forked from OSchip/llvm-project
1171 lines
43 KiB
C++
1171 lines
43 KiB
C++
//===-- SystemZTargetTransformInfo.cpp - SystemZ-specific TTI -------------===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements a TargetTransformInfo analysis pass specific to the
|
|
// SystemZ target machine. It uses the target's detailed information to provide
|
|
// more precise answers to certain TTI queries, while letting the target
|
|
// independent and default TTI implementations handle the rest.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "SystemZTargetTransformInfo.h"
|
|
#include "llvm/Analysis/TargetTransformInfo.h"
|
|
#include "llvm/CodeGen/BasicTTIImpl.h"
|
|
#include "llvm/CodeGen/CostTable.h"
|
|
#include "llvm/CodeGen/TargetLowering.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/Support/Debug.h"
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "systemztti"
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// SystemZ cost model.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
int SystemZTTIImpl::getIntImmCost(const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
// here, so that constant hoisting will ignore this constant.
|
|
if (BitSize == 0)
|
|
return TTI::TCC_Free;
|
|
// No cost model for operations on integers larger than 64 bit implemented yet.
|
|
if (BitSize > 64)
|
|
return TTI::TCC_Free;
|
|
|
|
if (Imm == 0)
|
|
return TTI::TCC_Free;
|
|
|
|
if (Imm.getBitWidth() <= 64) {
|
|
// Constants loaded via lgfi.
|
|
if (isInt<32>(Imm.getSExtValue()))
|
|
return TTI::TCC_Basic;
|
|
// Constants loaded via llilf.
|
|
if (isUInt<32>(Imm.getZExtValue()))
|
|
return TTI::TCC_Basic;
|
|
// Constants loaded via llihf:
|
|
if ((Imm.getZExtValue() & 0xffffffff) == 0)
|
|
return TTI::TCC_Basic;
|
|
|
|
return 2 * TTI::TCC_Basic;
|
|
}
|
|
|
|
return 4 * TTI::TCC_Basic;
|
|
}
|
|
|
|
int SystemZTTIImpl::getIntImmCostInst(unsigned Opcode, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
// here, so that constant hoisting will ignore this constant.
|
|
if (BitSize == 0)
|
|
return TTI::TCC_Free;
|
|
// No cost model for operations on integers larger than 64 bit implemented yet.
|
|
if (BitSize > 64)
|
|
return TTI::TCC_Free;
|
|
|
|
switch (Opcode) {
|
|
default:
|
|
return TTI::TCC_Free;
|
|
case Instruction::GetElementPtr:
|
|
// Always hoist the base address of a GetElementPtr. This prevents the
|
|
// creation of new constants for every base constant that gets constant
|
|
// folded with the offset.
|
|
if (Idx == 0)
|
|
return 2 * TTI::TCC_Basic;
|
|
return TTI::TCC_Free;
|
|
case Instruction::Store:
|
|
if (Idx == 0 && Imm.getBitWidth() <= 64) {
|
|
// Any 8-bit immediate store can by implemented via mvi.
|
|
if (BitSize == 8)
|
|
return TTI::TCC_Free;
|
|
// 16-bit immediate values can be stored via mvhhi/mvhi/mvghi.
|
|
if (isInt<16>(Imm.getSExtValue()))
|
|
return TTI::TCC_Free;
|
|
}
|
|
break;
|
|
case Instruction::ICmp:
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
// Comparisons against signed 32-bit immediates implemented via cgfi.
|
|
if (isInt<32>(Imm.getSExtValue()))
|
|
return TTI::TCC_Free;
|
|
// Comparisons against unsigned 32-bit immediates implemented via clgfi.
|
|
if (isUInt<32>(Imm.getZExtValue()))
|
|
return TTI::TCC_Free;
|
|
}
|
|
break;
|
|
case Instruction::Add:
|
|
case Instruction::Sub:
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
// We use algfi/slgfi to add/subtract 32-bit unsigned immediates.
|
|
if (isUInt<32>(Imm.getZExtValue()))
|
|
return TTI::TCC_Free;
|
|
// Or their negation, by swapping addition vs. subtraction.
|
|
if (isUInt<32>(-Imm.getSExtValue()))
|
|
return TTI::TCC_Free;
|
|
}
|
|
break;
|
|
case Instruction::Mul:
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
// We use msgfi to multiply by 32-bit signed immediates.
|
|
if (isInt<32>(Imm.getSExtValue()))
|
|
return TTI::TCC_Free;
|
|
}
|
|
break;
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
// Masks supported by oilf/xilf.
|
|
if (isUInt<32>(Imm.getZExtValue()))
|
|
return TTI::TCC_Free;
|
|
// Masks supported by oihf/xihf.
|
|
if ((Imm.getZExtValue() & 0xffffffff) == 0)
|
|
return TTI::TCC_Free;
|
|
}
|
|
break;
|
|
case Instruction::And:
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
// Any 32-bit AND operation can by implemented via nilf.
|
|
if (BitSize <= 32)
|
|
return TTI::TCC_Free;
|
|
// 64-bit masks supported by nilf.
|
|
if (isUInt<32>(~Imm.getZExtValue()))
|
|
return TTI::TCC_Free;
|
|
// 64-bit masks supported by nilh.
|
|
if ((Imm.getZExtValue() & 0xffffffff) == 0xffffffff)
|
|
return TTI::TCC_Free;
|
|
// Some 64-bit AND operations can be implemented via risbg.
|
|
const SystemZInstrInfo *TII = ST->getInstrInfo();
|
|
unsigned Start, End;
|
|
if (TII->isRxSBGMask(Imm.getZExtValue(), BitSize, Start, End))
|
|
return TTI::TCC_Free;
|
|
}
|
|
break;
|
|
case Instruction::Shl:
|
|
case Instruction::LShr:
|
|
case Instruction::AShr:
|
|
// Always return TCC_Free for the shift value of a shift instruction.
|
|
if (Idx == 1)
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Instruction::UDiv:
|
|
case Instruction::SDiv:
|
|
case Instruction::URem:
|
|
case Instruction::SRem:
|
|
case Instruction::Trunc:
|
|
case Instruction::ZExt:
|
|
case Instruction::SExt:
|
|
case Instruction::IntToPtr:
|
|
case Instruction::PtrToInt:
|
|
case Instruction::BitCast:
|
|
case Instruction::PHI:
|
|
case Instruction::Call:
|
|
case Instruction::Select:
|
|
case Instruction::Ret:
|
|
case Instruction::Load:
|
|
break;
|
|
}
|
|
|
|
return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
|
|
}
|
|
|
|
int SystemZTTIImpl::getIntImmCostIntrin(Intrinsic::ID IID, unsigned Idx,
|
|
const APInt &Imm, Type *Ty,
|
|
TTI::TargetCostKind CostKind) {
|
|
assert(Ty->isIntegerTy());
|
|
|
|
unsigned BitSize = Ty->getPrimitiveSizeInBits();
|
|
// There is no cost model for constants with a bit size of 0. Return TCC_Free
|
|
// here, so that constant hoisting will ignore this constant.
|
|
if (BitSize == 0)
|
|
return TTI::TCC_Free;
|
|
// No cost model for operations on integers larger than 64 bit implemented yet.
|
|
if (BitSize > 64)
|
|
return TTI::TCC_Free;
|
|
|
|
switch (IID) {
|
|
default:
|
|
return TTI::TCC_Free;
|
|
case Intrinsic::sadd_with_overflow:
|
|
case Intrinsic::uadd_with_overflow:
|
|
case Intrinsic::ssub_with_overflow:
|
|
case Intrinsic::usub_with_overflow:
|
|
// These get expanded to include a normal addition/subtraction.
