llvm-project/llvm/lib/Target/ARM/ARMTargetMachine.cpp

268 lines
8.8 KiB
C++

//===-- ARMTargetMachine.cpp - Define TargetMachine for ARM ---------------===//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
//
//===----------------------------------------------------------------------===//
#include "ARMTargetMachine.h"
#include "ARM.h"
#include "ARMFrameLowering.h"
#include "llvm/CodeGen/Passes.h"
#include "llvm/MC/MCAsmInfo.h"
#include "llvm/PassManager.h"
#include "llvm/Support/CommandLine.h"
#include "llvm/Support/FormattedStream.h"
#include "llvm/Support/TargetRegistry.h"
#include "llvm/Target/TargetOptions.h"
#include "llvm/Transforms/Scalar.h"
using namespace llvm;
static cl::opt<bool>
EnableGlobalMerge("global-merge", cl::Hidden,
cl::desc("Enable global merge pass"),
cl::init(true));
static cl::opt<bool>
DisableA15SDOptimization("disable-a15-sd-optimization", cl::Hidden,
cl::desc("Inhibit optimization of S->D register accesses on A15"),
cl::init(false));
extern "C" void LLVMInitializeARMTarget() {
// Register the target.
RegisterTargetMachine<ARMTargetMachine> X(TheARMTarget);
RegisterTargetMachine<ThumbTargetMachine> Y(TheThumbTarget);
}
/// TargetMachine ctor - Create an ARM architecture model.
///
ARMBaseTargetMachine::ARMBaseTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: LLVMTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
Subtarget(TT, CPU, FS, Options),
JITInfo(),
InstrItins(Subtarget.getInstrItineraryData()) {
// Default to triple-appropriate float ABI
if (Options.FloatABIType == FloatABI::Default)
this->Options.FloatABIType =
Subtarget.isTargetHardFloat() ? FloatABI::Hard : FloatABI::Soft;
}
void ARMBaseTargetMachine::addAnalysisPasses(PassManagerBase &PM) {
// Add first the target-independent BasicTTI pass, then our ARM pass. This
// allows the ARM pass to delegate to the target independent layer when
// appropriate.
PM.add(createBasicTargetTransformInfoPass(this));
PM.add(createARMTargetTransformInfoPass(this));
}
void ARMTargetMachine::anchor() { }
static std::string computeDataLayout(ARMSubtarget &ST) {
// Little endian.
std::string Ret = "e";
Ret += DataLayout::getManglingComponent(ST.getTargetTriple());
// Pointers are 32 bits and aligned to 32 bits.
Ret += "-p:32:32";
// On thumb, i16,i18 and i1 have natural aligment requirements, but we try to
// align to 32.
if (ST.isThumb())
Ret += "-i1:8:32-i8:8:32-i16:16:32";
// ABIs other than APC have 64 bit integers with natural alignment.
if (!ST.isAPCS_ABI())
Ret += "-i64:64";
// We have 64 bits floats. The APCS ABI requires them to be aligned to 32
// bits, others to 64 bits. We always try to align to 64 bits.
if (ST.isAPCS_ABI())
Ret += "-f64:32:64";
// We have 128 and 64 bit vectors. The APCS ABI aligns them to 32 bits, others
// to 64. We always ty to give them natural alignment.
if (ST.isAPCS_ABI())
Ret += "-v64:32:64-v128:32:128";
else
Ret += "-v128:64:128";
// On thumb and APCS, only try to align aggregates to 32 bits (the default is
// 64 bits).
if (ST.isThumb() || ST.isAPCS_ABI())
Ret += "-a:0:32";
// Integer registers are 32 bits.
Ret += "-n32";
// The stack is 128 bit aligned on NaCl, 64 bit aligned on AAPCS and 32 bit
// aligned everywhere else.
