bool DstIsDead = MI.getOperand(0).isDead();
const MachineOperand &MO1 = MI.getOperand(1);
const GlobalValue *GV = MO1.getGlobal();
unsigned TF = MO1.getTargetFlags();
bool isARM = Opcode != ARM::t2MOV_ga_pcrel;
unsigned LO16Opc = isARM ? ARM::MOVi16_ga_pcrel : ARM::t2MOVi16_ga_pcrel;
unsigned HI16Opc = isARM ? ARM::MOVTi16_ga_pcrel :ARM::t2MOVTi16_ga_pcrel;
unsigned LO16TF = TF | ARMII::MO_LO16;
unsigned HI16TF = TF | ARMII::MO_HI16;
unsigned PICAddOpc = isARM
? (Opcode == ARM::MOV_ga_pcrel_ldr ? ARM::PICLDR : ARM::PICADD)
: ARM::tPICADD;
MachineInstrBuilder MIB1 = BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(LO16Opc), DstReg)
.addGlobalAddress(GV, MO1.getOffset(), TF | LO16TF)
.addImm(LabelId);
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(HI16Opc), DstReg)
.addReg(DstReg)
.addGlobalAddress(GV, MO1.getOffset(), TF | HI16TF)
.addImm(LabelId);
MachineInstrBuilder MIB3 = BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(PICAddOpc))
.addReg(DstReg, RegState::Define | getDeadRegState(DstIsDead))
.addReg(DstReg).addImm(LabelId);
if (isARM) {
MIB3.add(predOps(ARMCC::AL));
if (Opcode == ARM::MOV_ga_pcrel_ldr)
MIB3.cloneMemRefs(MI);
}
TransferImpOps(MI, MIB1, MIB3);
MI.eraseFromParent();
return true;
}
case ARM::MOVi32imm:
case ARM::MOVCCi32imm:
case ARM::t2MOVi32imm:
case ARM::t2MOVCCi32imm:
ExpandMOV32BitImm(MBB, MBBI);
return true;
case ARM::SUBS_PC_LR: {
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::SUBri), ARM::PC)
.addReg(ARM::LR)
.add(MI.getOperand(0))
.add(MI.getOperand(1))
.add(MI.getOperand(2))
.addReg(ARM::CPSR, RegState::Undef);
TransferImpOps(MI, MIB, MIB);
MI.eraseFromParent();
return true;
}
case ARM::VLDMQIA: {
unsigned NewOpc = ARM::VLDMDIA;
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc));
unsigned OpIdx = 0;
// Grab the Q register destination.
bool DstIsDead = MI.getOperand(OpIdx).isDead();
Register DstReg = MI.getOperand(OpIdx++).getReg();
// Copy the source register.
MIB.add(MI.getOperand(OpIdx++));
// Copy the predicate operands.
MIB.add(MI.getOperand(OpIdx++));
MIB.add(MI.getOperand(OpIdx++));
// Add the destination operands (D subregs).
Register D0 = TRI->getSubReg(DstReg, ARM::dsub_0);
Register D1 = TRI->getSubReg(DstReg, ARM::dsub_1);
MIB.addReg(D0, RegState::Define | getDeadRegState(DstIsDead))
.addReg(D1, RegState::Define | getDeadRegState(DstIsDead));
// Add an implicit def for the super-register.
MIB.addReg(DstReg, RegState::ImplicitDefine | getDeadRegState(DstIsDead));
TransferImpOps(MI, MIB, MIB);
MIB.cloneMemRefs(MI);
MI.eraseFromParent();
return true;
}
case ARM::VSTMQIA: {
unsigned NewOpc = ARM::VSTMDIA;
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(NewOpc));
unsigned OpIdx = 0;
// Grab the Q register source.
bool SrcIsKill = MI.getOperand(OpIdx).isKill();
Register SrcReg = MI.getOperand(OpIdx++).getReg();
// Copy the destination register.
MachineOperand Dst(MI.getOperand(OpIdx++));
MIB.add(Dst);
// Copy the predicate operands.
MIB.add(MI.getOperand(OpIdx++));
MIB.add(MI.getOperand(OpIdx++));
// Add the source operands (D subregs).
Register D0 = TRI->getSubReg(SrcReg, ARM::dsub_0);
Register D1 = TRI->getSubReg(SrcReg, ARM::dsub_1);
MIB.addReg(D0, SrcIsKill ? RegState::Kill : 0)
.addReg(D1, SrcIsKill ? RegState::Kill : 0);
if (SrcIsKill) // Add an implicit kill for the Q register.