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
if (isUInt<32>(Imm.getZExtValue()))
|
|
return TTI::TCC_Free;
|
|
if (isUInt<32>(-Imm.getSExtValue()))
|
|
return TTI::TCC_Free;
|
|
}
|
|
break;
|
|
case Intrinsic::smul_with_overflow:
|
|
case Intrinsic::umul_with_overflow:
|
|
// These get expanded to include a normal multiplication.
|
|
if (Idx == 1 && Imm.getBitWidth() <= 64) {
|
|
if (isInt<32>(Imm.getSExtValue()))
|
|
return TTI::TCC_Free;
|
|
}
|
|
break;
|
|
case Intrinsic::experimental_stackmap:
|
|
if ((Idx < 2) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
case Intrinsic::experimental_patchpoint_void:
|
|
case Intrinsic::experimental_patchpoint_i64:
|
|
if ((Idx < 4) || (Imm.getBitWidth() <= 64 && isInt<64>(Imm.getSExtValue())))
|
|
return TTI::TCC_Free;
|
|
break;
|
|
}
|
|
return SystemZTTIImpl::getIntImmCost(Imm, Ty, CostKind);
|
|
}
|
|
|
|
TargetTransformInfo::PopcntSupportKind
|
|
SystemZTTIImpl::getPopcntSupport(unsigned TyWidth) {
|
|
assert(isPowerOf2_32(TyWidth) && "Type width must be power of 2");
|
|
if (ST->hasPopulationCount() && TyWidth <= 64)
|
|
return TTI::PSK_FastHardware;
|
|
return TTI::PSK_Software;
|
|
}
|
|
|
|
void SystemZTTIImpl::getUnrollingPreferences(Loop *L, ScalarEvolution &SE,
|
|
TTI::UnrollingPreferences &UP) {
|
|
// Find out if L contains a call, what the machine instruction count
|
|
// estimate is, and how many stores there are.
|
|
bool HasCall = false;
|
|
unsigned NumStores = 0;
|
|
for (auto &BB : L->blocks())
|
|
for (auto &I : *BB) {
|
|
if (isa<CallInst>(&I) || isa<InvokeInst>(&I)) {
|
|
if (const Function *F = cast<CallBase>(I).getCalledFunction()) {
|
|
if (isLoweredToCall(F))
|
|
HasCall = true;
|
|
if (F->getIntrinsicID() == Intrinsic::memcpy ||
|
|
F->getIntrinsicID() == Intrinsic::memset)
|
|
NumStores++;
|
|
} else { // indirect call.
|
|
HasCall = true;
|
|
}
|
|
}
|
|
if (isa<StoreInst>(&I)) {
|
|
Type *MemAccessTy = I.getOperand(0)->getType();
|
|
NumStores += getMemoryOpCost(Instruction::Store, MemAccessTy, None, 0,
|
|
TTI::TCK_RecipThroughput);
|
|
}
|
|
}
|
|
|
|
// The z13 processor will run out of store tags if too many stores
|
|
// are fed into it too quickly. Therefore make sure there are not
|
|
// too many stores in the resulting unrolled loop.
|
|
unsigned const Max = (NumStores ? (12 / NumStores) : UINT_MAX);
|
|
|
|
if (HasCall) {
|
|
// Only allow full unrolling if loop has any calls.
|
|
UP.FullUnrollMaxCount = Max;
|
|
UP.MaxCount = 1;
|
|
return;
|
|
}
|
|
|
|
UP.MaxCount = Max;
|
|
if (UP.MaxCount <= 1)
|
|
return;
|
|
|
|
// Allow partial and runtime trip count unrolling.
|
|
UP.Partial = UP.Runtime = true;
|
|
|
|
UP.PartialThreshold = 75;
|
|
UP.DefaultUnrollRuntimeCount = 4;
|
|
|
|
// Allow expensive instructions in the pre-header of the loop.
|
|
UP.AllowExpensiveTripCount = true;
|
|
|
|
UP.Force = true;
|
|
}
|
|
|
|
|
|
bool SystemZTTIImpl::isLSRCostLess(TargetTransformInfo::LSRCost &C1,
|
|
TargetTransformInfo::LSRCost &C2) {
|
|
// SystemZ specific: check instruction count (first), and don't care about
|
|
// ImmCost, since offsets are checked explicitly.
|
|
return std::tie(C1.Insns, C1.NumRegs, C1.AddRecCost,
|
|
C1.NumIVMuls, C1.NumBaseAdds,
|
|
C1.ScaleCost, C1.SetupCost) <
|
|
std::tie(C2.Insns, C2.NumRegs, C2.AddRecCost,
|
|
C2.NumIVMuls, C2.NumBaseAdds,
|
|
C2.ScaleCost, C2.SetupCost);
|
|
}
|
|
|
|
unsigned SystemZTTIImpl::getNumberOfRegisters(unsigned ClassID) const {
|
|
bool Vector = (ClassID == 1);
|
|
if (!Vector)
|
|
// Discount the stack pointer. Also leave out %r0, since it can't
|
|
// be used in an address.
|
|
return 14;
|
|
if (ST->hasVector())
|
|
return 32;
|
|
return 0;
|
|
}
|
|
|
|
unsigned SystemZTTIImpl::getRegisterBitWidth(bool Vector) const {
|
|
if (!Vector)
|
|
return 64;
|
|
if (ST->hasVector())
|
|
return 128;
|
|
return 0;
|
|
}
|
|
|
|
unsigned SystemZTTIImpl::getMinPrefetchStride(unsigned NumMemAccesses,
|
|
unsigned NumStridedMemAccesses,
|
|
unsigned NumPrefetches,
|
|
bool HasCall) const {
|
|
// Don't prefetch a loop with many far apart accesses.
|
|
if (NumPrefetches > 16)
|
|
return UINT_MAX;
|
|
|
|
// Emit prefetch instructions for smaller strides in cases where we think
|
|
// the hardware prefetcher might not be able to keep up.
