llvm-project/compiler-rt/lib/sanitizer_common/sanitizer_posix.cc

335 lines
10 KiB
C++

//===-- sanitizer_posix.cc ------------------------------------------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file is shared between AddressSanitizer and ThreadSanitizer
// run-time libraries and implements POSIX-specific functions from
// sanitizer_posix.h.
//===----------------------------------------------------------------------===//
#include "sanitizer_platform.h"
#if SANITIZER_POSIX
#include "sanitizer_common.h"
#include "sanitizer_file.h"
#include "sanitizer_libc.h"
#include "sanitizer_posix.h"
#include "sanitizer_procmaps.h"
#include "sanitizer_stacktrace.h"
#include <errno.h>
#include <fcntl.h>
#include <signal.h>
#include <sys/mman.h>
#if SANITIZER_FREEBSD
// The MAP_NORESERVE define has been removed in FreeBSD 11.x, and even before
// that, it was never implemented. So just define it to zero.
#undef MAP_NORESERVE
#define MAP_NORESERVE 0
#endif
namespace __sanitizer {
// ------------- sanitizer_common.h
uptr GetMmapGranularity() {
return GetPageSize();
}
void *MmapOrDie(uptr size, const char *mem_type, bool raw_report) {
size = RoundUpTo(size, GetPageSizeCached());
uptr res = internal_mmap(nullptr, size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
int reserrno;
if (UNLIKELY(internal_iserror(res, &reserrno)))
ReportMmapFailureAndDie(size, mem_type, "allocate", reserrno, raw_report);
IncreaseTotalMmap(size);
return (void *)res;
}
void UnmapOrDie(void *addr, uptr size) {
if (!addr || !size) return;
uptr res = internal_munmap(addr, size);
if (UNLIKELY(internal_iserror(res))) {
Report("ERROR: %s failed to deallocate 0x%zx (%zd) bytes at address %p\n",
SanitizerToolName, size, size, addr);
CHECK("unable to unmap" && 0);
}
DecreaseTotalMmap(size);
}
void *MmapOrDieOnFatalError(uptr size, const char *mem_type) {
size = RoundUpTo(size, GetPageSizeCached());
uptr res = internal_mmap(nullptr, size,
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON, -1, 0);
int reserrno;
if (UNLIKELY(internal_iserror(res, &reserrno))) {
if (reserrno == ENOMEM)
return nullptr;
ReportMmapFailureAndDie(size, mem_type, "allocate", reserrno);
}
IncreaseTotalMmap(size);
return (void *)res;
}
// We want to map a chunk of address space aligned to 'alignment'.
// We do it by mapping a bit more and then unmapping redundant pieces.
// We probably can do it with fewer syscalls in some OS-dependent way.
void *MmapAlignedOrDieOnFatalError(uptr size, uptr alignment,
const char *mem_type) {
CHECK(IsPowerOfTwo(size));
CHECK(IsPowerOfTwo(alignment));
uptr map_size = size + alignment;
uptr map_res = (uptr)MmapOrDieOnFatalError(map_size, mem_type);
if (UNLIKELY(!map_res))
return nullptr;
uptr map_end = map_res + map_size;
uptr res = map_res;
if (!IsAligned(res, alignment)) {
res = (map_res + alignment - 1) & ~(alignment - 1);
UnmapOrDie((void*)map_res, res - map_res);
}
uptr end = res + size;
if (end != map_end)
UnmapOrDie((void*)end, map_end - end);
return (void*)res;
}
void *MmapNoReserveOrDie(uptr size, const char *mem_type) {
uptr PageSize = GetPageSizeCached();
uptr p = internal_mmap(nullptr,
RoundUpTo(size, PageSize),
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON | MAP_NORESERVE,
-1, 0);
int reserrno;
if (UNLIKELY(internal_iserror(p, &reserrno)))
ReportMmapFailureAndDie(size, mem_type, "allocate noreserve", reserrno);
IncreaseTotalMmap(size);
return (void *)p;
}
void *MmapFixedImpl(uptr fixed_addr, uptr size, bool tolerate_enomem) {
uptr PageSize = GetPageSizeCached();
uptr p = internal_mmap((void*)(fixed_addr & ~(PageSize - 1)),
RoundUpTo(size, PageSize),
PROT_READ | PROT_WRITE,
MAP_PRIVATE | MAP_ANON | MAP_FIXED,
-1, 0);
int reserrno;
if (UNLIKELY(internal_iserror(p, &reserrno))) {
if (tolerate_enomem && reserrno == ENOMEM)
return nullptr;
char mem_type[40];
internal_snprintf(mem_type, sizeof(mem_type), "memory at address 0x%zx",
fixed_addr);
ReportMmapFailureAndDie(size, mem_type, "allocate", reserrno);
}
IncreaseTotalMmap(size);
return (void *)p;
}
void *MmapFixedOrDie(uptr fixed_addr, uptr size) {
return MmapFixedImpl(fixed_addr, size, false /*tolerate_enomem*/);
}
void *MmapFixedOrDieOnFatalError(uptr fixed_addr, uptr size) {
return MmapFixedImpl(fixed_addr, size, true /*tolerate_enomem*/);
}
bool MprotectNoAccess(uptr addr, uptr size) {
return 0 == internal_mprotect((void*)addr, size, PROT_NONE);
}
bool MprotectReadOnly(uptr addr, uptr size) {
return 0 == internal_mprotect((void *)addr, size, PROT_READ);
}
#if !SANITIZER_MAC
void MprotectMallocZones(void *addr, int prot) {}
#endif
fd_t OpenFile(const char *filename, FileAccessMode mode, error_t *errno_p) {
