forked from OSchip/llvm-project
746 lines
26 KiB
C++
746 lines
26 KiB
C++
//=-- InstrProf.cpp - Instrumented profiling format support -----------------=//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file contains support for clang's instrumentation based PGO and
|
|
// coverage.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/ProfileData/InstrProf.h"
|
|
#include "llvm/ADT/StringExtras.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/GlobalVariable.h"
|
|
#include "llvm/IR/MDBuilder.h"
|
|
#include "llvm/IR/Module.h"
|
|
#include "llvm/Support/Compression.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/LEB128.h"
|
|
#include "llvm/Support/ManagedStatic.h"
|
|
|
|
using namespace llvm;
|
|
|
|
namespace {
|
|
class InstrProfErrorCategoryType : public std::error_category {
|
|
const char *name() const LLVM_NOEXCEPT override { return "llvm.instrprof"; }
|
|
std::string message(int IE) const override {
|
|
instrprof_error E = static_cast<instrprof_error>(IE);
|
|
switch (E) {
|
|
case instrprof_error::success:
|
|
return "Success";
|
|
case instrprof_error::eof:
|
|
return "End of File";
|
|
case instrprof_error::unrecognized_format:
|
|
return "Unrecognized instrumentation profile encoding format";
|
|
case instrprof_error::bad_magic:
|
|
return "Invalid instrumentation profile data (bad magic)";
|
|
case instrprof_error::bad_header:
|
|
return "Invalid instrumentation profile data (file header is corrupt)";
|
|
case instrprof_error::unsupported_version:
|
|
return "Unsupported instrumentation profile format version";
|
|
case instrprof_error::unsupported_hash_type:
|
|
return "Unsupported instrumentation profile hash type";
|
|
case instrprof_error::too_large:
|
|
return "Too much profile data";
|
|
case instrprof_error::truncated:
|
|
return "Truncated profile data";
|
|
case instrprof_error::malformed:
|
|
return "Malformed instrumentation profile data";
|
|
case instrprof_error::unknown_function:
|
|
return "No profile data available for function";
|
|
case instrprof_error::hash_mismatch:
|
|
return "Function control flow change detected (hash mismatch)";
|
|
case instrprof_error::count_mismatch:
|
|
return "Function basic block count change detected (counter mismatch)";
|
|
case instrprof_error::counter_overflow:
|
|
return "Counter overflow";
|
|
case instrprof_error::value_site_count_mismatch:
|
|
return "Function value site count change detected (counter mismatch)";
|
|
}
|
|
llvm_unreachable("A value of instrprof_error has no message.");
|
|
}
|
|
};
|
|
} // end anonymous namespace
|
|
|
|
static ManagedStatic<InstrProfErrorCategoryType> ErrorCategory;
|
|
|
|
const std::error_category &llvm::instrprof_category() {
|
|
return *ErrorCategory;
|
|
}
|
|
|
|
namespace llvm {
|
|
|
|
std::string getPGOFuncName(StringRef RawFuncName,
|
|
GlobalValue::LinkageTypes Linkage,
|
|
StringRef FileName,
|
|
uint64_t Version LLVM_ATTRIBUTE_UNUSED) {
|
|
return GlobalValue::getGlobalIdentifier(RawFuncName, Linkage, FileName);
|
|
}
|
|
|
|
// Return the PGOFuncName. This function has some special handling when called
|
|
// in LTO optimization. The following only applies when calling in LTO passes
|
|
// (when \c InLTO is true): LTO's internalization privatizes many global linkage
|
|
// symbols. This happens after value profile annotation, but those internal
|
|
// linkage functions should not have a source prefix.
|
|
// To differentiate compiler generated internal symbols from original ones,
|
|
// PGOFuncName meta data are created and attached to the original internal
|
|
// symbols in the value profile annotation step
|
|
// (PGOUseFunc::annotateIndirectCallSites). If a symbol does not have the meta
|
|
// data, its original linkage must be non-internal.
|
|
std::string getPGOFuncName(const Function &F, bool InLTO, uint64_t Version) {
|
|
if (!InLTO)
|
|
return getPGOFuncName(F.getName(), F.getLinkage(), F.getParent()->getName(),
|
|
Version);
|
|
|
|
// In LTO mode (when InLTO is true), first check if there is a meta data.