|
|
if (NumStridedMemAccesses > 32 &&
|
|
NumStridedMemAccesses == NumMemAccesses && !HasCall)
|
|
return 1;
|
|
|
|
return ST->hasMiscellaneousExtensions3() ? 8192 : 2048;
|
|
}
|
|
|
|
bool SystemZTTIImpl::hasDivRemOp(Type *DataType, bool IsSigned) {
|
|
EVT VT = TLI->getValueType(DL, DataType);
|
|
return (VT.isScalarInteger() && TLI->isTypeLegal(VT));
|
|
}
|
|
|
|
// Return the bit size for the scalar type or vector element
|
|
// type. getScalarSizeInBits() returns 0 for a pointer type.
|
|
static unsigned getScalarSizeInBits(Type *Ty) {
|
|
unsigned Size =
|
|
(Ty->isPtrOrPtrVectorTy() ? 64U : Ty->getScalarSizeInBits());
|
|
assert(Size > 0 && "Element must have non-zero size.");
|
|
return Size;
|
|
}
|
|
|
|
// getNumberOfParts() calls getTypeLegalizationCost() which splits the vector
|
|
// type until it is legal. This would e.g. return 4 for <6 x i64>, instead of
|
|
// 3.
|
|
static unsigned getNumVectorRegs(Type *Ty) {
|
|
auto *VTy = cast<FixedVectorType>(Ty);
|
|
unsigned WideBits = getScalarSizeInBits(Ty) * VTy->getNumElements();
|
|
assert(WideBits > 0 && "Could not compute size of vector");
|
|
return ((WideBits % 128U) ? ((WideBits / 128U) + 1) : (WideBits / 128U));
|
|
}
|
|
|
|
int SystemZTTIImpl::getArithmeticInstrCost(
|
|
unsigned Opcode, Type *Ty, TTI::TargetCostKind CostKind,
|
|
TTI::OperandValueKind Op1Info,
|
|
TTI::OperandValueKind Op2Info, TTI::OperandValueProperties Opd1PropInfo,
|
|
TTI::OperandValueProperties Opd2PropInfo, ArrayRef<const Value *> Args,
|
|
const Instruction *CxtI) {
|
|
|
|
// TODO: return a good value for BB-VECTORIZER that includes the
|
|
// immediate loads, which we do not want to count for the loop
|
|
// vectorizer, since they are hopefully hoisted out of the loop. This
|
|
// would require a new parameter 'InLoop', but not sure if constant
|
|
// args are common enough to motivate this.
|
|
|
|
unsigned ScalarBits = Ty->getScalarSizeInBits();
|
|
|
|
// There are thre cases of division and remainder: Dividing with a register
|
|
// needs a divide instruction. A divisor which is a power of two constant
|
|
// can be implemented with a sequence of shifts. Any other constant needs a
|
|
// multiply and shifts.
|
|
const unsigned DivInstrCost = 20;
|
|
const unsigned DivMulSeqCost = 10;
|
|
const unsigned SDivPow2Cost = 4;
|
|
|
|
bool SignedDivRem =
|
|
Opcode == Instruction::SDiv || Opcode == Instruction::SRem;
|
|
bool UnsignedDivRem =
|
|
Opcode == Instruction::UDiv || Opcode == Instruction::URem;
|
|
|
|
// Check for a constant divisor.
|
|
bool DivRemConst = false;
|
|
bool DivRemConstPow2 = false;
|
|
if ((SignedDivRem || UnsignedDivRem) && Args.size() == 2) {
|
|
if (const Constant *C = dyn_cast<Constant>(Args[1])) {
|
|
const ConstantInt *CVal =
|
|
(C->getType()->isVectorTy()
|
|
? dyn_cast_or_null<const ConstantInt>(C->getSplatValue())
|
|
: dyn_cast<const ConstantInt>(C));
|
|
if (CVal != nullptr &&
|
|
(CVal->getValue().isPowerOf2() || (-CVal->getValue()).isPowerOf2()))
|
|
DivRemConstPow2 = true;
|
|
else
|
|
DivRemConst = true;
|
|
}
|
|
}
|
|
|
|
if (!Ty->isVectorTy()) {
|
|
// These FP operations are supported with a dedicated instruction for
|
|
// float, double and fp128 (base implementation assumes float generally
|
|
// costs 2).
|
|
if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
|
|
Opcode == Instruction::FMul || Opcode == Instruction::FDiv)
|
|
return 1;
|
|
|
|
// There is no native support for FRem.
|
|
if (Opcode == Instruction::FRem)
|
|
return LIBCALL_COST;
|
|
|
|
// Give discount for some combined logical operations if supported.
|
|
if (Args.size() == 2 && ST->hasMiscellaneousExtensions3()) {
|
|
if (Opcode == Instruction::Xor) {
|
|
for (const Value *A : Args) {
|
|
if (const Instruction *I = dyn_cast<Instruction>(A))
|
|
if (I->hasOneUse() &&
|
|
(I->getOpcode() == Instruction::And ||
|
|
I->getOpcode() == Instruction::Or ||
|
|
I->getOpcode() == Instruction::Xor))
|
|
return 0;
|
|
}
|
|
}
|
|
else if (Opcode == Instruction::Or || Opcode == Instruction::And) {
|
|
for (const Value *A : Args) {
|
|
if (const Instruction *I = dyn_cast<Instruction>(A))
|
|
if (I->hasOneUse() && I->getOpcode() == Instruction::Xor)
|
|
return 0;
|
|
}
|
|
}
|
|
}
|
|
|
|
// Or requires one instruction, although it has custom handling for i64.
|
|
if (Opcode == Instruction::Or)
|
|
return 1;
|
|
|
|
if (Opcode == Instruction::Xor && ScalarBits == 1) {
|
|
if (ST->hasLoadStoreOnCond2())
|
|
return 5; // 2 * (li 0; loc 1); xor
|
|
return 7; // 2 * ipm sequences ; xor ; shift ; compare
|
|
}
|
|
|
|
if (DivRemConstPow2)
|
|
return (SignedDivRem ? SDivPow2Cost : 1);
|
|
if (DivRemConst)
|
|
return DivMulSeqCost;
|
|
if (SignedDivRem || UnsignedDivRem)
|
|
return DivInstrCost;
|
|
}
|
|
else if (ST->hasVector()) {
|
|
auto *VTy = cast<FixedVectorType>(Ty);
|
|
unsigned VF = VTy->getNumElements();
|
|
unsigned NumVectors = getNumVectorRegs(Ty);
|
|
|
|
// These vector operations are custom handled, but are still supported
|
|
// with one instruction per vector, regardless of element size.
|
|
if (Opcode == Instruction::Shl || Opcode == Instruction::LShr ||
|
|
Opcode == Instruction::AShr) {
|
|
return NumVectors;
|
|
}
|
|
|
|
if (DivRemConstPow2)
|
|
return (NumVectors * (SignedDivRem ? SDivPow2Cost : 1));
|
|
if (DivRemConst)
|
|
return VF * DivMulSeqCost + getScalarizationOverhead(VTy, Args);
|
|
if ((SignedDivRem || UnsignedDivRem) && VF > 4)
|
|
// Temporary hack: disable high vectorization factors with integer
|
|
// division/remainder, which will get scalarized and handled with
|
|
// GR128 registers. The mischeduler is not clever enough to avoid
|
|
// spilling yet.
