llvm-project/llvm/lib/Support/ItaniumManglingCanonicalize...

322 lines
10 KiB
C++

//===----------------- ItaniumManglingCanonicalizer.cpp -------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is dual licensed under the MIT and the University of Illinois Open
// Source Licenses. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "llvm/Support/ItaniumManglingCanonicalizer.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringRef.h"
#include "llvm/Demangle/ItaniumDemangle.h"
#include "llvm/Support/Allocator.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/FoldingSet.h"
#include "llvm/ADT/StringRef.h"
using namespace llvm;
using llvm::itanium_demangle::ForwardTemplateReference;
using llvm::itanium_demangle::Node;
using llvm::itanium_demangle::NodeKind;
namespace {
struct FoldingSetNodeIDBuilder {
llvm::FoldingSetNodeID &ID;
void operator()(const Node *P) { ID.AddPointer(P); }
void operator()(StringView Str) {
ID.AddString(llvm::StringRef(Str.begin(), Str.size()));
}
template<typename T>
typename std::enable_if<std::is_integral<T>::value ||
std::is_enum<T>::value>::type
operator()(T V) {
ID.AddInteger((unsigned long long)V);
}
void operator()(itanium_demangle::NodeOrString NS) {
if (NS.isNode()) {
ID.AddInteger(0);
(*this)(NS.asNode());
} else if (NS.isString()) {
ID.AddInteger(1);
(*this)(NS.asString());
} else {
ID.AddInteger(2);
}
}
void operator()(itanium_demangle::NodeArray A) {
ID.AddInteger(A.size());
for (const Node *N : A)
(*this)(N);
}
};
template<typename ...T>
void profileCtor(llvm::FoldingSetNodeID &ID, Node::Kind K, T ...V) {
FoldingSetNodeIDBuilder Builder = {ID};
Builder(K);
int VisitInOrder[] = {
(Builder(V), 0) ...,
0 // Avoid empty array if there are no arguments.
};
(void)VisitInOrder;
}
// FIXME: Convert this to a generic lambda when possible.
template<typename NodeT> struct ProfileSpecificNode {
FoldingSetNodeID &ID;
template<typename ...T> void operator()(T ...V) {
profileCtor(ID, NodeKind<NodeT>::Kind, V...);
}
};
struct ProfileNode {
FoldingSetNodeID &ID;
template<typename NodeT> void operator()(const NodeT *N) {
N->match(ProfileSpecificNode<NodeT>{ID});
}
};
template<> void ProfileNode::operator()(const ForwardTemplateReference *N) {
llvm_unreachable("should never canonicalize a ForwardTemplateReference");
}
void profileNode(llvm::FoldingSetNodeID &ID, const Node *N) {
N->visit(ProfileNode{ID});
}
class FoldingNodeAllocator {
class alignas(alignof(Node *)) NodeHeader : public llvm::FoldingSetNode {
public:
// 'Node' in this context names the injected-class-name of the base class.
itanium_demangle::Node *getNode() {
return reinterpret_cast<itanium_demangle::Node *>(this + 1);
}
void Profile(llvm::FoldingSetNodeID &ID) { profileNode(ID, getNode()); }
};
BumpPtrAllocator RawAlloc;
llvm::FoldingSet<NodeHeader> Nodes;
public:
void reset() {}
template <typename T, typename... Args>
std::pair<Node *, bool> getOrCreateNode(bool CreateNewNodes, Args &&... As) {
// FIXME: Don't canonicalize forward template references for now, because
// they contain state (the resolved template node) that's not known at their
// point of creation.
if (std::is_same<T, ForwardTemplateReference>::value) {
// Note that we don't use if-constexpr here and so we must still write
// this code in a generic form.
return {new (RawAlloc.Allocate(sizeof(T), alignof(T)))
T(std::forward<Args>(As)...),
true};
}
llvm::FoldingSetNodeID ID;
profileCtor(ID, NodeKind<T>::Kind, As...);
void *InsertPos;
if (NodeHeader *Existing = Nodes.FindNodeOrInsertPos(ID, InsertPos))
return {static_cast<T*>(Existing->getNode()), false};
if (!CreateNewNodes)
return {nullptr, true};
static_assert(alignof(T) <= alignof(NodeHeader),
"underaligned node header for specific node kind");
void *Storage =
RawAlloc.Allocate(sizeof(NodeHeader) + sizeof(T), alignof(NodeHeader));
NodeHeader *New = new (Storage) NodeHeader;
T *Result = new (New->getNode()) T(std::forward<Args>(As)...);
Nodes.InsertNode(New, InsertPos);
return {Result, true};
}
template<typename T, typename... Args>
Node *makeNode(Args &&...As) {
return getOrCreateNode<T>(true, std::forward<Args>(As)...).first;
}
void *allocateNodeArray(size_t sz) {
return RawAlloc.Allocate(sizeof(Node *) * sz, alignof(Node *));
}
};
class CanonicalizerAllocator : public FoldingNodeAllocator {
Node *MostRecentlyCreated = nullptr;
Node *TrackedNode = nullptr;
bool TrackedNodeIsUsed = false;
bool CreateNewNodes = true;
llvm::SmallDenseMap<Node*, Node*, 32> Remappings;
template<typename T, typename ...Args> Node *makeNodeSimple(Args &&...As) {
std::pair<Node *, bool> Result =
getOrCreateNode<T>(CreateNewNodes, std::forward<Args>(As)...);
if (Result.second) {
// Node is new. Make a note of that.