|
|
if (MDNode *MD = getPGOFuncNameMetadata(F)) {
|
|
StringRef S = cast<MDString>(MD->getOperand(0))->getString();
|
|
return S.str();
|
|
}
|
|
|
|
// If there is no meta data, the function must be a global before the value
|
|
// profile annotation pass. Its current linkage may be internal if it is
|
|
// internalized in LTO mode.
|
|
return getPGOFuncName(F.getName(), GlobalValue::ExternalLinkage, "");
|
|
}
|
|
|
|
StringRef getFuncNameWithoutPrefix(StringRef PGOFuncName, StringRef FileName) {
|
|
if (FileName.empty())
|
|
return PGOFuncName;
|
|
// Drop the file name including ':'. See also getPGOFuncName.
|
|
if (PGOFuncName.startswith(FileName))
|
|
PGOFuncName = PGOFuncName.drop_front(FileName.size() + 1);
|
|
return PGOFuncName;
|
|
}
|
|
|
|
// \p FuncName is the string used as profile lookup key for the function. A
|
|
// symbol is created to hold the name. Return the legalized symbol name.
|
|
std::string getPGOFuncNameVarName(StringRef FuncName,
|
|
GlobalValue::LinkageTypes Linkage) {
|
|
std::string VarName = getInstrProfNameVarPrefix();
|
|
VarName += FuncName;
|
|
|
|
if (!GlobalValue::isLocalLinkage(Linkage))
|
|
return VarName;
|
|
|
|
// Now fix up illegal chars in local VarName that may upset the assembler.
|
|
const char *InvalidChars = "-:<>\"'";
|
|
size_t found = VarName.find_first_of(InvalidChars);
|
|
while (found != std::string::npos) {
|
|
VarName[found] = '_';
|
|
found = VarName.find_first_of(InvalidChars, found + 1);
|
|
}
|
|
return VarName;
|
|
}
|
|
|
|
GlobalVariable *createPGOFuncNameVar(Module &M,
|
|
GlobalValue::LinkageTypes Linkage,
|
|
StringRef PGOFuncName) {
|
|
|
|
// We generally want to match the function's linkage, but available_externally
|
|
// and extern_weak both have the wrong semantics, and anything that doesn't
|
|
// need to link across compilation units doesn't need to be visible at all.
|
|
if (Linkage == GlobalValue::ExternalWeakLinkage)
|
|
Linkage = GlobalValue::LinkOnceAnyLinkage;
|
|
else if (Linkage == GlobalValue::AvailableExternallyLinkage)
|
|
Linkage = GlobalValue::LinkOnceODRLinkage;
|
|
else if (Linkage == GlobalValue::InternalLinkage ||
|
|
Linkage == GlobalValue::ExternalLinkage)
|
|
Linkage = GlobalValue::PrivateLinkage;
|
|
|
|
auto *Value =
|
|
ConstantDataArray::getString(M.getContext(), PGOFuncName, false);
|
|
auto FuncNameVar =
|
|
new GlobalVariable(M, Value->getType(), true, Linkage, Value,
|
|
getPGOFuncNameVarName(PGOFuncName, Linkage));
|
|
|
|
// Hide the symbol so that we correctly get a copy for each executable.
|
|
if (!GlobalValue::isLocalLinkage(FuncNameVar->getLinkage()))
|
|
FuncNameVar->setVisibility(GlobalValue::HiddenVisibility);
|
|
|
|
return FuncNameVar;
|
|
}
|
|
|
|
GlobalVariable *createPGOFuncNameVar(Function &F, StringRef PGOFuncName) {
|
|
return createPGOFuncNameVar(*F.getParent(), F.getLinkage(), PGOFuncName);
|
|
}
|
|
|
|
void InstrProfSymtab::create(Module &M, bool InLTO) {
|
|
for (Function &F : M) {
|
|
// Function may not have a name: like using asm("") to overwrite the name.
|
|
// Ignore in this case.
