llvm-project/llvm/lib/Analysis/AliasAnalysis.cpp

520 lines
19 KiB
C++

//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
//
// The LLVM Compiler Infrastructure
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
//
// This file implements the generic AliasAnalysis interface which is used as the
// common interface used by all clients and implementations of alias analysis.
//
// This file also implements the default version of the AliasAnalysis interface
// that is to be used when no other implementation is specified. This does some
// simple tests that detect obvious cases: two different global pointers cannot
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
// etc.
//
// This alias analysis implementation really isn't very good for anything, but
// it is very fast, and makes a nice clean default implementation. Because it
// handles lots of little corner cases, other, more complex, alias analysis
// implementations may choose to rely on this pass to resolve these simple and
// easy cases.
//
//===----------------------------------------------------------------------===//
#include "llvm/Analysis/AliasAnalysis.h"
#include "llvm/Analysis/BasicAliasAnalysis.h"
#include "llvm/Analysis/CFG.h"
#include "llvm/Analysis/CFLAliasAnalysis.h"
#include "llvm/Analysis/CaptureTracking.h"
#include "llvm/Analysis/GlobalsModRef.h"
#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
#include "llvm/Analysis/ScopedNoAliasAA.h"
#include "llvm/Analysis/TargetLibraryInfo.h"
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
#include "llvm/Analysis/ValueTracking.h"
#include "llvm/IR/BasicBlock.h"
#include "llvm/IR/DataLayout.h"
#include "llvm/IR/Dominators.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Instructions.h"
#include "llvm/IR/IntrinsicInst.h"
#include "llvm/IR/LLVMContext.h"
#include "llvm/IR/Type.h"
#include "llvm/Pass.h"
using namespace llvm;
/// Allow disabling BasicAA from the AA results. This is particularly useful
/// when testing to isolate a single AA implementation.
static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
cl::init(false));
AAResults::AAResults(AAResults &&Arg) : AAs(std::move(Arg.AAs)) {
for (auto &AA : AAs)
AA->setAAResults(this);
}
AAResults &AAResults::operator=(AAResults &&Arg) {
AAs = std::move(Arg.AAs);
for (auto &AA : AAs)
AA->setAAResults(this);
return *this;
}
AAResults::~AAResults() {
// FIXME; It would be nice to at least clear out the pointers back to this
// aggregation here, but we end up with non-nesting lifetimes in the legacy
// pass manager that prevent this from working. In the legacy pass manager
// we'll end up with dangling references here in some cases.
#if 0
for (auto &AA : AAs)
AA->setAAResults(nullptr);
#endif
}
//===----------------------------------------------------------------------===//
// Default chaining methods
//===----------------------------------------------------------------------===//
AliasResult AAResults::alias(const MemoryLocation &LocA,
const MemoryLocation &LocB) {
for (const auto &AA : AAs) {
auto Result = AA->alias(LocA, LocB);
if (Result != MayAlias)
return Result;
}
return MayAlias;
}
bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
bool OrLocal) {
for (const auto &AA : AAs)
if (AA->pointsToConstantMemory(Loc, OrLocal))
return true;
return false;
}
ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
ModRefInfo Result = MRI_ModRef;
for (const auto &AA : AAs) {
Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx));
// Early-exit the moment we reach the bottom of the lattice.
if (Result == MRI_NoModRef)
return Result;
}
return Result;
}
ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
// We may have two calls
if (auto CS = ImmutableCallSite(I)) {
// Check if the two calls modify the same memory
return getModRefInfo(Call, CS);
} else {
// Otherwise, check if the call modifies or references the
// location this memory access defines. The best we can say
// is that if the call references what this instruction
// defines, it must be clobbered by this location.
const MemoryLocation DefLoc = MemoryLocation::get(I);
if (getModRefInfo(Call, DefLoc) != MRI_NoModRef)
return MRI_ModRef;
}
return MRI_NoModRef;
}
ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
const MemoryLocation &Loc) {
ModRefInfo Result = MRI_ModRef;
for (const auto &AA : AAs) {
Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc));
// Early-exit the moment we reach the bottom of the lattice.
if (Result == MRI_NoModRef)
return Result;
}
return Result;
}
ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
ImmutableCallSite CS2) {
ModRefInfo Result = MRI_ModRef;
for (const auto &AA : AAs) {
Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2));
// Early-exit the moment we reach the bottom of the lattice.
if (Result == MRI_NoModRef)
return Result;
}
return Result;
}
FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
for (const auto &AA : AAs) {
Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
// Early-exit the moment we reach the bottom of the lattice.
if (Result == FMRB_DoesNotAccessMemory)
return Result;
}
return Result;
}
FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
for (const auto &AA : AAs) {
Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
// Early-exit the moment we reach the bottom of the lattice.