MIB->addRegisterKilled(SrcReg, TRI, true);
TransferImpOps(MI, MIB, MIB);
MIB.cloneMemRefs(MI);
MI.eraseFromParent();
return true;
}
case ARM::VLD2q8Pseudo:
case ARM::VLD2q16Pseudo:
case ARM::VLD2q32Pseudo:
case ARM::VLD2q8PseudoWB_fixed:
case ARM::VLD2q16PseudoWB_fixed:
case ARM::VLD2q32PseudoWB_fixed:
case ARM::VLD2q8PseudoWB_register:
case ARM::VLD2q16PseudoWB_register:
case ARM::VLD2q32PseudoWB_register:
case ARM::VLD3d8Pseudo:
case ARM::VLD3d16Pseudo:
case ARM::VLD3d32Pseudo:
case ARM::VLD1d8TPseudo:
case ARM::VLD1d16TPseudo:
case ARM::VLD1d32TPseudo:
case ARM::VLD1d64TPseudo:
case ARM::VLD1d64TPseudoWB_fixed:
case ARM::VLD1d64TPseudoWB_register:
case ARM::VLD3d8Pseudo_UPD:
case ARM::VLD3d16Pseudo_UPD:
case ARM::VLD3d32Pseudo_UPD:
case ARM::VLD3q8Pseudo_UPD:
case ARM::VLD3q16Pseudo_UPD:
case ARM::VLD3q32Pseudo_UPD:
case ARM::VLD3q8oddPseudo:
case ARM::VLD3q16oddPseudo:
case ARM::VLD3q32oddPseudo:
case ARM::VLD3q8oddPseudo_UPD:
case ARM::VLD3q16oddPseudo_UPD:
case ARM::VLD3q32oddPseudo_UPD:
case ARM::VLD4d8Pseudo:
case ARM::VLD4d16Pseudo:
case ARM::VLD4d32Pseudo:
case ARM::VLD1d8QPseudo:
case ARM::VLD1d16QPseudo:
case ARM::VLD1d32QPseudo:
case ARM::VLD1d64QPseudo:
case ARM::VLD1d64QPseudoWB_fixed:
case ARM::VLD1d64QPseudoWB_register:
case ARM::VLD1q8HighQPseudo:
case ARM::VLD1q8LowQPseudo_UPD:
case ARM::VLD1q8HighTPseudo:
case ARM::VLD1q8LowTPseudo_UPD:
case ARM::VLD1q16HighQPseudo:
case ARM::VLD1q16LowQPseudo_UPD:
case ARM::VLD1q16HighTPseudo:
case ARM::VLD1q16LowTPseudo_UPD:
case ARM::VLD1q32HighQPseudo:
case ARM::VLD1q32LowQPseudo_UPD:
case ARM::VLD1q32HighTPseudo:
case ARM::VLD1q32LowTPseudo_UPD:
case ARM::VLD1q64HighQPseudo:
case ARM::VLD1q64LowQPseudo_UPD:
case ARM::VLD1q64HighTPseudo:
case ARM::VLD1q64LowTPseudo_UPD:
case ARM::VLD4d8Pseudo_UPD:
case ARM::VLD4d16Pseudo_UPD:
case ARM::VLD4d32Pseudo_UPD:
case ARM::VLD4q8Pseudo_UPD:
case ARM::VLD4q16Pseudo_UPD:
case ARM::VLD4q32Pseudo_UPD:
case ARM::VLD4q8oddPseudo:
case ARM::VLD4q16oddPseudo:
case ARM::VLD4q32oddPseudo:
case ARM::VLD4q8oddPseudo_UPD:
case ARM::VLD4q16oddPseudo_UPD:
case ARM::VLD4q32oddPseudo_UPD:
case ARM::VLD3DUPd8Pseudo:
case ARM::VLD3DUPd16Pseudo:
case ARM::VLD3DUPd32Pseudo:
case ARM::VLD3DUPd8Pseudo_UPD:
case ARM::VLD3DUPd16Pseudo_UPD:
case ARM::VLD3DUPd32Pseudo_UPD:
case ARM::VLD4DUPd8Pseudo:
case ARM::VLD4DUPd16Pseudo:
case ARM::VLD4DUPd32Pseudo:
case ARM::VLD4DUPd8Pseudo_UPD:
case ARM::VLD4DUPd16Pseudo_UPD:
case ARM::VLD4DUPd32Pseudo_UPD:
case ARM::VLD2DUPq8EvenPseudo:
case ARM::VLD2DUPq8OddPseudo:
case ARM::VLD2DUPq16EvenPseudo:
case ARM::VLD2DUPq16OddPseudo:
case ARM::VLD2DUPq32EvenPseudo:
case ARM::VLD2DUPq32OddPseudo:
case ARM::VLD3DUPq8EvenPseudo:
case ARM::VLD3DUPq8OddPseudo:
case ARM::VLD3DUPq16EvenPseudo:
case ARM::VLD3DUPq16OddPseudo:
case ARM::VLD3DUPq32EvenPseudo:
case ARM::VLD3DUPq32OddPseudo:
case ARM::VLD4DUPq8EvenPseudo:
case ARM::VLD4DUPq8OddPseudo:
case ARM::VLD4DUPq16EvenPseudo:
case ARM::VLD4DUPq16OddPseudo:
case ARM::VLD4DUPq32EvenPseudo:
case ARM::VLD4DUPq32OddPseudo:
ExpandVLD(MBBI);
return true;
case ARM::VST2q8Pseudo:
case ARM::VST2q16Pseudo:
case ARM::VST2q32Pseudo:
case ARM::VST2q8PseudoWB_fixed:
case ARM::VST2q16PseudoWB_fixed:
case ARM::VST2q32PseudoWB_fixed:
case ARM::VST2q8PseudoWB_register:
case ARM::VST2q16PseudoWB_register:
case ARM::VST2q32PseudoWB_register:
case ARM::VST3d8Pseudo:
case ARM::VST3d16Pseudo:
case ARM::VST3d32Pseudo:
case ARM::VST1d8TPseudo:
case ARM::VST1d16TPseudo:
case ARM::VST1d32TPseudo:
case ARM::VST1d64TPseudo:
case ARM::VST3d8Pseudo_UPD:
case ARM::VST3d16Pseudo_UPD:
case ARM::VST3d32Pseudo_UPD:
case ARM::VST1d64TPseudoWB_fixed:
case ARM::VST1d64TPseudoWB_register:
case ARM::VST3q8Pseudo_UPD:
case ARM::VST3q16Pseudo_UPD:
case ARM::VST3q32Pseudo_UPD:
case ARM::VST3q8oddPseudo:
case ARM::VST3q16oddPseudo:
case ARM::VST3q32oddPseudo:
case ARM::VST3q8oddPseudo_UPD:
case ARM::VST3q16oddPseudo_UPD:
case ARM::VST3q32oddPseudo_UPD:
case ARM::VST4d8Pseudo:
case ARM::VST4d16Pseudo:
case ARM::VST4d32Pseudo:
case ARM::VST1d8QPseudo:
case ARM::VST1d16QPseudo:
case ARM::VST1d32QPseudo:
case ARM::VST1d64QPseudo:
case ARM::VST4d8Pseudo_UPD:
case ARM::VST4d16Pseudo_UPD:
case ARM::VST4d32Pseudo_UPD:
case ARM::VST1d64QPseudoWB_fixed:
case ARM::VST1d64QPseudoWB_register:
case ARM::VST1q8HighQPseudo:
case ARM::VST1q8LowQPseudo_UPD:
case ARM::VST1q8HighTPseudo:
case ARM::VST1q8LowTPseudo_UPD:
case ARM::VST1q16HighQPseudo:
case ARM::VST1q16LowQPseudo_UPD:
case ARM::VST1q16HighTPseudo:
case ARM::VST1q16LowTPseudo_UPD:
case ARM::VST1q32HighQPseudo:
case ARM::VST1q32LowQPseudo_UPD:
case ARM::VST1q32HighTPseudo:
case ARM::VST1q32LowTPseudo_UPD:
case ARM::VST1q64HighQPseudo:
case ARM::VST1q64LowQPseudo_UPD:
case ARM::VST1q64HighTPseudo:
case ARM::VST1q64LowTPseudo_UPD:
case ARM::VST4q8Pseudo_UPD:
case ARM::VST4q16Pseudo_UPD:
case ARM::VST4q32Pseudo_UPD:
case ARM::VST4q8oddPseudo:
case ARM::VST4q16oddPseudo:
case ARM::VST4q32oddPseudo:
case ARM::VST4q8oddPseudo_UPD:
case ARM::VST4q16oddPseudo_UPD:
case ARM::VST4q32oddPseudo_UPD:
ExpandVST(MBBI);
return true;
case ARM::VLD1LNq8Pseudo:
case ARM::VLD1LNq16Pseudo:
case ARM::VLD1LNq32Pseudo:
case ARM::VLD1LNq8Pseudo_UPD:
case ARM::VLD1LNq16Pseudo_UPD:
case ARM::VLD1LNq32Pseudo_UPD:
case ARM::VLD2LNd8Pseudo:
case ARM::VLD2LNd16Pseudo:
case ARM::VLD2LNd32Pseudo:
case ARM::VLD2LNq16Pseudo:
case ARM::VLD2LNq32Pseudo:
case ARM::VLD2LNd8Pseudo_UPD:
case ARM::VLD2LNd16Pseudo_UPD:
case ARM::VLD2LNd32Pseudo_UPD:
case ARM::VLD2LNq16Pseudo_UPD:
case ARM::VLD2LNq32Pseudo_UPD:
case ARM::VLD3LNd8Pseudo:
case ARM::VLD3LNd16Pseudo:
case ARM::VLD3LNd32Pseudo:
case ARM::VLD3LNq16Pseudo:
case ARM::VLD3LNq32Pseudo:
case ARM::VLD3LNd8Pseudo_UPD:
case ARM::VLD3LNd16Pseudo_UPD:
case ARM::VLD3LNd32Pseudo_UPD:
case ARM::VLD3LNq16Pseudo_UPD:
case ARM::VLD3LNq32Pseudo_UPD:
case ARM::VLD4LNd8Pseudo:
case ARM::VLD4LNd16Pseudo:
case ARM::VLD4LNd32Pseudo:
case ARM::VLD4LNq16Pseudo:
case ARM::VLD4LNq32Pseudo:
case ARM::VLD4LNd8Pseudo_UPD:
case ARM::VLD4LNd16Pseudo_UPD:
case ARM::VLD4LNd32Pseudo_UPD:
case ARM::VLD4LNq16Pseudo_UPD:
case ARM::VLD4LNq32Pseudo_UPD:
case ARM::VST1LNq8Pseudo:
case ARM::VST1LNq16Pseudo:
case ARM::VST1LNq32Pseudo:
case ARM::VST1LNq8Pseudo_UPD:
case ARM::VST1LNq16Pseudo_UPD:
case ARM::VST1LNq32Pseudo_UPD:
case ARM::VST2LNd8Pseudo:
case ARM::VST2LNd16Pseudo:
case ARM::VST2LNd32Pseudo:
case ARM::VST2LNq16Pseudo:
case ARM::VST2LNq32Pseudo:
case ARM::VST2LNd8Pseudo_UPD:
case ARM::VST2LNd16Pseudo_UPD:
case ARM::VST2LNd32Pseudo_UPD:
case ARM::VST2LNq16Pseudo_UPD:
case ARM::VST2LNq32Pseudo_UPD:
case ARM::VST3LNd8Pseudo:
case ARM::VST3LNd16Pseudo:
case ARM::VST3LNd32Pseudo:
case ARM::VST3LNq16Pseudo:
case ARM::VST3LNq32Pseudo:
case ARM::VST3LNd8Pseudo_UPD:
case ARM::VST3LNd16Pseudo_UPD:
case ARM::VST3LNd32Pseudo_UPD:
case ARM::VST3LNq16Pseudo_UPD:
case ARM::VST3LNq32Pseudo_UPD:
case ARM::VST4LNd8Pseudo:
case ARM::VST4LNd16Pseudo:
case ARM::VST4LNd32Pseudo:
case ARM::VST4LNq16Pseudo:
case ARM::VST4LNq32Pseudo:
case ARM::VST4LNd8Pseudo_UPD:
case ARM::VST4LNd16Pseudo_UPD:
case ARM::VST4LNd32Pseudo_UPD:
case ARM::VST4LNq16Pseudo_UPD:
case ARM::VST4LNq32Pseudo_UPD:
ExpandLaneOp(MBBI);
return true;
case ARM::VTBL3Pseudo: ExpandVTBL(MBBI, ARM::VTBL3, false); return true;
case ARM::VTBL4Pseudo: ExpandVTBL(MBBI, ARM::VTBL4, false); return true;
case ARM::VTBX3Pseudo: ExpandVTBL(MBBI, ARM::VTBX3, true); return true;
case ARM::VTBX4Pseudo: ExpandVTBL(MBBI, ARM::VTBX4, true); return true;
case ARM::CMP_SWAP_8:
if (STI->isThumb())
return ExpandCMP_SWAP(MBB, MBBI, ARM::t2LDREXB, ARM::t2STREXB,
ARM::tUXTB, NextMBBI);
else
return ExpandCMP_SWAP(MBB, MBBI, ARM::LDREXB, ARM::STREXB,
ARM::UXTB, NextMBBI);
case ARM::CMP_SWAP_16:
if (STI->isThumb())
return ExpandCMP_SWAP(MBB, MBBI, ARM::t2LDREXH, ARM::t2STREXH,
ARM::tUXTH, NextMBBI);
else
return ExpandCMP_SWAP(MBB, MBBI, ARM::LDREXH, ARM::STREXH,
ARM::UXTH, NextMBBI);
case ARM::CMP_SWAP_32:
if (STI->isThumb())
return ExpandCMP_SWAP(MBB, MBBI, ARM::t2LDREX, ARM::t2STREX, 0,