|
|
if (!F.hasName())
|
|
continue;
|
|
const std::string &PGOFuncName = getPGOFuncName(F, InLTO);
|
|
addFuncName(PGOFuncName);
|
|
MD5FuncMap.emplace_back(Function::getGUID(PGOFuncName), &F);
|
|
}
|
|
|
|
finalizeSymtab();
|
|
}
|
|
|
|
int collectPGOFuncNameStrings(const std::vector<std::string> &NameStrs,
|
|
bool doCompression, std::string &Result) {
|
|
assert(NameStrs.size() && "No name data to emit");
|
|
|
|
uint8_t Header[16], *P = Header;
|
|
std::string UncompressedNameStrings =
|
|
join(NameStrs.begin(), NameStrs.end(), getInstrProfNameSeparator());
|
|
|
|
assert(StringRef(UncompressedNameStrings)
|
|
.count(getInstrProfNameSeparator()) == (NameStrs.size() - 1) &&
|
|
"PGO name is invalid (contains separator token)");
|
|
|
|
unsigned EncLen = encodeULEB128(UncompressedNameStrings.length(), P);
|
|
P += EncLen;
|
|
|
|
auto WriteStringToResult = [&](size_t CompressedLen,
|
|
const std::string &InputStr) {
|
|
EncLen = encodeULEB128(CompressedLen, P);
|
|
P += EncLen;
|
|
char *HeaderStr = reinterpret_cast<char *>(&Header[0]);
|
|
unsigned HeaderLen = P - &Header[0];
|
|
Result.append(HeaderStr, HeaderLen);
|
|
Result += InputStr;
|
|
return 0;
|
|
};
|
|
|
|
if (!doCompression)
|
|
return WriteStringToResult(0, UncompressedNameStrings);
|
|
|
|
SmallVector<char, 128> CompressedNameStrings;
|
|
zlib::Status Success =
|
|
zlib::compress(StringRef(UncompressedNameStrings), CompressedNameStrings,
|
|
zlib::BestSizeCompression);
|
|
|
|
if (Success != zlib::StatusOK)
|
|
return 1;
|
|
|
|
return WriteStringToResult(
|
|
CompressedNameStrings.size(),
|
|
std::string(CompressedNameStrings.data(), CompressedNameStrings.size()));
|
|
}
|
|
|
|
StringRef getPGOFuncNameVarInitializer(GlobalVariable *NameVar) {
|
|
auto *Arr = cast<ConstantDataArray>(NameVar->getInitializer());
|
|
StringRef NameStr =
|
|
Arr->isCString() ? Arr->getAsCString() : Arr->getAsString();
|
|
return NameStr;
|
|
}
|
|
|
|
int collectPGOFuncNameStrings(const std::vector<GlobalVariable *> &NameVars,
|
|
std::string &Result, bool doCompression) {
|
|
std::vector<std::string> NameStrs;
|
|
for (auto *NameVar : NameVars) {
|
|
NameStrs.push_back(getPGOFuncNameVarInitializer(NameVar));
|
|
}
|
|
return collectPGOFuncNameStrings(
|
|
NameStrs, zlib::isAvailable() && doCompression, Result);
|
|
}
|
|
|
|
int readPGOFuncNameStrings(StringRef NameStrings, InstrProfSymtab &Symtab) {
|
|
const uint8_t *P = reinterpret_cast<const uint8_t *>(NameStrings.data());
|
|
const uint8_t *EndP = reinterpret_cast<const uint8_t *>(NameStrings.data() +
|
|
NameStrings.size());
|
|
while (P < EndP) {
|
|
uint32_t N;
|
|
uint64_t UncompressedSize = decodeULEB128(P, &N);
|
|
P += N;
|
|
uint64_t CompressedSize = decodeULEB128(P, &N);
|
|
P += N;
|
|
bool isCompressed = (CompressedSize != 0);
|
|
SmallString<128> UncompressedNameStrings;
|
|
StringRef NameStrings;
|
|
if (isCompressed) {
|
|
StringRef CompressedNameStrings(reinterpret_cast<const char *>(P),
|
|
CompressedSize);
|
|
if (zlib::uncompress(CompressedNameStrings, UncompressedNameStrings,
|
|
UncompressedSize) != zlib::StatusOK)
|
|
return 1;
|
|
P += CompressedSize;
|
|
NameStrings = StringRef(UncompressedNameStrings.data(),
|
|
UncompressedNameStrings.size());
|
|
} else {
|
|
NameStrings =
|
|
StringRef(reinterpret_cast<const char *>(P), UncompressedSize);
|
|
P += UncompressedSize;
|
|
}
|
|
// Now parse the name strings.
