forked from OSchip/llvm-project
813 lines
28 KiB
C++
813 lines
28 KiB
C++
//===- SymbolTable.cpp ----------------------------------------------------===//
|
|
//
|
|
// The LLVM Linker
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// Symbol table is a bag of all known symbols. We put all symbols of
|
|
// all input files to the symbol table. The symbol table is basically
|
|
// a hash table with the logic to resolve symbol name conflicts using
|
|
// the symbol types.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SymbolTable.h"
|
|
#include "Config.h"
|
|
#include "LinkerScript.h"
|
|
#include "Symbols.h"
|
|
#include "SyntheticSections.h"
|
|
#include "lld/Common/ErrorHandler.h"
|
|
#include "lld/Common/Memory.h"
|
|
#include "lld/Common/Strings.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
|
|
using namespace llvm;
|
|
using namespace llvm::object;
|
|
using namespace llvm::ELF;
|
|
|
|
using namespace lld;
|
|
using namespace lld::elf;
|
|
|
|
SymbolTable *elf::Symtab;
|
|
|
|
static InputFile *getFirstElf() {
|
|
if (!ObjectFiles.empty())
|
|
return ObjectFiles[0];
|
|
if (!SharedFiles.empty())
|
|
return SharedFiles[0];
|
|
return BitcodeFiles[0];
|
|
}
|
|
|
|
// All input object files must be for the same architecture
|
|
// (e.g. it does not make sense to link x86 object files with
|
|
// MIPS object files.) This function checks for that error.
|
|
static bool isCompatible(InputFile *F) {
|
|
if (!F->isElf() && !isa<BitcodeFile>(F))
|
|
return true;
|
|
|
|
if (F->EKind == Config->EKind && F->EMachine == Config->EMachine) {
|
|
if (Config->EMachine != EM_MIPS)
|
|
return true;
|
|
if (isMipsN32Abi(F) == Config->MipsN32Abi)
|
|
return true;
|
|
}
|
|
|
|
if (!Config->Emulation.empty())
|
|
error(toString(F) + " is incompatible with " + Config->Emulation);
|
|
else
|
|
error(toString(F) + " is incompatible with " + toString(getFirstElf()));
|
|
return false;
|
|
}
|
|
|
|
// Add symbols in File to the symbol table.
|
|
template <class ELFT> void SymbolTable::addFile(InputFile *File) {
|
|
if (!isCompatible(File))
|
|
return;
|
|
|
|
// Binary file
|
|
if (auto *F = dyn_cast<BinaryFile>(File)) {
|
|
BinaryFiles.push_back(F);
|
|
F->parse();
|
|
return;
|
|
}
|
|
|
|
// .a file
|
|
if (auto *F = dyn_cast<ArchiveFile>(File)) {
|
|
F->parse<ELFT>();
|
|
return;
|
|
}
|
|
|
|
// Lazy object file
|
|
if (auto *F = dyn_cast<LazyObjFile>(File)) {
|
|
LazyObjFiles.push_back(F);
|
|
F->parse<ELFT>();
|
|
return;
|
|
}
|
|
|
|
if (Config->Trace)
|
|
message(toString(File));
|
|
|
|
// .so file
|
|
if (auto *F = dyn_cast<SharedFile<ELFT>>(File)) {
|
|
// DSOs are uniquified not by filename but by soname.
|
|
F->parseSoName();
|
|
if (errorCount() || !SoNames.insert(F->SoName).second)
|
|
return;
|
|
SharedFiles.push_back(F);
|
|
F->parseRest();
|
|
return;
|
|
}
|
|
|
|
// LLVM bitcode file
|
|
if (auto *F = dyn_cast<BitcodeFile>(File)) {
|
|
BitcodeFiles.push_back(F);
|
|
F->parse<ELFT>(ComdatGroups);
|
|
return;
|
|
}
|
|
|
|
// Regular object file
|
|
ObjectFiles.push_back(File);
|
|
cast<ObjFile<ELFT>>(File)->parse(ComdatGroups);
|
|
}
|
|
|
|
// This function is where all the optimizations of link-time
|
|
// optimization happens. When LTO is in use, some input files are
|
|
// not in native object file format but in the LLVM bitcode format.
|
|
// This function compiles bitcode files into a few big native files
|
|
// using LLVM functions and replaces bitcode symbols with the results.
|
|
// Because all bitcode files that the program consists of are passed
|
|
// to the compiler at once, it can do whole-program optimization.
|
|
template <class ELFT> void SymbolTable::addCombinedLTOObject() {
|
|
if (BitcodeFiles.empty())
|
|
return;
|
|
|
|
// Compile bitcode files and replace bitcode symbols.