if (Result == FMRB_DoesNotAccessMemory)
return Result;
}
return Result;
}
//===----------------------------------------------------------------------===//
// Helper method implementation
//===----------------------------------------------------------------------===//
ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
const MemoryLocation &Loc) {
// Be conservative in the face of volatile/atomic.
if (!L->isUnordered())
return MRI_ModRef;
// If the load address doesn't alias the given address, it doesn't read
// or write the specified memory.
if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
return MRI_NoModRef;
// Otherwise, a load just reads.
return MRI_Ref;
}
ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
const MemoryLocation &Loc) {
// Be conservative in the face of volatile/atomic.
if (!S->isUnordered())
return MRI_ModRef;
if (Loc.Ptr) {
// If the store address cannot alias the pointer in question, then the
// specified memory cannot be modified by the store.
if (!alias(MemoryLocation::get(S), Loc))
return MRI_NoModRef;
// If the pointer is a pointer to constant memory, then it could not have
// been modified by this store.
if (pointsToConstantMemory(Loc))
return MRI_NoModRef;
}
// Otherwise, a store just writes.
return MRI_Mod;
}
ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
const MemoryLocation &Loc) {
if (Loc.Ptr) {
// If the va_arg address cannot alias the pointer in question, then the
// specified memory cannot be accessed by the va_arg.
if (!alias(MemoryLocation::get(V), Loc))
return MRI_NoModRef;
// If the pointer is a pointer to constant memory, then it could not have
// been modified by this va_arg.
if (pointsToConstantMemory(Loc))
return MRI_NoModRef;
}
// Otherwise, a va_arg reads and writes.
return MRI_ModRef;
}
ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
const MemoryLocation &Loc) {
// Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
if (CX->getSuccessOrdering() > Monotonic)
return MRI_ModRef;
// If the cmpxchg address does not alias the location, it does not access it.
if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
return MRI_NoModRef;
return MRI_ModRef;
}
ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
const MemoryLocation &Loc) {
// Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
if (RMW->getOrdering() > Monotonic)
return MRI_ModRef;
// If the atomicrmw address does not alias the location, it does not access it.
if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
return MRI_NoModRef;
return MRI_ModRef;
}
/// \brief Return information about whether a particular call site modifies
/// or reads the specified memory location \p MemLoc before instruction \p I
/// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
/// instruction-ordering queries inside the BasicBlock containing \p I.
/// FIXME: this is really just shoring-up a deficiency in alias analysis.
/// BasicAA isn't willing to spend linear time determining whether an alloca
/// was captured before or after this particular call, while we are. However,
/// with a smarter AA in place, this test is just wasting compile time.
ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
const MemoryLocation &MemLoc,
DominatorTree *DT,
OrderedBasicBlock *OBB) {
if (!DT)
return MRI_ModRef;
const Value *Object =
GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
isa<Constant>(Object))
return MRI_ModRef;
ImmutableCallSite CS(I);
if (!CS.getInstruction() || CS.getInstruction() == Object)
return MRI_ModRef;
if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
/* StoreCaptures */ true, I, DT,
/* include Object */ true,
/* OrderedBasicBlock */ OBB))
return MRI_ModRef;
unsigned ArgNo = 0;
ModRefInfo R = MRI_NoModRef;
for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
CI != CE; ++CI, ++ArgNo) {
// Only look at the no-capture or byval pointer arguments. If this
// pointer were passed to arguments that were neither of these, then it
// couldn't be no-capture.
if (!(*CI)->getType()->isPointerTy() ||
(!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
continue;
// If this is a no-capture pointer argument, see if we can tell that it
// is impossible to alias the pointer we're checking. If not, we have to
// assume that the call could touch the pointer, even though it doesn't
// escape.
if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object)))
continue;
if (CS.doesNotAccessMemory(ArgNo))
continue;
if (CS.onlyReadsMemory(ArgNo)) {
R = MRI_Ref;
continue;
}
return MRI_ModRef;
}
return R;
}
/// canBasicBlockModify - Return true if it is possible for execution of the
/// specified basic block to modify the location Loc.
///
bool AAResults::canBasicBlockModify(const BasicBlock &BB,
const MemoryLocation &Loc) {
return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod);
}
/// canInstructionRangeModRef - Return true if it is possible for the
/// execution of the specified instructions to mod\ref (according to the
/// mode) the location Loc. The instructions to consider are all
/// of the instructions in the range of [I1,I2] INCLUSIVE.