|
|
SmallVector<StringRef, 0> Names;
|
|
NameStrings.split(Names, getInstrProfNameSeparator());
|
|
for (StringRef &Name : Names)
|
|
Symtab.addFuncName(Name);
|
|
|
|
while (P < EndP && *P == 0)
|
|
P++;
|
|
}
|
|
Symtab.finalizeSymtab();
|
|
return 0;
|
|
}
|
|
|
|
instrprof_error InstrProfValueSiteRecord::merge(InstrProfValueSiteRecord &Input,
|
|
uint64_t Weight) {
|
|
this->sortByTargetValues();
|
|
Input.sortByTargetValues();
|
|
auto I = ValueData.begin();
|
|
auto IE = ValueData.end();
|
|
instrprof_error Result = instrprof_error::success;
|
|
for (auto J = Input.ValueData.begin(), JE = Input.ValueData.end(); J != JE;
|
|
++J) {
|
|
while (I != IE && I->Value < J->Value)
|
|
++I;
|
|
if (I != IE && I->Value == J->Value) {
|
|
bool Overflowed;
|
|
I->Count = SaturatingMultiplyAdd(J->Count, Weight, I->Count, &Overflowed);
|
|
if (Overflowed)
|
|
Result = instrprof_error::counter_overflow;
|
|
++I;
|
|
continue;
|
|
}
|
|
ValueData.insert(I, *J);
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
instrprof_error InstrProfValueSiteRecord::scale(uint64_t Weight) {
|
|
instrprof_error Result = instrprof_error::success;
|
|
for (auto I = ValueData.begin(), IE = ValueData.end(); I != IE; ++I) {
|
|
bool Overflowed;
|
|
I->Count = SaturatingMultiply(I->Count, Weight, &Overflowed);
|
|
if (Overflowed)
|
|
Result = instrprof_error::counter_overflow;
|
|
}
|
|
return Result;
|
|
}
|
|
|
|
// Merge Value Profile data from Src record to this record for ValueKind.
|
|
// Scale merged value counts by \p Weight.
|
|
instrprof_error InstrProfRecord::mergeValueProfData(uint32_t ValueKind,
|
|
InstrProfRecord &Src,
|
|
uint64_t Weight) {
|
|
uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
|
|
uint32_t OtherNumValueSites = Src.getNumValueSites(ValueKind);
|
|
if (ThisNumValueSites != OtherNumValueSites)
|
|
return instrprof_error::value_site_count_mismatch;
|
|
std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
|
|
getValueSitesForKind(ValueKind);
|
|
std::vector<InstrProfValueSiteRecord> &OtherSiteRecords =
|
|
Src.getValueSitesForKind(ValueKind);
|
|
instrprof_error Result = instrprof_error::success;
|
|
for (uint32_t I = 0; I < ThisNumValueSites; I++)
|
|
MergeResult(Result, ThisSiteRecords[I].merge(OtherSiteRecords[I], Weight));
|
|
return Result;
|
|
}
|
|
|
|
instrprof_error InstrProfRecord::merge(InstrProfRecord &Other,
|
|
uint64_t Weight) {
|
|
// If the number of counters doesn't match we either have bad data
|
|
// or a hash collision.
|
|
if (Counts.size() != Other.Counts.size())
|
|
return instrprof_error::count_mismatch;
|
|
|
|
instrprof_error Result = instrprof_error::success;
|
|
|
|
for (size_t I = 0, E = Other.Counts.size(); I < E; ++I) {
|
|
bool Overflowed;
|
|
Counts[I] =
|
|
SaturatingMultiplyAdd(Other.Counts[I], Weight, Counts[I], &Overflowed);
|
|
if (Overflowed)
|
|
Result = instrprof_error::counter_overflow;
|
|
}
|
|
|
|
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
|
|
MergeResult(Result, mergeValueProfData(Kind, Other, Weight));
|
|
|
|
return Result;
|
|
}
|
|
|
|
instrprof_error InstrProfRecord::scaleValueProfData(uint32_t ValueKind,
|
|
uint64_t Weight) {
|
|
uint32_t ThisNumValueSites = getNumValueSites(ValueKind);
|
|
std::vector<InstrProfValueSiteRecord> &ThisSiteRecords =
|
|
getValueSitesForKind(ValueKind);
|
|
instrprof_error Result = instrprof_error::success;
|
|
for (uint32_t I = 0; I < ThisNumValueSites; I++)
|
|
MergeResult(Result, ThisSiteRecords[I].scale(Weight));
|
|
return Result;
|
|
}
|
|
|
|
instrprof_error InstrProfRecord::scale(uint64_t Weight) {
|
|
instrprof_error Result = instrprof_error::success;
|
|
for (auto &Count : this->Counts) {
|
|
bool Overflowed;
|
|
Count = SaturatingMultiply(Count, Weight, &Overflowed);
|
|
if (Overflowed && Result == instrprof_error::success) {
|
|
Result = instrprof_error::counter_overflow;
|
|
}
|
|
}
|
|
for (uint32_t Kind = IPVK_First; Kind <= IPVK_Last; ++Kind)
|
|
MergeResult(Result, scaleValueProfData(Kind, Weight));
|
|
|
|
return Result;
|
|
}
|
|
|
|
// Map indirect call target name hash to name string.