|
|
LTO.reset(new BitcodeCompiler);
|
|
for (BitcodeFile *F : BitcodeFiles)
|
|
LTO->add(*F);
|
|
|
|
for (InputFile *File : LTO->compile()) {
|
|
DenseSet<CachedHashStringRef> DummyGroups;
|
|
auto *Obj = cast<ObjFile<ELFT>>(File);
|
|
Obj->parse(DummyGroups);
|
|
for (Symbol *Sym : Obj->getGlobalSymbols())
|
|
Sym->parseSymbolVersion();
|
|
ObjectFiles.push_back(File);
|
|
}
|
|
}
|
|
|
|
// Set a flag for --trace-symbol so that we can print out a log message
|
|
// if a new symbol with the same name is inserted into the symbol table.
|
|
void SymbolTable::trace(StringRef Name) {
|
|
SymMap.insert({CachedHashStringRef(Name), -1});
|
|
}
|
|
|
|
void SymbolTable::wrap(Symbol *Sym, Symbol *Real, Symbol *Wrap) {
|
|
// Swap symbols as instructed by -wrap.
|
|
int &Idx1 = SymMap[CachedHashStringRef(Sym->getName())];
|
|
int &Idx2 = SymMap[CachedHashStringRef(Real->getName())];
|
|
int &Idx3 = SymMap[CachedHashStringRef(Wrap->getName())];
|
|
|
|
Idx2 = Idx1;
|
|
Idx1 = Idx3;
|
|
|
|
// Now renaming is complete. No one refers Real symbol. We could leave
|
|
// Real as-is, but if Real is written to the symbol table, that may
|
|
// contain irrelevant values. So, we copy all values from Sym to Real.
|
|
StringRef S = Real->getName();
|
|
memcpy(Real, Sym, sizeof(SymbolUnion));
|
|
Real->setName(S);
|
|
}
|
|
|
|
static uint8_t getMinVisibility(uint8_t VA, uint8_t VB) {
|
|
if (VA == STV_DEFAULT)
|
|
return VB;
|
|
if (VB == STV_DEFAULT)
|
|
return VA;
|
|
return std::min(VA, VB);
|
|
}
|
|
|
|
// Find an existing symbol or create and insert a new one.
|
|
std::pair<Symbol *, bool> SymbolTable::insertName(StringRef Name) {
|
|
// <name>@@<version> means the symbol is the default version. In that
|
|
// case <name>@@<version> will be used to resolve references to <name>.
|
|
//
|
|
// Since this is a hot path, the following string search code is
|
|
// optimized for speed. StringRef::find(char) is much faster than
|
|
// StringRef::find(StringRef).
|
|
size_t Pos = Name.find('@');
|
|
if (Pos != StringRef::npos && Pos + 1 < Name.size() && Name[Pos + 1] == '@')
|
|
Name = Name.take_front(Pos);
|
|
|
|
auto P = SymMap.insert({CachedHashStringRef(Name), (int)SymVector.size()});
|
|
int &SymIndex = P.first->second;
|
|
bool IsNew = P.second;
|
|
bool Traced = false;
|
|
|
|
if (SymIndex == -1) {
|
|
SymIndex = SymVector.size();
|
|
IsNew = true;
|
|
Traced = true;
|
|
}
|
|
|
|
if (!IsNew)
|
|
return {SymVector[SymIndex], false};
|
|
|
|
auto *Sym = reinterpret_cast<Symbol *>(make<SymbolUnion>());
|
|
Sym->SymbolKind = Symbol::PlaceholderKind;
|
|
Sym->Visibility = STV_DEFAULT;
|
|
Sym->IsUsedInRegularObj = false;
|
|
Sym->ExportDynamic = false;
|
|
Sym->CanInline = true;
|
|
Sym->Traced = Traced;
|
|
Sym->VersionId = Config->DefaultSymbolVersion;
|
|
SymVector.push_back(Sym);
|
|
return {Sym, true};
|
|
}
|
|
|
|
// Find an existing symbol or create and insert a new one, then apply the given
|
|
// attributes.
|
|
std::pair<Symbol *, bool> SymbolTable::insert(StringRef Name,
|
|
uint8_t Visibility,
|
|
bool CanOmitFromDynSym,
|
|
InputFile *File) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insertName(Name);
|
|
|
|
// Merge in the new symbol's visibility.