/// I1 and I2 must be in the same basic block.
bool AAResults::canInstructionRangeModRef(const Instruction &I1,
const Instruction &I2,
const MemoryLocation &Loc,
const ModRefInfo Mode) {
assert(I1.getParent() == I2.getParent() &&
"Instructions not in same basic block!");
BasicBlock::const_iterator I = &I1;
BasicBlock::const_iterator E = &I2;
++E; // Convert from inclusive to exclusive range.
for (; I != E; ++I) // Check every instruction in range
if (getModRefInfo(I, Loc) & Mode)
return true;
return false;
}
// Provide a definition for the root virtual destructor.
AAResults::Concept::~Concept() {}
AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
}
char AAResultsWrapperPass::ID = 0;
INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
"Function Alias Analysis Results", false, true)
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(CFLAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
"Function Alias Analysis Results", false, true)
FunctionPass *llvm::createAAResultsWrapperPass() {
return new AAResultsWrapperPass();
}
/// Run the wrapper pass to rebuild an aggregation over known AA passes.
///
/// This is the legacy pass manager's interface to the new-style AA results
/// aggregation object. Because this is somewhat shoe-horned into the legacy
/// pass manager, we hard code all the specific alias analyses available into
/// it. While the particular set enabled is configured via commandline flags,
/// adding a new alias analysis to LLVM will require adding support for it to
/// this list.
bool AAResultsWrapperPass::runOnFunction(Function &F) {
// NB! This *must* be reset before adding new AA results to the new
// AAResults object because in the legacy pass manager, each instance
// of these will refer to the *same* immutable analyses, registering and
// unregistering themselves with them. We need to carefully tear down the
// previous object first, in this case replacing it with an empty one, before
// registering new results.
AAR.reset(new AAResults());
// BasicAA is always available for function analyses. Also, we add it first
// so that it can trump TBAA results when it proves MustAlias.
// FIXME: TBAA should have an explicit mode to support this and then we
// should reconsider the ordering here.
if (!DisableBasicAA)
AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
// Populate the results with the currently available AAs.
if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
AAR->addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
AAR->addAAResult(WrapperPass->getResult());
if (auto *WrapperPass =
getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
AAR->addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
AAR->addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
AAR->addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = getAnalysisIfAvailable<CFLAAWrapperPass>())
AAR->addAAResult(WrapperPass->getResult());
// Analyses don't mutate the IR, so return false.
return false;
}
void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
AU.setPreservesAll();
AU.addRequired<BasicAAWrapperPass>();
// We also need to mark all the alias analysis passes we will potentially
// probe in runOnFunction as used here to ensure the legacy pass manager
// preserves them. This hard coding of lists of alias analyses is specific to
// the legacy pass manager.
AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
AU.addUsedIfAvailable<SCEVAAWrapperPass>();
AU.addUsedIfAvailable<CFLAAWrapperPass>();
}
AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
BasicAAResult &BAR) {
AAResults AAR;
// Add in our explicitly constructed BasicAA results.
if (!DisableBasicAA)
AAR.addAAResult(BAR);
// Populate the results with the other currently available AAs.
if (auto *WrapperPass =
P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
if (auto *WrapperPass =
P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = P.getAnalysisIfAvailable<SCEVAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAAWrapperPass>())
AAR.addAAResult(WrapperPass->getResult());
return AAR;
}
/// isNoAliasCall - Return true if this pointer is returned by a noalias
/// function.
bool llvm::isNoAliasCall(const Value *V) {
if (auto CS = ImmutableCallSite(V))
return CS.paramHasAttr(0, Attribute::NoAlias);
return false;
}
/// isNoAliasArgument - Return true if this is an argument with the noalias
/// attribute.
bool llvm::isNoAliasArgument(const Value *V)
{
if (const Argument *A = dyn_cast<Argument>(V))
return A->hasNoAliasAttr();
return false;
}
/// isIdentifiedObject - Return true if this pointer refers to a distinct and
/// identifiable object. This returns true for:
/// Global Variables and Functions (but not Global Aliases)
/// Allocas and Mallocs
/// ByVal and NoAlias Arguments
/// NoAlias returns
///
bool llvm::isIdentifiedObject(const Value *V) {
if (isa<AllocaInst>(V))
return true;
if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
return true;
if (isNoAliasCall(V))
return true;
if (const Argument *A = dyn_cast<Argument>(V))
return A->hasNoAliasAttr() || A->hasByValAttr();
return false;
}
/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
/// at the function-level. Different IdentifiedFunctionLocals can't alias.
/// Further, an IdentifiedFunctionLocal can not alias with any function
/// arguments other than itself, which is not necessarily true for
/// IdentifiedObjects.
bool llvm::isIdentifiedFunctionLocal(const Value *V)
{
return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
}