|
|
uint64_t InstrProfRecord::remapValue(uint64_t Value, uint32_t ValueKind,
|
|
ValueMapType *ValueMap) {
|
|
if (!ValueMap)
|
|
return Value;
|
|
switch (ValueKind) {
|
|
case IPVK_IndirectCallTarget: {
|
|
auto Result =
|
|
std::lower_bound(ValueMap->begin(), ValueMap->end(), Value,
|
|
[](const std::pair<uint64_t, uint64_t> &LHS,
|
|
uint64_t RHS) { return LHS.first < RHS; });
|
|
// Raw function pointer collected by value profiler may be from
|
|
// external functions that are not instrumented. They won't have
|
|
// mapping data to be used by the deserializer. Force the value to
|
|
// be 0 in this case.
|
|
if (Result != ValueMap->end() && Result->first == Value)
|
|
Value = (uint64_t)Result->second;
|
|
else
|
|
Value = 0;
|
|
break;
|
|
}
|
|
}
|
|
return Value;
|
|
}
|
|
|
|
void InstrProfRecord::addValueData(uint32_t ValueKind, uint32_t Site,
|
|
InstrProfValueData *VData, uint32_t N,
|
|
ValueMapType *ValueMap) {
|
|
for (uint32_t I = 0; I < N; I++) {
|
|
VData[I].Value = remapValue(VData[I].Value, ValueKind, ValueMap);
|
|
}
|
|
std::vector<InstrProfValueSiteRecord> &ValueSites =
|
|
getValueSitesForKind(ValueKind);
|
|
if (N == 0)
|
|
ValueSites.push_back(InstrProfValueSiteRecord());
|
|
else
|
|
ValueSites.emplace_back(VData, VData + N);
|
|
}
|
|
|
|
#define INSTR_PROF_COMMON_API_IMPL
|
|
#include "llvm/ProfileData/InstrProfData.inc"
|
|
|
|
/*!
|
|
* \brief ValueProfRecordClosure Interface implementation for InstrProfRecord
|
|
* class. These C wrappers are used as adaptors so that C++ code can be
|
|
* invoked as callbacks.
|
|
*/
|
|
uint32_t getNumValueKindsInstrProf(const void *Record) {
|
|
return reinterpret_cast<const InstrProfRecord *>(Record)->getNumValueKinds();
|
|
}
|
|
|
|
uint32_t getNumValueSitesInstrProf(const void *Record, uint32_t VKind) {
|
|
return reinterpret_cast<const InstrProfRecord *>(Record)
|
|
->getNumValueSites(VKind);
|
|
}
|
|
|
|
uint32_t getNumValueDataInstrProf(const void *Record, uint32_t VKind) {
|
|
return reinterpret_cast<const InstrProfRecord *>(Record)
|
|
->getNumValueData(VKind);
|
|
}
|
|
|
|
uint32_t getNumValueDataForSiteInstrProf(const void *R, uint32_t VK,
|
|
uint32_t S) {
|
|
return reinterpret_cast<const InstrProfRecord *>(R)
|
|
->getNumValueDataForSite(VK, S);
|
|
}
|
|
|
|
void getValueForSiteInstrProf(const void *R, InstrProfValueData *Dst,
|
|
uint32_t K, uint32_t S) {
|
|
reinterpret_cast<const InstrProfRecord *>(R)->getValueForSite(Dst, K, S);
|
|
return;
|
|
}
|
|
|
|
ValueProfData *allocValueProfDataInstrProf(size_t TotalSizeInBytes) {
|
|
ValueProfData *VD =
|
|
(ValueProfData *)(new (::operator new(TotalSizeInBytes)) ValueProfData());
|
|
memset(VD, 0, TotalSizeInBytes);
|
|
return VD;
|
|
}
|
|
|
|
static ValueProfRecordClosure InstrProfRecordClosure = {
|
|
nullptr,
|
|
getNumValueKindsInstrProf,
|
|
getNumValueSitesInstrProf,
|
|
getNumValueDataInstrProf,
|
|
getNumValueDataForSiteInstrProf,
|
|
nullptr,
|
|
getValueForSiteInstrProf,
|
|
allocValueProfDataInstrProf};
|
|
|
|
// Wrapper implementation using the closure mechanism.