|
|
S->Visibility = getMinVisibility(S->Visibility, Visibility);
|
|
|
|
if (!CanOmitFromDynSym && (Config->Shared || Config->ExportDynamic))
|
|
S->ExportDynamic = true;
|
|
|
|
if (!File || File->kind() == InputFile::ObjKind)
|
|
S->IsUsedInRegularObj = true;
|
|
|
|
return {S, WasInserted};
|
|
}
|
|
|
|
static uint8_t getVisibility(uint8_t StOther) { return StOther & 3; }
|
|
|
|
template <class ELFT>
|
|
Symbol *SymbolTable::addUndefined(StringRef Name, uint8_t Binding,
|
|
uint8_t StOther, uint8_t Type,
|
|
bool CanOmitFromDynSym, InputFile *File) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
uint8_t Visibility = getVisibility(StOther);
|
|
std::tie(S, WasInserted) = insert(Name, Visibility, CanOmitFromDynSym, File);
|
|
|
|
// An undefined symbol with non default visibility must be satisfied
|
|
// in the same DSO.
|
|
if (WasInserted || (isa<SharedSymbol>(S) && Visibility != STV_DEFAULT)) {
|
|
replaceSymbol<Undefined>(S, File, Name, Binding, StOther, Type);
|
|
return S;
|
|
}
|
|
|
|
if (S->isShared() || S->isLazy() || (S->isUndefined() && Binding != STB_WEAK))
|
|
S->Binding = Binding;
|
|
|
|
if (!Config->GcSections && Binding != STB_WEAK)
|
|
if (auto *SS = dyn_cast<SharedSymbol>(S))
|
|
SS->getFile<ELFT>().IsNeeded = true;
|
|
|
|
if (S->isLazy()) {
|
|
// An undefined weak will not fetch archive members. See comment on Lazy in
|
|
// Symbols.h for the details.
|
|
if (Binding == STB_WEAK) {
|
|
S->Type = Type;
|
|
return S;
|
|
}
|
|
|
|
// Do extra check for --warn-backrefs.
|
|
//
|
|
// --warn-backrefs is an option to prevent an undefined reference from
|
|
// fetching an archive member written earlier in the command line. It can be
|
|
// used to keep compatibility with GNU linkers to some degree.
|
|
// I'll explain the feature and why you may find it useful in this comment.
|
|
//
|
|
// lld's symbol resolution semantics is more relaxed than traditional Unix
|
|
// linkers. For example,
|
|
//
|
|
// ld.lld foo.a bar.o
|
|
//
|
|
// succeeds even if bar.o contains an undefined symbol that has to be
|
|
// resolved by some object file in foo.a. Traditional Unix linkers don't
|
|
// allow this kind of backward reference, as they visit each file only once
|
|
// from left to right in the command line while resolving all undefined
|
|
// symbols at the moment of visiting.
|
|
//
|
|
// In the above case, since there's no undefined symbol when a linker visits
|
|
// foo.a, no files are pulled out from foo.a, and because the linker forgets
|
|
// about foo.a after visiting, it can't resolve undefined symbols in bar.o
|
|
// that could have been resolved otherwise.
|
|
//
|
|
// That lld accepts more relaxed form means that (besides it'd make more
|
|
// sense) you can accidentally write a command line or a build file that
|
|
// works only with lld, even if you have a plan to distribute it to wider
|
|
// users who may be using GNU linkers. With --warn-backrefs, you can detect
|
|
// a library order that doesn't work with other Unix linkers.
|
|
//
|
|
// The option is also useful to detect cyclic dependencies between static
|
|
// archives. Again, lld accepts
|
|
//
|
|
// ld.lld foo.a bar.a
|
|
//
|
|
// even if foo.a and bar.a depend on each other. With --warn-backrefs, it is
|
|
// handled as an error.
|
|
//
|
|
// Here is how the option works. We assign a group ID to each file. A file
|
|
// with a smaller group ID can pull out object files from an archive file
|
|
// with an equal or greater group ID. Otherwise, it is a reverse dependency
|
|
// and an error.
|
|
//
|
|
// A file outside --{start,end}-group gets a fresh ID when instantiated. All
|
|
// files within the same --{start,end}-group get the same group ID. E.g.
|
|
//
|
|
// ld.lld A B --start-group C D --end-group E
|
|
//
|
|
// A forms group 0. B form group 1. C and D (including their member object
|
|
// files) form group 2. E forms group 3. I think that you can see how this
|
|
// group assignment rule simulates the traditional linker's semantics.
|
|
bool Backref =
|
|
Config->WarnBackrefs && File && S->File->GroupId < File->GroupId;
|
|
fetchLazy<ELFT>(S);
|
|
|
|
// We don't report backward references to weak symbols as they can be
|
|
// overridden later.
