forked from OSchip/llvm-project
261 lines
9.4 KiB
C++
261 lines
9.4 KiB
C++
//===- LazyCallGraph.cpp - Analysis of a Module's call graph --------------===//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/LazyCallGraph.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/IR/CallSite.h"
|
|
#include "llvm/IR/InstVisitor.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PassManager.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
|
|
using namespace llvm;
|
|
|
|
static void findCallees(
|
|
SmallVectorImpl<Constant *> &Worklist, SmallPtrSetImpl<Constant *> &Visited,
|
|
SmallVectorImpl<PointerUnion<Function *, LazyCallGraph::Node *>> &Callees,
|
|
SmallPtrSetImpl<Function *> &CalleeSet) {
|
|
while (!Worklist.empty()) {
|
|
Constant *C = Worklist.pop_back_val();
|
|
|
|
if (Function *F = dyn_cast<Function>(C)) {
|
|
// Note that we consider *any* function with a definition to be a viable
|
|
// edge. Even if the function's definition is subject to replacement by
|
|
// some other module (say, a weak definition) there may still be
|
|
// optimizations which essentially speculate based on the definition and
|
|
// a way to check that the specific definition is in fact the one being
|
|
// used. For example, this could be done by moving the weak definition to
|
|
// a strong (internal) definition and making the weak definition be an
|
|
// alias. Then a test of the address of the weak function against the new
|
|
// strong definition's address would be an effective way to determine the
|
|
// safety of optimizing a direct call edge.
|
|
if (!F->isDeclaration() && CalleeSet.insert(F))
|
|
Callees.push_back(F);
|
|
continue;
|
|
}
|
|
|
|
for (Value *Op : C->operand_values())
|
|
if (Visited.insert(cast<Constant>(Op)))
|
|
Worklist.push_back(cast<Constant>(Op));
|
|
}
|
|
}
|
|
|
|
LazyCallGraph::Node::Node(LazyCallGraph &G, Function &F)
|
|
: G(&G), F(F), DFSNumber(0), LowLink(0) {
|
|
SmallVector<Constant *, 16> Worklist;
|
|
SmallPtrSet<Constant *, 16> Visited;
|
|
// Find all the potential callees in this function. First walk the
|
|
// instructions and add every operand which is a constant to the worklist.
|
|
for (BasicBlock &BB : F)
|
|
for (Instruction &I : BB)
|
|
for (Value *Op : I.operand_values())
|
|
if (Constant *C = dyn_cast<Constant>(Op))
|
|
if (Visited.insert(C))
|
|
Worklist.push_back(C);
|
|
|
|
// We've collected all the constant (and thus potentially function or
|
|
// function containing) operands to all of the instructions in the function.
|
|
// Process them (recursively) collecting every function found.
|
|
findCallees(Worklist, Visited, Callees, CalleeSet);
|
|
}
|
|
|
|
LazyCallGraph::LazyCallGraph(Module &M) {
|
|
for (Function &F : M)
|
|
if (!F.isDeclaration() && !F.hasLocalLinkage())
|
|
if (EntryNodeSet.insert(&F))
|
|
EntryNodes.push_back(&F);
|
|
|
|
// Now add entry nodes for functions reachable via initializers to globals.