|
|
uint32_t ValueProfData::getSize(const InstrProfRecord &Record) {
|
|
InstrProfRecordClosure.Record = &Record;
|
|
return getValueProfDataSize(&InstrProfRecordClosure);
|
|
}
|
|
|
|
// Wrapper implementation using the closure mechanism.
|
|
std::unique_ptr<ValueProfData>
|
|
ValueProfData::serializeFrom(const InstrProfRecord &Record) {
|
|
InstrProfRecordClosure.Record = &Record;
|
|
|
|
std::unique_ptr<ValueProfData> VPD(
|
|
serializeValueProfDataFrom(&InstrProfRecordClosure, nullptr));
|
|
return VPD;
|
|
}
|
|
|
|
void ValueProfRecord::deserializeTo(InstrProfRecord &Record,
|
|
InstrProfRecord::ValueMapType *VMap) {
|
|
Record.reserveSites(Kind, NumValueSites);
|
|
|
|
InstrProfValueData *ValueData = getValueProfRecordValueData(this);
|
|
for (uint64_t VSite = 0; VSite < NumValueSites; ++VSite) {
|
|
uint8_t ValueDataCount = this->SiteCountArray[VSite];
|
|
Record.addValueData(Kind, VSite, ValueData, ValueDataCount, VMap);
|
|
ValueData += ValueDataCount;
|
|
}
|
|
}
|
|
|
|
// For writing/serializing, Old is the host endianness, and New is
|
|
// byte order intended on disk. For Reading/deserialization, Old
|
|
// is the on-disk source endianness, and New is the host endianness.
|
|
void ValueProfRecord::swapBytes(support::endianness Old,
|
|
support::endianness New) {
|
|
using namespace support;
|
|
if (Old == New)
|
|
return;
|
|
|
|
if (getHostEndianness() != Old) {
|
|
sys::swapByteOrder<uint32_t>(NumValueSites);
|
|
sys::swapByteOrder<uint32_t>(Kind);
|
|
}
|
|
uint32_t ND = getValueProfRecordNumValueData(this);
|
|
InstrProfValueData *VD = getValueProfRecordValueData(this);
|
|
|
|
// No need to swap byte array: SiteCountArrray.
|
|
for (uint32_t I = 0; I < ND; I++) {
|
|
sys::swapByteOrder<uint64_t>(VD[I].Value);
|
|
sys::swapByteOrder<uint64_t>(VD[I].Count);
|
|
}
|
|
if (getHostEndianness() == Old) {
|
|
sys::swapByteOrder<uint32_t>(NumValueSites);
|
|
sys::swapByteOrder<uint32_t>(Kind);
|
|
}
|
|
}
|
|
|
|
void ValueProfData::deserializeTo(InstrProfRecord &Record,
|
|
InstrProfRecord::ValueMapType *VMap) {
|
|
if (NumValueKinds == 0)
|
|
return;
|
|
|
|
ValueProfRecord *VR = getFirstValueProfRecord(this);
|
|
for (uint32_t K = 0; K < NumValueKinds; K++) {
|
|
VR->deserializeTo(Record, VMap);
|
|
VR = getValueProfRecordNext(VR);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
static T swapToHostOrder(const unsigned char *&D, support::endianness Orig) {
|
|
using namespace support;
|
|
if (Orig == little)
|
|
return endian::readNext<T, little, unaligned>(D);
|
|
else
|
|
return endian::readNext<T, big, unaligned>(D);
|
|
}
|
|
|
|
static std::unique_ptr<ValueProfData> allocValueProfData(uint32_t TotalSize) {
|
|
return std::unique_ptr<ValueProfData>(new (::operator new(TotalSize))
|
|
ValueProfData());
|
|
}
|
|
|
|
instrprof_error ValueProfData::checkIntegrity() {
|
|
if (NumValueKinds > IPVK_Last + 1)
|
|
return instrprof_error::malformed;
|
|
// Total size needs to be mulltiple of quadword size.