|
|
if (Backref && S->Binding != STB_WEAK)
|
|
warn("backward reference detected: " + Name + " in " + toString(File) +
|
|
" refers to " + toString(S->File));
|
|
}
|
|
return S;
|
|
}
|
|
|
|
// Using .symver foo,foo@@VER unfortunately creates two symbols: foo and
|
|
// foo@@VER. We want to effectively ignore foo, so give precedence to
|
|
// foo@@VER.
|
|
// FIXME: If users can transition to using
|
|
// .symver foo,foo@@@VER
|
|
// we can delete this hack.
|
|
static int compareVersion(Symbol *S, StringRef Name) {
|
|
bool A = Name.contains("@@");
|
|
bool B = S->getName().contains("@@");
|
|
if (A && !B)
|
|
return 1;
|
|
if (!A && B)
|
|
return -1;
|
|
return 0;
|
|
}
|
|
|
|
// We have a new defined symbol with the specified binding. Return 1 if the new
|
|
// symbol should win, -1 if the new symbol should lose, or 0 if both symbols are
|
|
// strong defined symbols.
|
|
static int compareDefined(Symbol *S, bool WasInserted, uint8_t Binding,
|
|
StringRef Name) {
|
|
if (WasInserted)
|
|
return 1;
|
|
if (!S->isDefined())
|
|
return 1;
|
|
if (int R = compareVersion(S, Name))
|
|
return R;
|
|
if (Binding == STB_WEAK)
|
|
return -1;
|
|
if (S->isWeak())
|
|
return 1;
|
|
return 0;
|
|
}
|
|
|
|
// We have a new non-common defined symbol with the specified binding. Return 1
|
|
// if the new symbol should win, -1 if the new symbol should lose, or 0 if there
|
|
// is a conflict. If the new symbol wins, also update the binding.
|
|
static int compareDefinedNonCommon(Symbol *S, bool WasInserted, uint8_t Binding,
|
|
bool IsAbsolute, uint64_t Value,
|
|
StringRef Name) {
|
|
if (int Cmp = compareDefined(S, WasInserted, Binding, Name))
|
|
return Cmp;
|
|
if (auto *R = dyn_cast<Defined>(S)) {
|
|
if (R->Section && isa<BssSection>(R->Section)) {
|
|
// Non-common symbols take precedence over common symbols.
|
|
if (Config->WarnCommon)
|
|
warn("common " + S->getName() + " is overridden");
|
|
return 1;
|
|
}
|
|
if (R->Section == nullptr && Binding == STB_GLOBAL && IsAbsolute &&
|
|
R->Value == Value)
|
|
return -1;
|
|
}
|
|
return 0;
|
|
}
|
|
|
|
Symbol *SymbolTable::addCommon(StringRef N, uint64_t Size, uint32_t Alignment,
|
|
uint8_t Binding, uint8_t StOther, uint8_t Type,
|
|
InputFile &File) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insert(N, getVisibility(StOther),
|
|
/*CanOmitFromDynSym*/ false, &File);
|
|
|
|
int Cmp = compareDefined(S, WasInserted, Binding, N);
|
|
if (Cmp < 0)
|
|
return S;
|
|
|
|
if (Cmp > 0) {
|
|
auto *Bss = make<BssSection>("COMMON", Size, Alignment);
|
|
Bss->File = &File;
|
|
Bss->Live = !Config->GcSections;
|
|
InputSections.push_back(Bss);
|
|
|
|
replaceSymbol<Defined>(S, &File, N, Binding, StOther, Type, 0, Size, Bss);
|
|
return S;
|
|
}
|
|
|
|
auto *D = cast<Defined>(S);
|
|
auto *Bss = dyn_cast_or_null<BssSection>(D->Section);
|
|
if (!Bss) {
|
|
// Non-common symbols take precedence over common symbols.