|
|
return 1000;
|
|
|
|
// These FP operations are supported with a single vector instruction for
|
|
// double (base implementation assumes float generally costs 2). For
|
|
// FP128, the scalar cost is 1, and there is no overhead since the values
|
|
// are already in scalar registers.
|
|
if (Opcode == Instruction::FAdd || Opcode == Instruction::FSub ||
|
|
Opcode == Instruction::FMul || Opcode == Instruction::FDiv) {
|
|
switch (ScalarBits) {
|
|
case 32: {
|
|
// The vector enhancements facility 1 provides v4f32 instructions.
|
|
if (ST->hasVectorEnhancements1())
|
|
return NumVectors;
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values.
|
|
unsigned ScalarCost =
|
|
getArithmeticInstrCost(Opcode, Ty->getScalarType(), CostKind);
|
|
unsigned Cost = (VF * ScalarCost) + getScalarizationOverhead(VTy, Args);
|
|
// FIXME: VF 2 for these FP operations are currently just as
|
|
// expensive as for VF 4.
|
|
if (VF == 2)
|
|
Cost *= 2;
|
|
return Cost;
|
|
}
|
|
case 64:
|
|
case 128:
|
|
return NumVectors;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// There is no native support for FRem.
|
|
if (Opcode == Instruction::FRem) {
|
|
unsigned Cost = (VF * LIBCALL_COST) + getScalarizationOverhead(VTy, Args);
|
|
// FIXME: VF 2 for float is currently just as expensive as for VF 4.
|
|
if (VF == 2 && ScalarBits == 32)
|
|
Cost *= 2;
|
|
return Cost;
|
|
}
|
|
}
|
|
|
|
// Fallback to the default implementation.
|
|
return BaseT::getArithmeticInstrCost(Opcode, Ty, CostKind, Op1Info, Op2Info,
|
|
Opd1PropInfo, Opd2PropInfo, Args, CxtI);
|
|
}
|
|
|
|
int SystemZTTIImpl::getShuffleCost(TTI::ShuffleKind Kind, VectorType *Tp,
|
|
int Index, VectorType *SubTp) {
|
|
if (ST->hasVector()) {
|
|
unsigned NumVectors = getNumVectorRegs(Tp);
|
|
|
|
// TODO: Since fp32 is expanded, the shuffle cost should always be 0.
|
|
|
|
// FP128 values are always in scalar registers, so there is no work
|
|
// involved with a shuffle, except for broadcast. In that case register
|
|
// moves are done with a single instruction per element.
|
|
if (Tp->getScalarType()->isFP128Ty())
|
|
return (Kind == TargetTransformInfo::SK_Broadcast ? NumVectors - 1 : 0);
|
|
|
|
switch (Kind) {
|
|
case TargetTransformInfo::SK_ExtractSubvector:
|
|
// ExtractSubvector Index indicates start offset.
|
|
|
|
// Extracting a subvector from first index is a noop.
|
|
return (Index == 0 ? 0 : NumVectors);
|
|
|
|
case TargetTransformInfo::SK_Broadcast:
|
|
// Loop vectorizer calls here to figure out the extra cost of
|
|
// broadcasting a loaded value to all elements of a vector. Since vlrep
|
|
// loads and replicates with a single instruction, adjust the returned
|
|
// value.
|
|
return NumVectors - 1;
|
|
|
|
default:
|
|
|
|
// SystemZ supports single instruction permutation / replication.
|
|
return NumVectors;
|
|
}
|
|
}
|
|
|
|
return BaseT::getShuffleCost(Kind, Tp, Index, SubTp);
|
|
}
|
|
|
|
// Return the log2 difference of the element sizes of the two vector types.
|
|
static unsigned getElSizeLog2Diff(Type *Ty0, Type *Ty1) {
|
|
unsigned Bits0 = Ty0->getScalarSizeInBits();
|
|
unsigned Bits1 = Ty1->getScalarSizeInBits();
|
|
|
|
if (Bits1 > Bits0)
|
|
return (Log2_32(Bits1) - Log2_32(Bits0));
|
|
|
|
return (Log2_32(Bits0) - Log2_32(Bits1));
|
|
}
|
|
|
|
// Return the number of instructions needed to truncate SrcTy to DstTy.
|
|
unsigned SystemZTTIImpl::
|
|
getVectorTruncCost(Type *SrcTy, Type *DstTy) {
|
|
assert (SrcTy->isVectorTy() && DstTy->isVectorTy());
|
|
assert (SrcTy->getPrimitiveSizeInBits() > DstTy->getPrimitiveSizeInBits() &&
|
|
"Packing must reduce size of vector type.");
|
|
assert(cast<FixedVectorType>(SrcTy)->getNumElements() ==
|
|
cast<FixedVectorType>(DstTy)->getNumElements() &&
|
|
"Packing should not change number of elements.");
|
|
|
|
// TODO: Since fp32 is expanded, the extract cost should always be 0.
|
|
|
|
unsigned NumParts = getNumVectorRegs(SrcTy);
|
|
if (NumParts <= 2)
|
|
// Up to 2 vector registers can be truncated efficiently with pack or
|
|
// permute. The latter requires an immediate mask to be loaded, which
|
|
// typically gets hoisted out of a loop. TODO: return a good value for
|
|
// BB-VECTORIZER that includes the immediate loads, which we do not want
|
|
// to count for the loop vectorizer.
|
|
return 1;
|
|
|
|
unsigned Cost = 0;
|
|
unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
|
|
unsigned VF = cast<FixedVectorType>(SrcTy)->getNumElements();
|
|
for (unsigned P = 0; P < Log2Diff; ++P) {
|
|
if (NumParts > 1)
|
|
NumParts /= 2;
|
|
Cost += NumParts;
|
|
}
|
|
|
|
// Currently, a general mix of permutes and pack instructions is output by
|
|
// isel, which follow the cost computation above except for this case which
|
|
// is one instruction less:
|
|
if (VF == 8 && SrcTy->getScalarSizeInBits() == 64 &&
|
|
DstTy->getScalarSizeInBits() == 8)
|
|
Cost--;
|
|
|
|
return Cost;
|
|
}
|
|
|
|
// Return the cost of converting a vector bitmask produced by a compare
|
|
// (SrcTy), to the type of the select or extend instruction (DstTy).
|
|
unsigned SystemZTTIImpl::
|
|
getVectorBitmaskConversionCost(Type *SrcTy, Type *DstTy) {
|
|
assert (SrcTy->isVectorTy() && DstTy->isVectorTy() &&
|
|
"Should only be called with vector types.");
|
|
|
|
unsigned PackCost = 0;
|
|
unsigned SrcScalarBits = SrcTy->getScalarSizeInBits();
|
|
unsigned DstScalarBits = DstTy->getScalarSizeInBits();
|
|
unsigned Log2Diff = getElSizeLog2Diff(SrcTy, DstTy);
|
|
if (SrcScalarBits > DstScalarBits)
|
|
// The bitmask will be truncated.