|
|
if (TotalSize % sizeof(uint64_t))
|
|
return instrprof_error::malformed;
|
|
|
|
ValueProfRecord *VR = getFirstValueProfRecord(this);
|
|
for (uint32_t K = 0; K < this->NumValueKinds; K++) {
|
|
if (VR->Kind > IPVK_Last)
|
|
return instrprof_error::malformed;
|
|
VR = getValueProfRecordNext(VR);
|
|
if ((char *)VR - (char *)this > (ptrdiff_t)TotalSize)
|
|
return instrprof_error::malformed;
|
|
}
|
|
return instrprof_error::success;
|
|
}
|
|
|
|
ErrorOr<std::unique_ptr<ValueProfData>>
|
|
ValueProfData::getValueProfData(const unsigned char *D,
|
|
const unsigned char *const BufferEnd,
|
|
support::endianness Endianness) {
|
|
using namespace support;
|
|
if (D + sizeof(ValueProfData) > BufferEnd)
|
|
return instrprof_error::truncated;
|
|
|
|
const unsigned char *Header = D;
|
|
uint32_t TotalSize = swapToHostOrder<uint32_t>(Header, Endianness);
|
|
if (D + TotalSize > BufferEnd)
|
|
return instrprof_error::too_large;
|
|
|
|
std::unique_ptr<ValueProfData> VPD = allocValueProfData(TotalSize);
|
|
memcpy(VPD.get(), D, TotalSize);
|
|
// Byte swap.
|
|
VPD->swapBytesToHost(Endianness);
|
|
|
|
instrprof_error EC = VPD->checkIntegrity();
|
|
if (EC != instrprof_error::success)
|
|
return EC;
|
|
|
|
return std::move(VPD);
|
|
}
|
|
|
|
void ValueProfData::swapBytesToHost(support::endianness Endianness) {
|
|
using namespace support;
|
|
if (Endianness == getHostEndianness())
|
|
return;
|
|
|
|
sys::swapByteOrder<uint32_t>(TotalSize);
|
|
sys::swapByteOrder<uint32_t>(NumValueKinds);
|
|
|
|
ValueProfRecord *VR = getFirstValueProfRecord(this);
|
|
for (uint32_t K = 0; K < NumValueKinds; K++) {
|
|
VR->swapBytes(Endianness, getHostEndianness());
|
|
VR = getValueProfRecordNext(VR);
|
|
}
|
|
}
|
|
|
|
void ValueProfData::swapBytesFromHost(support::endianness Endianness) {
|
|
using namespace support;
|
|
if (Endianness == getHostEndianness())
|
|
return;
|
|
|
|
ValueProfRecord *VR = getFirstValueProfRecord(this);
|
|
for (uint32_t K = 0; K < NumValueKinds; K++) {
|
|
ValueProfRecord *NVR = getValueProfRecordNext(VR);
|
|
VR->swapBytes(getHostEndianness(), Endianness);
|
|
VR = NVR;
|
|
}
|
|
sys::swapByteOrder<uint32_t>(TotalSize);
|
|
sys::swapByteOrder<uint32_t>(NumValueKinds);
|
|
}
|
|
|
|
void annotateValueSite(Module &M, Instruction &Inst,
|
|
const InstrProfRecord &InstrProfR,
|
|
InstrProfValueKind ValueKind, uint32_t SiteIdx,
|
|
uint32_t MaxMDCount) {
|
|
uint32_t NV = InstrProfR.getNumValueDataForSite(ValueKind, SiteIdx);
|
|
if (!NV)
|
|
return;
|
|
|
|
uint64_t Sum = 0;
|
|
std::unique_ptr<InstrProfValueData[]> VD =
|
|
InstrProfR.getValueForSite(ValueKind, SiteIdx, &Sum);
|
|
|
|
ArrayRef<InstrProfValueData> VDs(VD.get(), NV);
|
|
annotateValueSite(M, Inst, VDs, Sum, ValueKind, MaxMDCount);
|
|
}
|
|
|
|
void annotateValueSite(Module &M, Instruction &Inst,
|
|
ArrayRef<InstrProfValueData> VDs,
|
|