|
|
if (Config->WarnCommon)
|
|
warn("common " + S->getName() + " is overridden");
|
|
return S;
|
|
}
|
|
|
|
if (Config->WarnCommon)
|
|
warn("multiple common of " + D->getName());
|
|
|
|
Bss->Alignment = std::max(Bss->Alignment, Alignment);
|
|
if (Size > Bss->Size) {
|
|
D->File = Bss->File = &File;
|
|
D->Size = Bss->Size = Size;
|
|
}
|
|
return S;
|
|
}
|
|
|
|
static void reportDuplicate(Symbol *Sym, InputFile *NewFile,
|
|
InputSectionBase *ErrSec, uint64_t ErrOffset) {
|
|
if (Config->AllowMultipleDefinition)
|
|
return;
|
|
|
|
Defined *D = cast<Defined>(Sym);
|
|
if (!D->Section || !ErrSec) {
|
|
error("duplicate symbol: " + toString(*Sym) + "\n>>> defined in " +
|
|
toString(Sym->File) + "\n>>> defined in " + toString(NewFile));
|
|
return;
|
|
}
|
|
|
|
// Construct and print an error message in the form of:
|
|
//
|
|
// ld.lld: error: duplicate symbol: foo
|
|
// >>> defined at bar.c:30
|
|
// >>> bar.o (/home/alice/src/bar.o)
|
|
// >>> defined at baz.c:563
|
|
// >>> baz.o in archive libbaz.a
|
|
auto *Sec1 = cast<InputSectionBase>(D->Section);
|
|
std::string Src1 = Sec1->getSrcMsg(*Sym, D->Value);
|
|
std::string Obj1 = Sec1->getObjMsg(D->Value);
|
|
std::string Src2 = ErrSec->getSrcMsg(*Sym, ErrOffset);
|
|
std::string Obj2 = ErrSec->getObjMsg(ErrOffset);
|
|
|
|
std::string Msg = "duplicate symbol: " + toString(*Sym) + "\n>>> defined at ";
|
|
if (!Src1.empty())
|
|
Msg += Src1 + "\n>>> ";
|
|
Msg += Obj1 + "\n>>> defined at ";
|
|
if (!Src2.empty())
|
|
Msg += Src2 + "\n>>> ";
|
|
Msg += Obj2;
|
|
error(Msg);
|
|
}
|
|
|
|
Symbol *SymbolTable::addDefined(StringRef Name, uint8_t StOther, uint8_t Type,
|
|
uint64_t Value, uint64_t Size, uint8_t Binding,
|
|
SectionBase *Section, InputFile *File) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insert(Name, getVisibility(StOther),
|
|
/*CanOmitFromDynSym*/ false, File);
|
|
int Cmp = compareDefinedNonCommon(S, WasInserted, Binding, Section == nullptr,
|
|
Value, Name);
|
|
if (Cmp > 0)
|
|
replaceSymbol<Defined>(S, File, Name, Binding, StOther, Type, Value, Size,
|
|
Section);
|
|
else if (Cmp == 0)
|
|
reportDuplicate(S, File, dyn_cast_or_null<InputSectionBase>(Section),
|
|
Value);
|
|
return S;
|
|
}
|
|
|
|
template <typename ELFT>
|
|
void SymbolTable::addShared(StringRef Name, SharedFile<ELFT> &File,
|
|
const typename ELFT::Sym &Sym, uint32_t Alignment,
|
|
uint32_t VerdefIndex) {
|
|
// DSO symbols do not affect visibility in the output, so we pass STV_DEFAULT
|
|
// as the visibility, which will leave the visibility in the symbol table
|
|
// unchanged.
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insert(Name, STV_DEFAULT,
|
|
/*CanOmitFromDynSym*/ true, &File);
|
|
// Make sure we preempt DSO symbols with default visibility.
|
|
if (Sym.getVisibility() == STV_DEFAULT)
|
|
S->ExportDynamic = true;
|
|
|
|
// An undefined symbol with non default visibility must be satisfied
|
|
// in the same DSO.
|
|
if (WasInserted ||
|
|
((S->isUndefined() || S->isLazy()) && S->Visibility == STV_DEFAULT)) {
|
|
uint8_t Binding = S->Binding;
|
|
bool WasUndefined = S->isUndefined();
|
|
replaceSymbol<SharedSymbol>(S, File, Name, Sym.getBinding(), Sym.st_other,
|
|
Sym.getType(), Sym.st_value, Sym.st_size,
|
|
Alignment, VerdefIndex);
|
|
if (!WasInserted) {
|
|
S->Binding = Binding;
|
|
if (!S->isWeak() && !Config->GcSections && WasUndefined)
|
|
File.IsNeeded = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
Symbol *SymbolTable::addBitcode(StringRef Name, uint8_t Binding,
|
|
uint8_t StOther, uint8_t Type,
|
|
bool CanOmitFromDynSym, BitcodeFile &F) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) =
|
|
insert(Name, getVisibility(StOther), CanOmitFromDynSym, &F);
|
|
int Cmp = compareDefinedNonCommon(S, WasInserted, Binding,
|
|
/*IsAbs*/ false, /*Value*/ 0, Name);
|
|
if (Cmp > 0)
|
|
replaceSymbol<Defined>(S, &F, Name, Binding, StOther, Type, 0, 0, nullptr);
|
|
else if (Cmp == 0)
|
|
reportDuplicate(S, &F, nullptr, 0);
|
|
return S;
|
|
}
|
|
|
|
Symbol *SymbolTable::find(StringRef Name) {
|
|
auto It = SymMap.find(CachedHashStringRef(Name));
|
|
if (It == SymMap.end())
|
|
return nullptr;
|
|
if (It->second == -1)
|
|
return nullptr;
|
|
return SymVector[It->second];
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTable::addLazyArchive(StringRef Name, ArchiveFile &File,
|
|
const object::Archive::Symbol Sym) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insertName(Name);
|
|
if (WasInserted) {
|
|
replaceSymbol<LazyArchive>(S, File, STT_NOTYPE, Sym);
|
|
return;
|
|
}
|
|
if (!S->isUndefined())
|
|
return;
|
|
|
|
// An undefined weak will not fetch archive members. See comment on Lazy in
|
|
// Symbols.h for the details.