|
|
PackCost = getVectorTruncCost(SrcTy, DstTy);
|
|
else if (SrcScalarBits < DstScalarBits) {
|
|
unsigned DstNumParts = getNumVectorRegs(DstTy);
|
|
// Each vector select needs its part of the bitmask unpacked.
|
|
PackCost = Log2Diff * DstNumParts;
|
|
// Extra cost for moving part of mask before unpacking.
|
|
PackCost += DstNumParts - 1;
|
|
}
|
|
|
|
return PackCost;
|
|
}
|
|
|
|
// Return the type of the compared operands. This is needed to compute the
|
|
// cost for a Select / ZExt or SExt instruction.
|
|
static Type *getCmpOpsType(const Instruction *I, unsigned VF = 1) {
|
|
Type *OpTy = nullptr;
|
|
if (CmpInst *CI = dyn_cast<CmpInst>(I->getOperand(0)))
|
|
OpTy = CI->getOperand(0)->getType();
|
|
else if (Instruction *LogicI = dyn_cast<Instruction>(I->getOperand(0)))
|
|
if (LogicI->getNumOperands() == 2)
|
|
if (CmpInst *CI0 = dyn_cast<CmpInst>(LogicI->getOperand(0)))
|
|
if (isa<CmpInst>(LogicI->getOperand(1)))
|
|
OpTy = CI0->getOperand(0)->getType();
|
|
|
|
if (OpTy != nullptr) {
|
|
if (VF == 1) {
|
|
assert (!OpTy->isVectorTy() && "Expected scalar type");
|
|
return OpTy;
|
|
}
|
|
// Return the potentially vectorized type based on 'I' and 'VF'. 'I' may
|
|
// be either scalar or already vectorized with a same or lesser VF.
|
|
Type *ElTy = OpTy->getScalarType();
|
|
return FixedVectorType::get(ElTy, VF);
|
|
}
|
|
|
|
return nullptr;
|
|
}
|
|
|
|
// Get the cost of converting a boolean vector to a vector with same width
|
|
// and element size as Dst, plus the cost of zero extending if needed.
|
|
unsigned SystemZTTIImpl::
|
|
getBoolVecToIntConversionCost(unsigned Opcode, Type *Dst,
|
|
const Instruction *I) {
|
|
auto *DstVTy = cast<FixedVectorType>(Dst);
|
|
unsigned VF = DstVTy->getNumElements();
|
|
unsigned Cost = 0;
|
|
// If we know what the widths of the compared operands, get any cost of
|
|
// converting it to match Dst. Otherwise assume same widths.
|
|
Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
|
|
if (CmpOpTy != nullptr)
|
|
Cost = getVectorBitmaskConversionCost(CmpOpTy, Dst);
|
|
if (Opcode == Instruction::ZExt || Opcode == Instruction::UIToFP)
|
|
// One 'vn' per dst vector with an immediate mask.
|
|
Cost += getNumVectorRegs(Dst);
|
|
return Cost;
|
|
}
|
|
|
|
int SystemZTTIImpl::getCastInstrCost(unsigned Opcode, Type *Dst, Type *Src,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
// FIXME: Can the logic below also be used for these cost kinds?
|
|
if (CostKind == TTI::TCK_CodeSize || CostKind == TTI::TCK_SizeAndLatency) {
|
|
int BaseCost = BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I);
|
|
return BaseCost == 0 ? BaseCost : 1;
|
|
}
|
|
|
|
unsigned DstScalarBits = Dst->getScalarSizeInBits();
|
|
unsigned SrcScalarBits = Src->getScalarSizeInBits();
|
|
|
|
if (!Src->isVectorTy()) {
|
|
assert (!Dst->isVectorTy());
|
|
|
|
if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP) {
|
|
if (SrcScalarBits >= 32 ||
|
|
(I != nullptr && isa<LoadInst>(I->getOperand(0))))
|
|
return 1;
|
|
return SrcScalarBits > 1 ? 2 /*i8/i16 extend*/ : 5 /*branch seq.*/;
|
|
}
|
|
|
|
if ((Opcode == Instruction::ZExt || Opcode == Instruction::SExt) &&
|
|
Src->isIntegerTy(1)) {
|
|
if (ST->hasLoadStoreOnCond2())
|
|
return 2; // li 0; loc 1
|
|
|
|
// This should be extension of a compare i1 result, which is done with
|
|
// ipm and a varying sequence of instructions.
|
|
unsigned Cost = 0;
|
|
if (Opcode == Instruction::SExt)
|
|
Cost = (DstScalarBits < 64 ? 3 : 4);
|
|
if (Opcode == Instruction::ZExt)
|
|
Cost = 3;
|
|
Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I) : nullptr);
|
|
if (CmpOpTy != nullptr && CmpOpTy->isFloatingPointTy())
|
|
// If operands of an fp-type was compared, this costs +1.
|
|
Cost++;
|
|
return Cost;
|
|
}
|
|
}
|
|
else if (ST->hasVector()) {
|
|
auto *SrcVecTy = cast<FixedVectorType>(Src);
|
|
auto *DstVecTy = cast<FixedVectorType>(Dst);
|
|
unsigned VF = SrcVecTy->getNumElements();
|
|
unsigned NumDstVectors = getNumVectorRegs(Dst);
|
|
unsigned NumSrcVectors = getNumVectorRegs(Src);
|
|
|
|
if (Opcode == Instruction::Trunc) {
|
|
if (Src->getScalarSizeInBits() == Dst->getScalarSizeInBits())
|
|
return 0; // Check for NOOP conversions.
|
|
return getVectorTruncCost(Src, Dst);
|
|
}
|
|
|
|
if (Opcode == Instruction::ZExt || Opcode == Instruction::SExt) {
|
|
if (SrcScalarBits >= 8) {
|
|
// ZExt/SExt will be handled with one unpack per doubling of width.
|
|
unsigned NumUnpacks = getElSizeLog2Diff(Src, Dst);
|
|
|
|
// For types that spans multiple vector registers, some additional
|
|
// instructions are used to setup the unpacking.
|
|
unsigned NumSrcVectorOps =
|
|
(NumUnpacks > 1 ? (NumDstVectors - NumSrcVectors)
|
|
: (NumDstVectors / 2));
|
|
|
|
return (NumUnpacks * NumDstVectors) + NumSrcVectorOps;
|
|
}
|
|
else if (SrcScalarBits == 1)
|
|
return getBoolVecToIntConversionCost(Opcode, Dst, I);
|
|
}
|
|
|
|
if (Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP ||
|
|
Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI) {
|
|
// TODO: Fix base implementation which could simplify things a bit here
|
|
// (seems to miss on differentiating on scalar/vector types).