|
|
SmallVector<Constant *, 16> Worklist;
|
|
SmallPtrSet<Constant *, 16> Visited;
|
|
for (GlobalVariable &GV : M.globals())
|
|
if (GV.hasInitializer())
|
|
if (Visited.insert(GV.getInitializer()))
|
|
Worklist.push_back(GV.getInitializer());
|
|
|
|
findCallees(Worklist, Visited, EntryNodes, EntryNodeSet);
|
|
|
|
for (auto &Entry : EntryNodes)
|
|
if (Function *F = Entry.dyn_cast<Function *>())
|
|
SCCEntryNodes.insert(F);
|
|
else
|
|
SCCEntryNodes.insert(&Entry.get<Node *>()->getFunction());
|
|
}
|
|
|
|
LazyCallGraph::LazyCallGraph(LazyCallGraph &&G)
|
|
: BPA(std::move(G.BPA)), EntryNodes(std::move(G.EntryNodes)),
|
|
EntryNodeSet(std::move(G.EntryNodeSet)), SCCBPA(std::move(G.SCCBPA)),
|
|
SCCMap(std::move(G.SCCMap)), LeafSCCs(std::move(G.LeafSCCs)),
|
|
DFSStack(std::move(G.DFSStack)),
|
|
SCCEntryNodes(std::move(G.SCCEntryNodes)) {
|
|
updateGraphPtrs();
|
|
}
|
|
|
|
LazyCallGraph &LazyCallGraph::operator=(LazyCallGraph &&G) {
|
|
BPA = std::move(G.BPA);
|
|
EntryNodes = std::move(G.EntryNodes);
|
|
EntryNodeSet = std::move(G.EntryNodeSet);
|
|
SCCBPA = std::move(G.SCCBPA);
|
|
SCCMap = std::move(G.SCCMap);
|
|
LeafSCCs = std::move(G.LeafSCCs);
|
|
DFSStack = std::move(G.DFSStack);
|
|
SCCEntryNodes = std::move(G.SCCEntryNodes);
|
|
updateGraphPtrs();
|
|
return *this;
|
|
}
|
|
|
|
LazyCallGraph::Node *LazyCallGraph::insertInto(Function &F, Node *&MappedN) {
|
|
return new (MappedN = BPA.Allocate()) Node(*this, F);
|
|
}
|
|
|
|
void LazyCallGraph::updateGraphPtrs() {
|
|
// Process all nodes updating the graph pointers.
|
|
SmallVector<Node *, 16> Worklist;
|
|
for (auto &Entry : EntryNodes)
|
|
if (Node *EntryN = Entry.dyn_cast<Node *>())
|
|
Worklist.push_back(EntryN);
|
|
|
|
while (!Worklist.empty()) {
|
|
Node *N = Worklist.pop_back_val();
|
|
N->G = this;
|
|
for (auto &Callee : N->Callees)
|
|
if (Node *CalleeN = Callee.dyn_cast<Node *>())
|
|
Worklist.push_back(CalleeN);
|
|
}
|
|
}
|
|
|
|
LazyCallGraph::SCC *LazyCallGraph::getNextSCCInPostOrder() {
|
|
// When the stack is empty, there are no more SCCs to walk in this graph.
|
|
if (DFSStack.empty()) {
|
|
// If we've handled all candidate entry nodes to the SCC forest, we're done.
|
|
if (SCCEntryNodes.empty())
|
|
return nullptr;
|
|
|
|
Node *N = get(*SCCEntryNodes.pop_back_val());
|
|
DFSStack.push_back(std::make_pair(N, N->begin()));
|
|
}
|
|
|
|
Node *N = DFSStack.back().first;
|
|
if (N->DFSNumber == 0) {
|
|
// This node hasn't been visited before, assign it a DFS number and remove
|
|
// it from the entry set.
|
|
N->LowLink = N->DFSNumber = NextDFSNumber++;
|
|
SCCEntryNodes.remove(&N->getFunction());
|
|
}
|
|
|
|
for (auto I = DFSStack.back().second, E = N->end(); I != E; ++I) {
|
|
Node *ChildN = *I;
|
|
if (ChildN->DFSNumber == 0) {
|
|
// Mark that we should start at this child when next this node is the
|
|
// top of the stack. We don't start at the next child to ensure this
|
|
// child's lowlink is reflected.
|
|
// FIXME: I don't actually think this is required, and we could start
|
|
// at the next child.
|
|
DFSStack.back().second = I;
|
|
|
|
// Recurse onto this node via a tail call.
|
|
DFSStack.push_back(std::make_pair(ChildN, ChildN->begin()));
|
|
return LazyCallGraph::getNextSCCInPostOrder();
|
|
}
|
|
|
|
// Track the lowest link of the childen, if any are still in the stack.
|
|
if (ChildN->LowLink < N->LowLink && !SCCMap.count(&ChildN->getFunction()))
|
|
N->LowLink = ChildN->LowLink;
|
|
}
|
|
|
|
// The tail of the stack is the new SCC. Allocate the SCC and pop the stack
|
|
// into it.
|
|
SCC *NewSCC = new (SCCBPA.Allocate()) SCC();
|
|
|
|
// Because we don't follow the strict Tarjan recursive formulation, walk
|
|
// from the top of the stack down, propagating the lowest link and stopping
|
|
// when the DFS number is the lowest link.