int flags;
switch (mode) {
case RdOnly: flags = O_RDONLY; break;
case WrOnly: flags = O_WRONLY | O_CREAT; break;
case RdWr: flags = O_RDWR | O_CREAT; break;
}
fd_t res = internal_open(filename, flags, 0660);
if (internal_iserror(res, errno_p))
return kInvalidFd;
return res;
}
void CloseFile(fd_t fd) {
internal_close(fd);
}
bool ReadFromFile(fd_t fd, void *buff, uptr buff_size, uptr *bytes_read,
error_t *error_p) {
uptr res = internal_read(fd, buff, buff_size);
if (internal_iserror(res, error_p))
return false;
if (bytes_read)
*bytes_read = res;
return true;
}
bool WriteToFile(fd_t fd, const void *buff, uptr buff_size, uptr *bytes_written,
error_t *error_p) {
uptr res = internal_write(fd, buff, buff_size);
if (internal_iserror(res, error_p))
return false;
if (bytes_written)
*bytes_written = res;
return true;
}
bool RenameFile(const char *oldpath, const char *newpath, error_t *error_p) {
uptr res = internal_rename(oldpath, newpath);
return !internal_iserror(res, error_p);
}
void *MapFileToMemory(const char *file_name, uptr *buff_size) {
fd_t fd = OpenFile(file_name, RdOnly);
CHECK(fd != kInvalidFd);
uptr fsize = internal_filesize(fd);
CHECK_NE(fsize, (uptr)-1);
CHECK_GT(fsize, 0);
*buff_size = RoundUpTo(fsize, GetPageSizeCached());
uptr map = internal_mmap(nullptr, *buff_size, PROT_READ, MAP_PRIVATE, fd, 0);
return internal_iserror(map) ? nullptr : (void *)map;
}
void *MapWritableFileToMemory(void *addr, uptr size, fd_t fd, OFF_T offset) {
uptr flags = MAP_SHARED;
if (addr) flags |= MAP_FIXED;
uptr p = internal_mmap(addr, size, PROT_READ | PROT_WRITE, flags, fd, offset);
int mmap_errno = 0;
if (internal_iserror(p, &mmap_errno)) {
Printf("could not map writable file (%d, %lld, %zu): %zd, errno: %d\n",
fd, (long long)offset, size, p, mmap_errno);
return nullptr;
}
return (void *)p;
}
static inline bool IntervalsAreSeparate(uptr start1, uptr end1,
uptr start2, uptr end2) {
CHECK(start1 <= end1);
CHECK(start2 <= end2);
return (end1 < start2) || (end2 < start1);
}
// FIXME: this is thread-unsafe, but should not cause problems most of the time.
// When the shadow is mapped only a single thread usually exists (plus maybe
// several worker threads on Mac, which aren't expected to map big chunks of
// memory).
bool MemoryRangeIsAvailable(uptr range_start, uptr range_end) {
MemoryMappingLayout proc_maps(/*cache_enabled*/true);
MemoryMappedSegment segment;
while (proc_maps.Next(&segment)) {
if (segment.start == segment.end) continue; // Empty range.
CHECK_NE(0, segment.end);
if (!IntervalsAreSeparate(segment.start, segment.end - 1, range_start,
range_end))
return false;
}
return true;
}
void DumpProcessMap() {
MemoryMappingLayout proc_maps(/*cache_enabled*/true);
const sptr kBufSize = 4095;
char *filename = (char*)MmapOrDie(kBufSize, __func__);
MemoryMappedSegment segment(filename, kBufSize);
Report("Process memory map follows:\n");
while (proc_maps.Next(&segment)) {
Printf("\t%p-%p\t%s\n", (void *)segment.start, (void *)segment.end,
segment.filename);
}
Report("End of process memory map.\n");
UnmapOrDie(filename, kBufSize);
}
const char *GetPwd() {
return GetEnv("PWD");
}
bool IsPathSeparator(const char c) {
return c == '/';
}
bool IsAbsolutePath(const char *path) {
return path != nullptr && IsPathSeparator(path[0]);
}
void ReportFile::Write(const char *buffer, uptr length) {
SpinMutexLock l(mu);
static const char *kWriteError =
"ReportFile::Write() can't output requested buffer!\n";
ReopenIfNecessary();
if (length != internal_write(fd, buffer, length)) {
internal_write(fd, kWriteError, internal_strlen(kWriteError));
Die();
}
}
bool GetCodeRangeForFile(const char *module, uptr *start, uptr *end) {
MemoryMappingLayout proc_maps(/*cache_enabled*/false);
InternalScopedString buff(kMaxPathLength);
MemoryMappedSegment segment(buff.data(), kMaxPathLength);
while (proc_maps.Next(&segment)) {
if (segment.IsExecutable() &&
internal_strcmp(module, segment.filename) == 0) {
*start = segment.start;
*end = segment.end;
return true;
}
}
return false;
}
uptr SignalContext::GetAddress() const {
auto si = static_cast<const siginfo_t *>(siginfo);
return (uptr)si->si_addr;
}
bool SignalContext::IsMemoryAccess() const {
auto si = static_cast<const siginfo_t *>(siginfo);
return si->si_signo == SIGSEGV;
}
int SignalContext::GetType() const {
return static_cast<const siginfo_t *>(siginfo)->si_signo;
}
const char *SignalContext::Describe() const {
switch (GetType()) {
case SIGFPE:
return "FPE";
case SIGILL:
return "ILL";
case SIGABRT:
return "ABRT";
case SIGSEGV:
return "SEGV";
case SIGBUS:
return "BUS";
}
return "UNKNOWN SIGNAL";
}
} // namespace __sanitizer
#endif // SANITIZER_POSIX