|
|
|
|
// Only 64 bit vector conversions are natively supported before z15.
|
|
if (DstScalarBits == 64 || ST->hasVectorEnhancements2()) {
|
|
if (SrcScalarBits == DstScalarBits)
|
|
return NumDstVectors;
|
|
|
|
if (SrcScalarBits == 1)
|
|
return getBoolVecToIntConversionCost(Opcode, Dst, I) + NumDstVectors;
|
|
}
|
|
|
|
// Return the cost of multiple scalar invocation plus the cost of
|
|
// inserting and extracting the values. Base implementation does not
|
|
// realize float->int gets scalarized.
|
|
unsigned ScalarCost = getCastInstrCost(Opcode, Dst->getScalarType(),
|
|
Src->getScalarType(), CostKind);
|
|
unsigned TotCost = VF * ScalarCost;
|
|
bool NeedsInserts = true, NeedsExtracts = true;
|
|
// FP128 registers do not get inserted or extracted.
|
|
if (DstScalarBits == 128 &&
|
|
(Opcode == Instruction::SIToFP || Opcode == Instruction::UIToFP))
|
|
NeedsInserts = false;
|
|
if (SrcScalarBits == 128 &&
|
|
(Opcode == Instruction::FPToSI || Opcode == Instruction::FPToUI))
|
|
NeedsExtracts = false;
|
|
|
|
TotCost += getScalarizationOverhead(SrcVecTy, false, NeedsExtracts);
|
|
TotCost += getScalarizationOverhead(DstVecTy, NeedsInserts, false);
|
|
|
|
// FIXME: VF 2 for float<->i32 is currently just as expensive as for VF 4.
|
|
if (VF == 2 && SrcScalarBits == 32 && DstScalarBits == 32)
|
|
TotCost *= 2;
|
|
|
|
return TotCost;
|
|
}
|
|
|
|
if (Opcode == Instruction::FPTrunc) {
|
|
if (SrcScalarBits == 128) // fp128 -> double/float + inserts of elements.
|
|
return VF /*ldxbr/lexbr*/ +
|
|
getScalarizationOverhead(DstVecTy, true, false);
|
|
else // double -> float
|
|
return VF / 2 /*vledb*/ + std::max(1U, VF / 4 /*vperm*/);
|
|
}
|
|
|
|
if (Opcode == Instruction::FPExt) {
|
|
if (SrcScalarBits == 32 && DstScalarBits == 64) {
|
|
// float -> double is very rare and currently unoptimized. Instead of
|
|
// using vldeb, which can do two at a time, all conversions are
|
|
// scalarized.
|
|
return VF * 2;
|
|
}
|
|
// -> fp128. VF * lxdb/lxeb + extraction of elements.
|
|
return VF + getScalarizationOverhead(SrcVecTy, false, true);
|
|
}
|
|
}
|
|
|
|
return BaseT::getCastInstrCost(Opcode, Dst, Src, CostKind, I);
|
|
}
|
|
|
|
// Scalar i8 / i16 operations will typically be made after first extending
|
|
// the operands to i32.
|
|
static unsigned getOperandsExtensionCost(const Instruction *I) {
|
|
unsigned ExtCost = 0;
|
|
for (Value *Op : I->operands())
|
|
// A load of i8 or i16 sign/zero extends to i32.
|
|
if (!isa<LoadInst>(Op) && !isa<ConstantInt>(Op))
|
|
ExtCost++;
|
|
|
|
return ExtCost;
|
|
}
|
|
|
|
int SystemZTTIImpl::getCmpSelInstrCost(unsigned Opcode, Type *ValTy,
|
|
Type *CondTy,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
if (!ValTy->isVectorTy()) {
|
|
switch (Opcode) {
|
|
case Instruction::ICmp: {
|
|
// A loaded value compared with 0 with multiple users becomes Load and
|
|
// Test. The load is then not foldable, so return 0 cost for the ICmp.
|
|
unsigned ScalarBits = ValTy->getScalarSizeInBits();
|
|
if (I != nullptr && ScalarBits >= 32)
|
|
if (LoadInst *Ld = dyn_cast<LoadInst>(I->getOperand(0)))
|
|
if (const ConstantInt *C = dyn_cast<ConstantInt>(I->getOperand(1)))
|
|
if (!Ld->hasOneUse() && Ld->getParent() == I->getParent() &&
|
|
C->getZExtValue() == 0)
|
|
return 0;
|
|
|
|
unsigned Cost = 1;
|
|
if (ValTy->isIntegerTy() && ValTy->getScalarSizeInBits() <= 16)
|
|
Cost += (I != nullptr ? getOperandsExtensionCost(I) : 2);
|
|
return Cost;
|
|
}
|
|
case Instruction::Select:
|
|
if (ValTy->isFloatingPointTy())
|
|
return 4; // No load on condition for FP - costs a conditional jump.
|
|
return 1; // Load On Condition / Select Register.
|
|
}
|
|
}
|
|
else if (ST->hasVector()) {
|
|
unsigned VF = cast<FixedVectorType>(ValTy)->getNumElements();
|
|
|
|
// Called with a compare instruction.
|
|
if (Opcode == Instruction::ICmp || Opcode == Instruction::FCmp) {
|
|
unsigned PredicateExtraCost = 0;
|
|
if (I != nullptr) {
|
|
// Some predicates cost one or two extra instructions.
|
|
switch (cast<CmpInst>(I)->getPredicate()) {
|
|
case CmpInst::Predicate::ICMP_NE:
|
|
case CmpInst::Predicate::ICMP_UGE:
|
|
case CmpInst::Predicate::ICMP_ULE:
|
|
case CmpInst::Predicate::ICMP_SGE:
|
|
case CmpInst::Predicate::ICMP_SLE:
|
|
PredicateExtraCost = 1;
|
|
break;
|
|
case CmpInst::Predicate::FCMP_ONE:
|
|
case CmpInst::Predicate::FCMP_ORD:
|
|
case CmpInst::Predicate::FCMP_UEQ:
|
|
case CmpInst::Predicate::FCMP_UNO:
|
|
PredicateExtraCost = 2;
|
|
break;
|
|
default:
|
|
break;
|
|
}
|
|
}
|
|
|
|
// Float is handled with 2*vmr[lh]f + 2*vldeb + vfchdb for each pair of
|
|
// floats. FIXME: <2 x float> generates same code as <4 x float>.
|
|
unsigned CmpCostPerVector = (ValTy->getScalarType()->isFloatTy() ? 10 : 1);
|
|
unsigned NumVecs_cmp = getNumVectorRegs(ValTy);
|
|
|
|
unsigned Cost = (NumVecs_cmp * (CmpCostPerVector + PredicateExtraCost));
|
|
return Cost;
|
|
}
|
|
else { // Called with a select instruction.
|
|
assert (Opcode == Instruction::Select);
|
|
|
|
// We can figure out the extra cost of packing / unpacking if the
|
|
// instruction was passed and the compare instruction is found.