|
|
int LowestLink = N->LowLink;
|
|
do {
|
|
Node *SCCN = DFSStack.pop_back_val().first;
|
|
SCCMap.insert(std::make_pair(&SCCN->getFunction(), NewSCC));
|
|
NewSCC->Nodes.push_back(SCCN);
|
|
LowestLink = std::min(LowestLink, SCCN->LowLink);
|
|
bool Inserted =
|
|
NewSCC->NodeSet.insert(&SCCN->getFunction());
|
|
(void)Inserted;
|
|
assert(Inserted && "Cannot have duplicates in the DFSStack!");
|
|
} while (!DFSStack.empty() && LowestLink <= DFSStack.back().first->DFSNumber);
|
|
assert(LowestLink == NewSCC->Nodes.back()->DFSNumber &&
|
|
"Cannot stop with a DFS number greater than the lowest link!");
|
|
|
|
// A final pass over all edges in the SCC (this remains linear as we only
|
|
// do this once when we build the SCC) to connect it to the parent sets of
|
|
// its children.
|
|
bool IsLeafSCC = true;
|
|
for (Node *SCCN : NewSCC->Nodes)
|
|
for (Node *SCCChildN : *SCCN) {
|
|
if (NewSCC->NodeSet.count(&SCCChildN->getFunction()))
|
|
continue;
|
|
SCC *ChildSCC = SCCMap.lookup(&SCCChildN->getFunction());
|
|
assert(ChildSCC &&
|
|
"Must have all child SCCs processed when building a new SCC!");
|
|
ChildSCC->ParentSCCs.insert(NewSCC);
|
|
IsLeafSCC = false;
|
|
}
|
|
|
|
// For the SCCs where we fine no child SCCs, add them to the leaf list.
|
|
if (IsLeafSCC)
|
|
LeafSCCs.push_back(NewSCC);
|
|
|
|
return NewSCC;
|
|
}
|
|
|
|
char LazyCallGraphAnalysis::PassID;
|
|
|
|
LazyCallGraphPrinterPass::LazyCallGraphPrinterPass(raw_ostream &OS) : OS(OS) {}
|
|
|
|
static void printNodes(raw_ostream &OS, LazyCallGraph::Node &N,
|
|
SmallPtrSetImpl<LazyCallGraph::Node *> &Printed) {
|
|
// Recurse depth first through the nodes.
|
|
for (LazyCallGraph::Node *ChildN : N)
|
|
if (Printed.insert(ChildN))
|
|
printNodes(OS, *ChildN, Printed);
|
|
|
|
OS << " Call edges in function: " << N.getFunction().getName() << "\n";
|
|
for (LazyCallGraph::iterator I = N.begin(), E = N.end(); I != E; ++I)
|
|
OS << " -> " << I->getFunction().getName() << "\n";
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
static void printSCC(raw_ostream &OS, LazyCallGraph::SCC &SCC) {
|
|
ptrdiff_t SCCSize = std::distance(SCC.begin(), SCC.end());
|
|
OS << " SCC with " << SCCSize << " functions:\n";
|
|
|
|
for (LazyCallGraph::Node *N : SCC)
|
|
OS << " " << N->getFunction().getName() << "\n";
|
|
|
|
OS << "\n";
|
|
}
|
|
|
|
PreservedAnalyses LazyCallGraphPrinterPass::run(Module *M,
|
|
ModuleAnalysisManager *AM) {
|
|
LazyCallGraph &G = AM->getResult<LazyCallGraphAnalysis>(M);
|
|
|
|
OS << "Printing the call graph for module: " << M->getModuleIdentifier()
|
|
<< "\n\n";
|
|
|
|
SmallPtrSet<LazyCallGraph::Node *, 16> Printed;
|
|
for (LazyCallGraph::Node *N : G)
|
|
if (Printed.insert(N))
|
|
printNodes(OS, *N, Printed);
|
|
|
|
for (LazyCallGraph::SCC *SCC : G.postorder_sccs())
|
|
printSCC(OS, *SCC);
|
|
|
|
return PreservedAnalyses::all();
|
|
|
|
}
|