if (ST.isTargetNaCl())
Ret += "-S128";
else if (ST.isAAPCS_ABI())
Ret += "-S64";
else
Ret += "-S32";
return Ret;
}
ARMTargetMachine::ARMTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
InstrInfo(Subtarget),
DL(computeDataLayout(Subtarget)),
TLInfo(*this),
TSInfo(*this),
FrameLowering(Subtarget) {
initAsmInfo();
if (!Subtarget.hasARMOps())
report_fatal_error("CPU: '" + Subtarget.getCPUString() + "' does not "
"support ARM mode execution!");
}
void ThumbTargetMachine::anchor() { }
ThumbTargetMachine::ThumbTargetMachine(const Target &T, StringRef TT,
StringRef CPU, StringRef FS,
const TargetOptions &Options,
Reloc::Model RM, CodeModel::Model CM,
CodeGenOpt::Level OL)
: ARMBaseTargetMachine(T, TT, CPU, FS, Options, RM, CM, OL),
InstrInfo(Subtarget.hasThumb2()
? ((ARMBaseInstrInfo*)new Thumb2InstrInfo(Subtarget))
: ((ARMBaseInstrInfo*)new Thumb1InstrInfo(Subtarget))),
DL(computeDataLayout(Subtarget)),
TLInfo(*this),
TSInfo(*this),
FrameLowering(Subtarget.hasThumb2()
? new ARMFrameLowering(Subtarget)
: (ARMFrameLowering*)new Thumb1FrameLowering(Subtarget)) {
initAsmInfo();
}
namespace {
/// ARM Code Generator Pass Configuration Options.
class ARMPassConfig : public TargetPassConfig {
public:
ARMPassConfig(ARMBaseTargetMachine *TM, PassManagerBase &PM)
: TargetPassConfig(TM, PM) {}
ARMBaseTargetMachine &getARMTargetMachine() const {
return getTM<ARMBaseTargetMachine>();
}
const ARMSubtarget &getARMSubtarget() const {
return *getARMTargetMachine().getSubtargetImpl();
}
virtual bool addPreISel();
virtual bool addInstSelector();
virtual bool addPreRegAlloc();
virtual bool addPreSched2();
virtual bool addPreEmitPass();
};
} // namespace
TargetPassConfig *ARMBaseTargetMachine::createPassConfig(PassManagerBase &PM) {
return new ARMPassConfig(this, PM);
}
bool ARMPassConfig::addPreISel() {
if (TM->getOptLevel() != CodeGenOpt::None && EnableGlobalMerge)
addPass(createGlobalMergePass(TM));
return false;
}
bool ARMPassConfig::addInstSelector() {
addPass(createARMISelDag(getARMTargetMachine(), getOptLevel()));
const ARMSubtarget *Subtarget = &getARMSubtarget();
if (Subtarget->isTargetELF() && !Subtarget->isThumb1Only() &&
TM->Options.EnableFastISel)
addPass(createARMGlobalBaseRegPass());
return false;
}
bool ARMPassConfig::addPreRegAlloc() {
// FIXME: temporarily disabling load / store optimization pass for Thumb1.
if (getOptLevel() != CodeGenOpt::None && !getARMSubtarget().isThumb1Only())
addPass(createARMLoadStoreOptimizationPass(true));
if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA9())
addPass(createMLxExpansionPass());
// Since the A15SDOptimizer pass can insert VDUP instructions, it can only be
// enabled when NEON is available.
if (getOptLevel() != CodeGenOpt::None && getARMSubtarget().isCortexA15() &&
getARMSubtarget().hasNEON() && !DisableA15SDOptimization) {
addPass(createA15SDOptimizerPass());
}
return true;
}
bool ARMPassConfig::addPreSched2() {
// FIXME: temporarily disabling load / store optimization pass for Thumb1.
if (getOptLevel() != CodeGenOpt::None) {
if (!getARMSubtarget().isThumb1Only()) {
addPass(createARMLoadStoreOptimizationPass());
printAndVerify("After ARM load / store optimizer");
}
if (getARMSubtarget().hasNEON())
addPass(createExecutionDependencyFixPass(&ARM::DPRRegClass));
}
// Expand some pseudo instructions into multiple instructions to allow
// proper scheduling.
addPass(createARMExpandPseudoPass());
if (getOptLevel() != CodeGenOpt::None) {
if (!getARMSubtarget().isThumb1Only()) {
// in v8, IfConversion depends on Thumb instruction widths
if (getARMSubtarget().restrictIT() &&
!getARMSubtarget().prefers32BitThumb())
addPass(createThumb2SizeReductionPass());
addPass(&IfConverterID);
}
}
if (getARMSubtarget().isThumb2())
addPass(createThumb2ITBlockPass());
return true;
}
bool ARMPassConfig::addPreEmitPass() {
if (getARMSubtarget().isThumb2()) {
if (!getARMSubtarget().prefers32BitThumb())
addPass(createThumb2SizeReductionPass());
// Constant island pass work on unbundled instructions.
addPass(&UnpackMachineBundlesID);
}
addPass(createARMConstantIslandPass());
return true;
}
bool ARMBaseTargetMachine::addCodeEmitter(PassManagerBase &PM,
JITCodeEmitter &JCE) {
// Machine code emitter pass for ARM.
PM.add(createARMJITCodeEmitterPass(*this, JCE));
return false;
}