|
|
unsigned PackCost = 0;
|
|
Type *CmpOpTy = ((I != nullptr) ? getCmpOpsType(I, VF) : nullptr);
|
|
if (CmpOpTy != nullptr)
|
|
PackCost =
|
|
getVectorBitmaskConversionCost(CmpOpTy, ValTy);
|
|
|
|
return getNumVectorRegs(ValTy) /*vsel*/ + PackCost;
|
|
}
|
|
}
|
|
|
|
return BaseT::getCmpSelInstrCost(Opcode, ValTy, CondTy, CostKind);
|
|
}
|
|
|
|
int SystemZTTIImpl::
|
|
getVectorInstrCost(unsigned Opcode, Type *Val, unsigned Index) {
|
|
// vlvgp will insert two grs into a vector register, so only count half the
|
|
// number of instructions.
|
|
if (Opcode == Instruction::InsertElement && Val->isIntOrIntVectorTy(64))
|
|
return ((Index % 2 == 0) ? 1 : 0);
|
|
|
|
if (Opcode == Instruction::ExtractElement) {
|
|
int Cost = ((getScalarSizeInBits(Val) == 1) ? 2 /*+test-under-mask*/ : 1);
|
|
|
|
// Give a slight penalty for moving out of vector pipeline to FXU unit.
|
|
if (Index == 0 && Val->isIntOrIntVectorTy())
|
|
Cost += 1;
|
|
|
|
return Cost;
|
|
}
|
|
|
|
return BaseT::getVectorInstrCost(Opcode, Val, Index);
|
|
}
|
|
|
|
// Check if a load may be folded as a memory operand in its user.
|
|
bool SystemZTTIImpl::
|
|
isFoldableLoad(const LoadInst *Ld, const Instruction *&FoldedValue) {
|
|
if (!Ld->hasOneUse())
|
|
return false;
|
|
FoldedValue = Ld;
|
|
const Instruction *UserI = cast<Instruction>(*Ld->user_begin());
|
|
unsigned LoadedBits = getScalarSizeInBits(Ld->getType());
|
|
unsigned TruncBits = 0;
|
|
unsigned SExtBits = 0;
|
|
unsigned ZExtBits = 0;
|
|
if (UserI->hasOneUse()) {
|
|
unsigned UserBits = UserI->getType()->getScalarSizeInBits();
|
|
if (isa<TruncInst>(UserI))
|
|
TruncBits = UserBits;
|
|
else if (isa<SExtInst>(UserI))
|
|
SExtBits = UserBits;
|
|
else if (isa<ZExtInst>(UserI))
|
|
ZExtBits = UserBits;
|
|
}
|
|
if (TruncBits || SExtBits || ZExtBits) {
|
|
FoldedValue = UserI;
|
|
UserI = cast<Instruction>(*UserI->user_begin());
|
|
// Load (single use) -> trunc/extend (single use) -> UserI
|
|
}
|
|
if ((UserI->getOpcode() == Instruction::Sub ||
|
|
UserI->getOpcode() == Instruction::SDiv ||
|
|
UserI->getOpcode() == Instruction::UDiv) &&
|
|
UserI->getOperand(1) != FoldedValue)
|
|
return false; // Not commutative, only RHS foldable.
|
|
// LoadOrTruncBits holds the number of effectively loaded bits, but 0 if an
|
|
// extension was made of the load.
|
|
unsigned LoadOrTruncBits =
|
|
((SExtBits || ZExtBits) ? 0 : (TruncBits ? TruncBits : LoadedBits));
|
|
switch (UserI->getOpcode()) {
|
|
case Instruction::Add: // SE: 16->32, 16/32->64, z14:16->64. ZE: 32->64
|
|
case Instruction::Sub:
|
|
case Instruction::ICmp:
|
|
if (LoadedBits == 32 && ZExtBits == 64)
|
|
return true;
|
|
LLVM_FALLTHROUGH;
|
|
case Instruction::Mul: // SE: 16->32, 32->64, z14:16->64
|
|
if (UserI->getOpcode() != Instruction::ICmp) {
|
|
if (LoadedBits == 16 &&
|
|
(SExtBits == 32 ||
|
|
(SExtBits == 64 && ST->hasMiscellaneousExtensions2())))
|
|
return true;
|
|
if (LoadOrTruncBits == 16)
|
|
return true;
|
|
}
|
|
LLVM_FALLTHROUGH;
|
|
case Instruction::SDiv:// SE: 32->64
|
|
if (LoadedBits == 32 && SExtBits == 64)
|
|
return true;
|
|
LLVM_FALLTHROUGH;
|
|
case Instruction::UDiv:
|
|
case Instruction::And:
|
|
case Instruction::Or:
|
|
case Instruction::Xor:
|
|
// This also makes sense for float operations, but disabled for now due
|
|
// to regressions.
|
|
// case Instruction::FCmp:
|
|
// case Instruction::FAdd:
|
|
// case Instruction::FSub:
|
|
// case Instruction::FMul:
|
|
// case Instruction::FDiv:
|
|
|
|
// All possible extensions of memory checked above.
|
|
|
|
// Comparison between memory and immediate.
|
|
if (UserI->getOpcode() == Instruction::ICmp)
|
|
if (ConstantInt *CI = dyn_cast<ConstantInt>(UserI->getOperand(1)))
|
|
if (isUInt<16>(CI->getZExtValue()))
|
|
return true;
|
|
return (LoadOrTruncBits == 32 || LoadOrTruncBits == 64);
|
|
break;
|
|
}
|
|
return false;
|
|
}
|
|
|
|
static bool isBswapIntrinsicCall(const Value *V) {
|
|
if (const Instruction *I = dyn_cast<Instruction>(V))
|
|
if (auto *CI = dyn_cast<CallInst>(I))
|
|
if (auto *F = CI->getCalledFunction())
|
|
if (F->getIntrinsicID() == Intrinsic::bswap)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
int SystemZTTIImpl::getMemoryOpCost(unsigned Opcode, Type *Src,
|
|
MaybeAlign Alignment, unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
const Instruction *I) {
|
|
assert(!Src->isVoidTy() && "Invalid type");
|
|
|
|
// TODO: Handle other cost kinds.
|
|
if (CostKind != TTI::TCK_RecipThroughput)
|
|
return 1;
|
|
|
|
if (!Src->isVectorTy() && Opcode == Instruction::Load && I != nullptr) {
|
|
// Store the load or its truncated or extended value in FoldedValue.
|
|
const Instruction *FoldedValue = nullptr;
|
|
if (isFoldableLoad(cast<LoadInst>(I), FoldedValue)) {
|
|
const Instruction *UserI = cast<Instruction>(*FoldedValue->user_begin());
|
|
assert (UserI->getNumOperands() == 2 && "Expected a binop.");
|
|
|
|
// UserI can't fold two loads, so in that case return 0 cost only
|
|
// half of the time.