MostRecentlyCreated = Result.first;
} else if (Result.first) {
// Node is pre-existing; check if it's in our remapping table.
if (auto *N = Remappings.lookup(Result.first)) {
Result.first = N;
assert(Remappings.find(Result.first) == Remappings.end() &&
"should never need multiple remap steps");
}
if (Result.first == TrackedNode)
TrackedNodeIsUsed = true;
}
return Result.first;
}
/// Helper to allow makeNode to be partially-specialized on T.
template<typename T> struct MakeNodeImpl {
CanonicalizerAllocator &Self;
template<typename ...Args> Node *make(Args &&...As) {
return Self.makeNodeSimple<T>(std::forward<Args>(As)...);
}
};
public:
template<typename T, typename ...Args> Node *makeNode(Args &&...As) {
return MakeNodeImpl<T>{*this}.make(std::forward<Args>(As)...);
}
void reset() { MostRecentlyCreated = nullptr; }
void setCreateNewNodes(bool CNN) { CreateNewNodes = CNN; }
void addRemapping(Node *A, Node *B) {
// Note, we don't need to check whether B is also remapped, because if it
// was we would have already remapped it when building it.
Remappings.insert(std::make_pair(A, B));
}
bool isMostRecentlyCreated(Node *N) const { return MostRecentlyCreated == N; }
void trackUsesOf(Node *N) {
TrackedNode = N;
TrackedNodeIsUsed = false;
}
bool trackedNodeIsUsed() const { return TrackedNodeIsUsed; }
};
/// Convert St3foo to NSt3fooE so that equivalences naming one also affect the
/// other.
template<>
struct CanonicalizerAllocator::MakeNodeImpl<
itanium_demangle::StdQualifiedName> {
CanonicalizerAllocator &Self;
Node *make(Node *Child) {
Node *StdNamespace = Self.makeNode<itanium_demangle::NameType>("std");
if (!StdNamespace)
return nullptr;
return Self.makeNode<itanium_demangle::NestedName>(StdNamespace, Child);
}
};
// FIXME: Also expand built-in substitutions?
using CanonicalizingDemangler = itanium_demangle::Db<CanonicalizerAllocator>;
}
struct ItaniumManglingCanonicalizer::Impl {
CanonicalizingDemangler Demangler = {nullptr, nullptr};
};
ItaniumManglingCanonicalizer::ItaniumManglingCanonicalizer() : P(new Impl) {}
ItaniumManglingCanonicalizer::~ItaniumManglingCanonicalizer() { delete P; }
ItaniumManglingCanonicalizer::EquivalenceError
ItaniumManglingCanonicalizer::addEquivalence(FragmentKind Kind, StringRef First,
StringRef Second) {
auto &Alloc = P->Demangler.ASTAllocator;
Alloc.setCreateNewNodes(true);
auto Parse = [&](StringRef Str) {
P->Demangler.reset(Str.begin(), Str.end());
Node *N = nullptr;
switch (Kind) {
// A <name>, with minor extensions to allow arbitrary namespace and
// template names that can't easily be written as <name>s.
case FragmentKind::Name:
// Very special case: allow "St" as a shorthand for "3std". It's not
// valid as a <name> mangling, but is nonetheless the most natural
// way to name the 'std' namespace.
if (Str.size() == 2 && P->Demangler.consumeIf("St"))
N = P->Demangler.make<itanium_demangle::NameType>("std");
// We permit substitutions to name templates without their template
// arguments. This mostly just falls out, as almost all template names
// are valid as <name>s, but we also want to parse <substitution>s as
// <name>s, even though they're not.
else if (Str.startswith("S"))
// Parse the substitution and optional following template arguments.
N = P->Demangler.parseType();
else
N = P->Demangler.parseName();
break;
// A <type>.
case FragmentKind::Type:
N = P->Demangler.parseType();
break;
// An <encoding>.
case FragmentKind::Encoding:
N = P->Demangler.parseEncoding();
break;
}
// If we have trailing junk, the mangling is invalid.
if (P->Demangler.numLeft() != 0)
N = nullptr;
// If any node was created after N, then we cannot safely remap it because
// it might already be in use by another node.
return std::make_pair(N, Alloc.isMostRecentlyCreated(N));
};
Node *FirstNode, *SecondNode;
bool FirstIsNew, SecondIsNew;
std::tie(FirstNode, FirstIsNew) = Parse(First);
if (!FirstNode)
return EquivalenceError::InvalidFirstMangling;
Alloc.trackUsesOf(FirstNode);
std::tie(SecondNode, SecondIsNew) = Parse(Second);
if (!SecondNode)
return EquivalenceError::InvalidSecondMangling;
// If they're already equivalent, there's nothing to do.
if (FirstNode == SecondNode)
return EquivalenceError::Success;
if (FirstIsNew && !Alloc.trackedNodeIsUsed())
Alloc.addRemapping(FirstNode, SecondNode);
else if (SecondIsNew)
Alloc.addRemapping(SecondNode, FirstNode);
else
return EquivalenceError::ManglingAlreadyUsed;
return EquivalenceError::Success;
}
ItaniumManglingCanonicalizer::Key
ItaniumManglingCanonicalizer::canonicalize(StringRef Mangling) {
P->Demangler.ASTAllocator.setCreateNewNodes(true);
P->Demangler.reset(Mangling.begin(), Mangling.end());
return reinterpret_cast<Key>(P->Demangler.parse());
}
ItaniumManglingCanonicalizer::Key
ItaniumManglingCanonicalizer::lookup(StringRef Mangling) {
P->Demangler.ASTAllocator.setCreateNewNodes(false);
P->Demangler.reset(Mangling.begin(), Mangling.end());
return reinterpret_cast<Key>(P->Demangler.parse());
}