|
|
if (S->isWeak()) {
|
|
replaceSymbol<LazyArchive>(S, File, S->Type, Sym);
|
|
S->Binding = STB_WEAK;
|
|
return;
|
|
}
|
|
|
|
if (InputFile *F = File.fetch(Sym))
|
|
addFile<ELFT>(F);
|
|
}
|
|
|
|
template <class ELFT>
|
|
void SymbolTable::addLazyObject(StringRef Name, LazyObjFile &File) {
|
|
Symbol *S;
|
|
bool WasInserted;
|
|
std::tie(S, WasInserted) = insertName(Name);
|
|
if (WasInserted) {
|
|
replaceSymbol<LazyObject>(S, File, STT_NOTYPE, Name);
|
|
return;
|
|
}
|
|
if (!S->isUndefined())
|
|
return;
|
|
|
|
// An undefined weak will not fetch archive members. See comment on Lazy in
|
|
// Symbols.h for the details.
|
|
if (S->isWeak()) {
|
|
replaceSymbol<LazyObject>(S, File, S->Type, Name);
|
|
S->Binding = STB_WEAK;
|
|
return;
|
|
}
|
|
|
|
if (InputFile *F = File.fetch())
|
|
addFile<ELFT>(F);
|
|
}
|
|
|
|
template <class ELFT> void SymbolTable::fetchLazy(Symbol *Sym) {
|
|
if (auto *S = dyn_cast<LazyArchive>(Sym)) {
|
|
if (InputFile *File = S->fetch())
|
|
addFile<ELFT>(File);
|
|
return;
|
|
}
|
|
|
|
auto *S = cast<LazyObject>(Sym);
|
|
if (InputFile *File = cast<LazyObjFile>(S->File)->fetch())
|
|
addFile<ELFT>(File);
|
|
}
|
|
|
|
// Initialize DemangledSyms with a map from demangled symbols to symbol
|
|
// objects. Used to handle "extern C++" directive in version scripts.
|
|
//
|
|
// The map will contain all demangled symbols. That can be very large,
|
|
// and in LLD we generally want to avoid do anything for each symbol.
|
|
// Then, why are we doing this? Here's why.
|
|
//
|
|
// Users can use "extern C++ {}" directive to match against demangled
|
|
// C++ symbols. For example, you can write a pattern such as
|
|
// "llvm::*::foo(int, ?)". Obviously, there's no way to handle this
|
|
// other than trying to match a pattern against all demangled symbols.
|
|
// So, if "extern C++" feature is used, we need to demangle all known
|
|
// symbols.
|
|
StringMap<std::vector<Symbol *>> &SymbolTable::getDemangledSyms() {
|
|
if (!DemangledSyms) {
|
|
DemangledSyms.emplace();
|
|
for (Symbol *Sym : SymVector) {
|
|
if (!Sym->isDefined())
|
|
continue;
|
|
if (Optional<std::string> S = demangleItanium(Sym->getName()))
|
|
(*DemangledSyms)[*S].push_back(Sym);
|
|
else
|
|
(*DemangledSyms)[Sym->getName()].push_back(Sym);
|
|
}
|
|
}
|
|
return *DemangledSyms;
|
|
}
|
|
|
|
std::vector<Symbol *> SymbolTable::findByVersion(SymbolVersion Ver) {
|
|
if (Ver.IsExternCpp)
|
|
return getDemangledSyms().lookup(Ver.Name);
|
|
if (Symbol *B = find(Ver.Name))
|
|
if (B->isDefined())
|
|
return {B};
|
|
return {};
|
|
}
|
|
|
|
std::vector<Symbol *> SymbolTable::findAllByVersion(SymbolVersion Ver) {
|
|
std::vector<Symbol *> Res;
|
|
StringMatcher M(Ver.Name);
|
|
|
|
if (Ver.IsExternCpp) {
|
|
for (auto &P : getDemangledSyms())
|
|
if (M.match(P.first()))
|
|
Res.insert(Res.end(), P.second.begin(), P.second.end());
|
|
return Res;
|
|
}
|
|
|
|
for (Symbol *Sym : SymVector)
|
|
if (Sym->isDefined() && M.match(Sym->getName()))
|
|
Res.push_back(Sym);
|
|
return Res;
|
|
}
|
|
|
|
// If there's only one anonymous version definition in a version
|
|
// script file, the script does not actually define any symbol version,
|
|
// but just specifies symbols visibilities.