|
|
for (unsigned i = 0; i < 2; ++i) {
|
|
if (UserI->getOperand(i) == FoldedValue)
|
|
continue;
|
|
|
|
if (Instruction *OtherOp = dyn_cast<Instruction>(UserI->getOperand(i))){
|
|
LoadInst *OtherLoad = dyn_cast<LoadInst>(OtherOp);
|
|
if (!OtherLoad &&
|
|
(isa<TruncInst>(OtherOp) || isa<SExtInst>(OtherOp) ||
|
|
isa<ZExtInst>(OtherOp)))
|
|
OtherLoad = dyn_cast<LoadInst>(OtherOp->getOperand(0));
|
|
if (OtherLoad && isFoldableLoad(OtherLoad, FoldedValue/*dummy*/))
|
|
return i == 0; // Both operands foldable.
|
|
}
|
|
}
|
|
|
|
return 0; // Only I is foldable in user.
|
|
}
|
|
}
|
|
|
|
unsigned NumOps =
|
|
(Src->isVectorTy() ? getNumVectorRegs(Src) : getNumberOfParts(Src));
|
|
|
|
// Store/Load reversed saves one instruction.
|
|
if (((!Src->isVectorTy() && NumOps == 1) || ST->hasVectorEnhancements2()) &&
|
|
I != nullptr) {
|
|
if (Opcode == Instruction::Load && I->hasOneUse()) {
|
|
const Instruction *LdUser = cast<Instruction>(*I->user_begin());
|
|
// In case of load -> bswap -> store, return normal cost for the load.
|
|
if (isBswapIntrinsicCall(LdUser) &&
|
|
(!LdUser->hasOneUse() || !isa<StoreInst>(*LdUser->user_begin())))
|
|
return 0;
|
|
}
|
|
else if (const StoreInst *SI = dyn_cast<StoreInst>(I)) {
|
|
const Value *StoredVal = SI->getValueOperand();
|
|
if (StoredVal->hasOneUse() && isBswapIntrinsicCall(StoredVal))
|
|
return 0;
|
|
}
|
|
}
|
|
|
|
if (Src->getScalarSizeInBits() == 128)
|
|
// 128 bit scalars are held in a pair of two 64 bit registers.
|
|
NumOps *= 2;
|
|
|
|
return NumOps;
|
|
}
|
|
|
|
// The generic implementation of getInterleavedMemoryOpCost() is based on
|
|
// adding costs of the memory operations plus all the extracts and inserts
|
|
// needed for using / defining the vector operands. The SystemZ version does
|
|
// roughly the same but bases the computations on vector permutations
|
|
// instead.
|
|
int SystemZTTIImpl::getInterleavedMemoryOpCost(unsigned Opcode, Type *VecTy,
|
|
unsigned Factor,
|
|
ArrayRef<unsigned> Indices,
|
|
unsigned Alignment,
|
|
unsigned AddressSpace,
|
|
TTI::TargetCostKind CostKind,
|
|
bool UseMaskForCond,
|
|
bool UseMaskForGaps) {
|
|
if (UseMaskForCond || UseMaskForGaps)
|
|
return BaseT::getInterleavedMemoryOpCost(Opcode, VecTy, Factor, Indices,
|
|
Alignment, AddressSpace, CostKind,
|
|
UseMaskForCond, UseMaskForGaps);
|
|
assert(isa<VectorType>(VecTy) &&
|
|
"Expect a vector type for interleaved memory op");
|
|
|
|
// Return the ceiling of dividing A by B.
|
|
auto ceil = [](unsigned A, unsigned B) { return (A + B - 1) / B; };
|
|
|
|
unsigned NumElts = cast<FixedVectorType>(VecTy)->getNumElements();
|
|
assert(Factor > 1 && NumElts % Factor == 0 && "Invalid interleave factor");
|
|
unsigned VF = NumElts / Factor;
|
|
unsigned NumEltsPerVecReg = (128U / getScalarSizeInBits(VecTy));
|
|
unsigned NumVectorMemOps = getNumVectorRegs(VecTy);
|
|
unsigned NumPermutes = 0;
|
|
|
|
if (Opcode == Instruction::Load) {
|
|
// Loading interleave groups may have gaps, which may mean fewer
|
|
// loads. Find out how many vectors will be loaded in total, and in how
|
|
// many of them each value will be in.
|
|
BitVector UsedInsts(NumVectorMemOps, false);
|
|
std::vector<BitVector> ValueVecs(Factor, BitVector(NumVectorMemOps, false));
|
|
for (unsigned Index : Indices)
|
|
for (unsigned Elt = 0; Elt < VF; ++Elt) {
|
|
unsigned Vec = (Index + Elt * Factor) / NumEltsPerVecReg;
|
|
UsedInsts.set(Vec);
|
|
ValueVecs[Index].set(Vec);
|
|
}
|
|
NumVectorMemOps = UsedInsts.count();
|
|
|
|
for (unsigned Index : Indices) {
|
|
// Estimate that each loaded source vector containing this Index
|
|
// requires one operation, except that vperm can handle two input
|
|
// registers first time for each dst vector.
|
|
unsigned NumSrcVecs = ValueVecs[Index].count();
|
|
unsigned NumDstVecs = ceil(VF * getScalarSizeInBits(VecTy), 128U);
|
|
assert (NumSrcVecs >= NumDstVecs && "Expected at least as many sources");
|
|
NumPermutes += std::max(1U, NumSrcVecs - NumDstVecs);
|
|
}
|
|
} else {
|
|
// Estimate the permutes for each stored vector as the smaller of the
|
|
// number of elements and the number of source vectors. Subtract one per
|
|
// dst vector for vperm (S.A.).
|
|
unsigned NumSrcVecs = std::min(NumEltsPerVecReg, Factor);
|
|
unsigned NumDstVecs = NumVectorMemOps;
|
|
assert (NumSrcVecs > 1 && "Expected at least two source vectors.");
|
|
NumPermutes += (NumDstVecs * NumSrcVecs) - NumDstVecs;
|
|
}
|
|
|
|
// Cost of load/store operations and the permutations needed.
|
|
return NumVectorMemOps + NumPermutes;
|
|
}
|
|
|
|
static int getVectorIntrinsicInstrCost(Intrinsic::ID ID, Type *RetTy) {
|
|
if (RetTy->isVectorTy() && ID == Intrinsic::bswap)
|
|
return getNumVectorRegs(RetTy); // VPERM
|
|
return -1;
|
|
}
|
|
|
|
int SystemZTTIImpl::getIntrinsicInstrCost(const IntrinsicCostAttributes &ICA,
|
|
TTI::TargetCostKind CostKind) {
|
|
int Cost = getVectorIntrinsicInstrCost(ICA.getID(), ICA.getReturnType());
|
|
if (Cost != -1)
|
|
return Cost;
|
|
return BaseT::getIntrinsicInstrCost(ICA, CostKind);
|
|
}
|