NextMBBI);
else
return ExpandCMP_SWAP(MBB, MBBI, ARM::LDREX, ARM::STREX, 0, NextMBBI);
case ARM::CMP_SWAP_64:
return ExpandCMP_SWAP_64(MBB, MBBI, NextMBBI);
case ARM::tBL_PUSHLR:
case ARM::BL_PUSHLR: {
const bool Thumb = Opcode == ARM::tBL_PUSHLR;
Register Reg = MI.getOperand(0).getReg();
assert(Reg == ARM::LR && "expect LR register!");
MachineInstrBuilder MIB;
if (Thumb) {
// push {lr}
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::tPUSH))
.add(predOps(ARMCC::AL))
.addReg(Reg);
// bl __gnu_mcount_nc
MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::tBL));
} else {
// stmdb sp!, {lr}
BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::STMDB_UPD))
.addReg(ARM::SP, RegState::Define)
.addReg(ARM::SP)
.add(predOps(ARMCC::AL))
.addReg(Reg);
// bl __gnu_mcount_nc
MIB = BuildMI(MBB, MBBI, MI.getDebugLoc(), TII->get(ARM::BL));
}
MIB.cloneMemRefs(MI);
for (unsigned i = 1; i < MI.getNumOperands(); ++i) MIB.add(MI.getOperand(i));
MI.eraseFromParent();
return true;
}
case ARM::LOADDUAL:
case ARM::STOREDUAL: {
Register PairReg = MI.getOperand(0).getReg();
MachineInstrBuilder MIB =
BuildMI(MBB, MBBI, MI.getDebugLoc(),
TII->get(Opcode == ARM::LOADDUAL ? ARM::LDRD : ARM::STRD))
.addReg(TRI->getSubReg(PairReg, ARM::gsub_0),
Opcode == ARM::LOADDUAL ? RegState::Define : 0)
.addReg(TRI->getSubReg(PairReg, ARM::gsub_1),
Opcode == ARM::LOADDUAL ? RegState::Define : 0);
for (unsigned i = 1; i < MI.getNumOperands(); i++)
MIB.add(MI.getOperand(i));
MIB.add(predOps(ARMCC::AL));
MIB.cloneMemRefs(MI);
MI.eraseFromParent();
return true;
}
}
}
bool ARMExpandPseudo::ExpandMBB(MachineBasicBlock &MBB) {
bool Modified = false;
MachineBasicBlock::iterator MBBI = MBB.begin(), E = MBB.end();
while (MBBI != E) {
MachineBasicBlock::iterator NMBBI = std::next(MBBI);
Modified |= ExpandMI(MBB, MBBI, NMBBI);
MBBI = NMBBI;
}
return Modified;
}
bool ARMExpandPseudo::runOnMachineFunction(MachineFunction &MF) {
STI = &static_cast<const ARMSubtarget &>(MF.getSubtarget());
TII = STI->getInstrInfo();
TRI = STI->getRegisterInfo();
AFI = MF.getInfo<ARMFunctionInfo>();
LLVM_DEBUG(dbgs() << "********** ARM EXPAND PSEUDO INSTRUCTIONS **********\n"
<< "********** Function: " << MF.getName() << '\n');
bool Modified = false;
for (MachineBasicBlock &MBB : MF)
Modified |= ExpandMBB(MBB);
if (VerifyARMPseudo)
MF.verify(this, "After expanding ARM pseudo instructions.");
LLVM_DEBUG(dbgs() << "***************************************************\n");
return Modified;
}
/// createARMExpandPseudoPass - returns an instance of the pseudo instruction
/// expansion pass.
FunctionPass *llvm::createARMExpandPseudoPass() {
return new ARMExpandPseudo();
}