|
|
void SymbolTable::handleAnonymousVersion() {
|
|
for (SymbolVersion &Ver : Config->VersionScriptGlobals)
|
|
assignExactVersion(Ver, VER_NDX_GLOBAL, "global");
|
|
for (SymbolVersion &Ver : Config->VersionScriptGlobals)
|
|
assignWildcardVersion(Ver, VER_NDX_GLOBAL);
|
|
for (SymbolVersion &Ver : Config->VersionScriptLocals)
|
|
assignExactVersion(Ver, VER_NDX_LOCAL, "local");
|
|
for (SymbolVersion &Ver : Config->VersionScriptLocals)
|
|
assignWildcardVersion(Ver, VER_NDX_LOCAL);
|
|
}
|
|
|
|
// Handles -dynamic-list.
|
|
void SymbolTable::handleDynamicList() {
|
|
for (SymbolVersion &Ver : Config->DynamicList) {
|
|
std::vector<Symbol *> Syms;
|
|
if (Ver.HasWildcard)
|
|
Syms = findAllByVersion(Ver);
|
|
else
|
|
Syms = findByVersion(Ver);
|
|
|
|
for (Symbol *B : Syms) {
|
|
if (!Config->Shared)
|
|
B->ExportDynamic = true;
|
|
else if (B->includeInDynsym())
|
|
B->IsPreemptible = true;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Set symbol versions to symbols. This function handles patterns
|
|
// containing no wildcard characters.
|
|
void SymbolTable::assignExactVersion(SymbolVersion Ver, uint16_t VersionId,
|
|
StringRef VersionName) {
|
|
if (Ver.HasWildcard)
|
|
return;
|
|
|
|
// Get a list of symbols which we need to assign the version to.
|
|
std::vector<Symbol *> Syms = findByVersion(Ver);
|
|
if (Syms.empty()) {
|
|
if (!Config->UndefinedVersion)
|
|
error("version script assignment of '" + VersionName + "' to symbol '" +
|
|
Ver.Name + "' failed: symbol not defined");
|
|
return;
|
|
}
|
|
|
|
// Assign the version.
|
|
for (Symbol *Sym : Syms) {
|
|
// Skip symbols containing version info because symbol versions
|
|
// specified by symbol names take precedence over version scripts.
|
|
// See parseSymbolVersion().
|
|
if (Sym->getName().contains('@'))
|
|
continue;
|
|
|
|
if (Sym->VersionId != Config->DefaultSymbolVersion &&
|
|
Sym->VersionId != VersionId)
|
|
error("duplicate symbol '" + Ver.Name + "' in version script");
|
|
Sym->VersionId = VersionId;
|
|
}
|
|
}
|
|
|
|
void SymbolTable::assignWildcardVersion(SymbolVersion Ver, uint16_t VersionId) {
|
|
if (!Ver.HasWildcard)
|
|
return;
|
|
|
|
// Exact matching takes precendence over fuzzy matching,
|
|
// so we set a version to a symbol only if no version has been assigned
|
|
// to the symbol. This behavior is compatible with GNU.
|
|
for (Symbol *B : findAllByVersion(Ver))
|
|
if (B->VersionId == Config->DefaultSymbolVersion)
|
|
B->VersionId = VersionId;
|
|
}
|
|
|
|
// This function processes version scripts by updating VersionId
|
|
// member of symbols.
|
|
void SymbolTable::scanVersionScript() {
|
|
// Handle edge cases first.
|
|
handleAnonymousVersion();
|
|
handleDynamicList();
|
|
|
|
// Now we have version definitions, so we need to set version ids to symbols.
|
|
// Each version definition has a glob pattern, and all symbols that match
|
|
// with the pattern get that version.
|
|
|
|
// First, we assign versions to exact matching symbols,
|
|
// i.e. version definitions not containing any glob meta-characters.