uint64_t Sum, InstrProfValueKind ValueKind,
|
|
uint32_t MaxMDCount) {
|
|
LLVMContext &Ctx = M.getContext();
|
|
MDBuilder MDHelper(Ctx);
|
|
SmallVector<Metadata *, 3> Vals;
|
|
// Tag
|
|
Vals.push_back(MDHelper.createString("VP"));
|
|
// Value Kind
|
|
Vals.push_back(MDHelper.createConstant(
|
|
ConstantInt::get(Type::getInt32Ty(Ctx), ValueKind)));
|
|
// Total Count
|
|
Vals.push_back(
|
|
MDHelper.createConstant(ConstantInt::get(Type::getInt64Ty(Ctx), Sum)));
|
|
|
|
// Value Profile Data
|
|
uint32_t MDCount = MaxMDCount;
|
|
for (auto &VD : VDs) {
|
|
Vals.push_back(MDHelper.createConstant(
|
|
ConstantInt::get(Type::getInt64Ty(Ctx), VD.Value)));
|
|
Vals.push_back(MDHelper.createConstant(
|
|
ConstantInt::get(Type::getInt64Ty(Ctx), VD.Count)));
|
|
if (--MDCount == 0)
|
|
break;
|
|
}
|
|
Inst.setMetadata(LLVMContext::MD_prof, MDNode::get(Ctx, Vals));
|
|
}
|
|
|
|
bool getValueProfDataFromInst(const Instruction &Inst,
|
|
InstrProfValueKind ValueKind,
|
|
uint32_t MaxNumValueData,
|
|
InstrProfValueData ValueData[],
|
|
uint32_t &ActualNumValueData, uint64_t &TotalC) {
|
|
MDNode *MD = Inst.getMetadata(LLVMContext::MD_prof);
|
|
if (!MD)
|
|
return false;
|
|
|
|
unsigned NOps = MD->getNumOperands();
|
|
|
|
if (NOps < 5)
|
|
return false;
|
|
|
|
// Operand 0 is a string tag "VP":
|
|
MDString *Tag = cast<MDString>(MD->getOperand(0));
|
|
if (!Tag)
|
|
return false;
|
|
|
|
if (!Tag->getString().equals("VP"))
|
|
return false;
|
|
|
|
// Now check kind:
|
|
ConstantInt *KindInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
|
|
if (!KindInt)
|
|
return false;
|
|
if (KindInt->getZExtValue() != ValueKind)
|
|
return false;
|
|
|
|
// Get total count
|
|
ConstantInt *TotalCInt = mdconst::dyn_extract<ConstantInt>(MD->getOperand(2));
|
|
if (!TotalCInt)
|
|
return false;
|
|
TotalC = TotalCInt->getZExtValue();
|
|
|
|
ActualNumValueData = 0;
|
|
|
|
for (unsigned I = 3; I < NOps; I += 2) {
|
|
if (ActualNumValueData >= MaxNumValueData)
|
|
break;
|
|
ConstantInt *Value = mdconst::dyn_extract<ConstantInt>(MD->getOperand(I));
|
|
ConstantInt *Count =
|
|
mdconst::dyn_extract<ConstantInt>(MD->getOperand(I + 1));
|
|
if (!Value || !Count)
|
|
return false;
|
|
ValueData[ActualNumValueData].Value = Value->getZExtValue();
|
|
ValueData[ActualNumValueData].Count = Count->getZExtValue();
|
|
ActualNumValueData++;
|
|
}
|
|
return true;
|
|
}
|
|
|
|
MDNode *getPGOFuncNameMetadata(const Function &F) {
|
|
return F.getMetadata(getPGOFuncNameMetadataName());
|
|
}
|
|
|
|
void createPGOFuncNameMetadata(Function &F) {
|
|
const std::string &FuncName = getPGOFuncName(F);
|
|
if (FuncName == F.getName())
|
|
return;
|
|
|
|
LLVMContext &C = F.getContext();
|
|
MDNode *N = MDNode::get(C, MDString::get(C, FuncName.c_str()));
|
|
F.setMetadata(getPGOFuncNameMetadataName(), N);
|
|
}
|
|
|
|
} // end namespace llvm
|