|
|
for (VersionDefinition &V : Config->VersionDefinitions)
|
|
for (SymbolVersion &Ver : V.Globals)
|
|
assignExactVersion(Ver, V.Id, V.Name);
|
|
|
|
// Next, we assign versions to fuzzy matching symbols,
|
|
// i.e. version definitions containing glob meta-characters.
|
|
// Note that because the last match takes precedence over previous matches,
|
|
// we iterate over the definitions in the reverse order.
|
|
for (VersionDefinition &V : llvm::reverse(Config->VersionDefinitions))
|
|
for (SymbolVersion &Ver : V.Globals)
|
|
assignWildcardVersion(Ver, V.Id);
|
|
|
|
// Symbol themselves might know their versions because symbols
|
|
// can contain versions in the form of <name>@<version>.
|
|
// Let them parse and update their names to exclude version suffix.
|
|
for (Symbol *Sym : SymVector)
|
|
Sym->parseSymbolVersion();
|
|
}
|
|
|
|
template void SymbolTable::addFile<ELF32LE>(InputFile *);
|
|
template void SymbolTable::addFile<ELF32BE>(InputFile *);
|
|
template void SymbolTable::addFile<ELF64LE>(InputFile *);
|
|
template void SymbolTable::addFile<ELF64BE>(InputFile *);
|
|
|
|
template Symbol *SymbolTable::addUndefined<ELF32LE>(StringRef, uint8_t, uint8_t,
|
|
uint8_t, bool, InputFile *);
|
|
template Symbol *SymbolTable::addUndefined<ELF32BE>(StringRef, uint8_t, uint8_t,
|
|
uint8_t, bool, InputFile *);
|
|
template Symbol *SymbolTable::addUndefined<ELF64LE>(StringRef, uint8_t, uint8_t,
|
|
uint8_t, bool, InputFile *);
|
|
template Symbol *SymbolTable::addUndefined<ELF64BE>(StringRef, uint8_t, uint8_t,
|
|
uint8_t, bool, InputFile *);
|
|
|
|
template void SymbolTable::addCombinedLTOObject<ELF32LE>();
|
|
template void SymbolTable::addCombinedLTOObject<ELF32BE>();
|
|
template void SymbolTable::addCombinedLTOObject<ELF64LE>();
|
|
template void SymbolTable::addCombinedLTOObject<ELF64BE>();
|
|
|
|
template void
|
|
SymbolTable::addLazyArchive<ELF32LE>(StringRef, ArchiveFile &,
|
|
const object::Archive::Symbol);
|
|
template void
|
|
SymbolTable::addLazyArchive<ELF32BE>(StringRef, ArchiveFile &,
|
|
const object::Archive::Symbol);
|
|
template void
|
|
SymbolTable::addLazyArchive<ELF64LE>(StringRef, ArchiveFile &,
|
|
const object::Archive::Symbol);
|
|
template void
|
|
SymbolTable::addLazyArchive<ELF64BE>(StringRef, ArchiveFile &,
|
|
const object::Archive::Symbol);
|
|
|
|
template void SymbolTable::addLazyObject<ELF32LE>(StringRef, LazyObjFile &);
|
|
template void SymbolTable::addLazyObject<ELF32BE>(StringRef, LazyObjFile &);
|
|
template void SymbolTable::addLazyObject<ELF64LE>(StringRef, LazyObjFile &);
|
|
template void SymbolTable::addLazyObject<ELF64BE>(StringRef, LazyObjFile &);
|
|
|
|
template void SymbolTable::fetchLazy<ELF32LE>(Symbol *);
|
|
template void SymbolTable::fetchLazy<ELF32BE>(Symbol *);
|
|
template void SymbolTable::fetchLazy<ELF64LE>(Symbol *);
|
|
template void SymbolTable::fetchLazy<ELF64BE>(Symbol *);
|
|
|
|
template void SymbolTable::addShared<ELF32LE>(StringRef, SharedFile<ELF32LE> &,
|
|
const typename ELF32LE::Sym &,
|
|
uint32_t Alignment, uint32_t);
|
|
template void SymbolTable::addShared<ELF32BE>(StringRef, SharedFile<ELF32BE> &,
|
|
const typename ELF32BE::Sym &,
|
|
uint32_t Alignment, uint32_t);
|
|
template void SymbolTable::addShared<ELF64LE>(StringRef, SharedFile<ELF64LE> &,
|
|
const typename ELF64LE::Sym &,
|
|
uint32_t Alignment, uint32_t);
|
|
template void SymbolTable::addShared<ELF64BE>(StringRef, SharedFile<ELF64BE> &,
|
|
const typename ELF64BE::Sym &,
|
|
uint32_t Alignment, uint32_t);
|