forked from OSchip/llvm-project
520 lines
19 KiB
C++
520 lines
19 KiB
C++
//===- AliasAnalysis.cpp - Generic Alias Analysis Interface Implementation -==//
|
|
//
|
|
// The LLVM Compiler Infrastructure
|
|
//
|
|
// This file is distributed under the University of Illinois Open Source
|
|
// License. See LICENSE.TXT for details.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements the generic AliasAnalysis interface which is used as the
|
|
// common interface used by all clients and implementations of alias analysis.
|
|
//
|
|
// This file also implements the default version of the AliasAnalysis interface
|
|
// that is to be used when no other implementation is specified. This does some
|
|
// simple tests that detect obvious cases: two different global pointers cannot
|
|
// alias, a global cannot alias a malloc, two different mallocs cannot alias,
|
|
// etc.
|
|
//
|
|
// This alias analysis implementation really isn't very good for anything, but
|
|
// it is very fast, and makes a nice clean default implementation. Because it
|
|
// handles lots of little corner cases, other, more complex, alias analysis
|
|
// implementations may choose to rely on this pass to resolve these simple and
|
|
// easy cases.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "llvm/Analysis/AliasAnalysis.h"
|
|
#include "llvm/Analysis/BasicAliasAnalysis.h"
|
|
#include "llvm/Analysis/CFG.h"
|
|
#include "llvm/Analysis/CFLAliasAnalysis.h"
|
|
#include "llvm/Analysis/CaptureTracking.h"
|
|
#include "llvm/Analysis/GlobalsModRef.h"
|
|
#include "llvm/Analysis/ObjCARCAliasAnalysis.h"
|
|
#include "llvm/Analysis/ScalarEvolutionAliasAnalysis.h"
|
|
#include "llvm/Analysis/ScopedNoAliasAA.h"
|
|
#include "llvm/Analysis/TargetLibraryInfo.h"
|
|
#include "llvm/Analysis/TypeBasedAliasAnalysis.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/BasicBlock.h"
|
|
#include "llvm/IR/DataLayout.h"
|
|
#include "llvm/IR/Dominators.h"
|
|
#include "llvm/IR/Function.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/IntrinsicInst.h"
|
|
#include "llvm/IR/LLVMContext.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/Pass.h"
|
|
using namespace llvm;
|
|
|
|
/// Allow disabling BasicAA from the AA results. This is particularly useful
|
|
/// when testing to isolate a single AA implementation.
|
|
static cl::opt<bool> DisableBasicAA("disable-basicaa", cl::Hidden,
|
|
cl::init(false));
|
|
|
|
AAResults::AAResults(AAResults &&Arg) : AAs(std::move(Arg.AAs)) {
|
|
for (auto &AA : AAs)
|
|
AA->setAAResults(this);
|
|
}
|
|
|
|
AAResults &AAResults::operator=(AAResults &&Arg) {
|
|
AAs = std::move(Arg.AAs);
|
|
for (auto &AA : AAs)
|
|
AA->setAAResults(this);
|
|
return *this;
|
|
}
|
|
|
|
AAResults::~AAResults() {
|
|
// FIXME; It would be nice to at least clear out the pointers back to this
|
|
// aggregation here, but we end up with non-nesting lifetimes in the legacy
|
|
// pass manager that prevent this from working. In the legacy pass manager
|
|
// we'll end up with dangling references here in some cases.
|
|
#if 0
|
|
for (auto &AA : AAs)
|
|
AA->setAAResults(nullptr);
|
|
#endif
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Default chaining methods
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
AliasResult AAResults::alias(const MemoryLocation &LocA,
|
|
const MemoryLocation &LocB) {
|
|
for (const auto &AA : AAs) {
|
|
auto Result = AA->alias(LocA, LocB);
|
|
if (Result != MayAlias)
|
|
return Result;
|
|
}
|
|
return MayAlias;
|
|
}
|
|
|
|
bool AAResults::pointsToConstantMemory(const MemoryLocation &Loc,
|
|
bool OrLocal) {
|
|
for (const auto &AA : AAs)
|
|
if (AA->pointsToConstantMemory(Loc, OrLocal))
|
|
return true;
|
|
|
|
return false;
|
|
}
|
|
|
|
ModRefInfo AAResults::getArgModRefInfo(ImmutableCallSite CS, unsigned ArgIdx) {
|
|
ModRefInfo Result = MRI_ModRef;
|
|
|
|
for (const auto &AA : AAs) {
|
|
Result = ModRefInfo(Result & AA->getArgModRefInfo(CS, ArgIdx));
|
|
|
|
// Early-exit the moment we reach the bottom of the lattice.
|
|
if (Result == MRI_NoModRef)
|
|
return Result;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(Instruction *I, ImmutableCallSite Call) {
|
|
// We may have two calls
|
|
if (auto CS = ImmutableCallSite(I)) {
|
|
// Check if the two calls modify the same memory
|
|
return getModRefInfo(Call, CS);
|
|
} else {
|
|
// Otherwise, check if the call modifies or references the
|
|
// location this memory access defines. The best we can say
|
|
// is that if the call references what this instruction
|
|
// defines, it must be clobbered by this location.
|
|
const MemoryLocation DefLoc = MemoryLocation::get(I);
|
|
if (getModRefInfo(Call, DefLoc) != MRI_NoModRef)
|
|
return MRI_ModRef;
|
|
}
|
|
return MRI_NoModRef;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS,
|
|
const MemoryLocation &Loc) {
|
|
ModRefInfo Result = MRI_ModRef;
|
|
|
|
for (const auto &AA : AAs) {
|
|
Result = ModRefInfo(Result & AA->getModRefInfo(CS, Loc));
|
|
|
|
// Early-exit the moment we reach the bottom of the lattice.
|
|
if (Result == MRI_NoModRef)
|
|
return Result;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(ImmutableCallSite CS1,
|
|
ImmutableCallSite CS2) {
|
|
ModRefInfo Result = MRI_ModRef;
|
|
|
|
for (const auto &AA : AAs) {
|
|
Result = ModRefInfo(Result & AA->getModRefInfo(CS1, CS2));
|
|
|
|
// Early-exit the moment we reach the bottom of the lattice.
|
|
if (Result == MRI_NoModRef)
|
|
return Result;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
FunctionModRefBehavior AAResults::getModRefBehavior(ImmutableCallSite CS) {
|
|
FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
|
|
|
|
for (const auto &AA : AAs) {
|
|
Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(CS));
|
|
|
|
// Early-exit the moment we reach the bottom of the lattice.
|
|
if (Result == FMRB_DoesNotAccessMemory)
|
|
return Result;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
FunctionModRefBehavior AAResults::getModRefBehavior(const Function *F) {
|
|
FunctionModRefBehavior Result = FMRB_UnknownModRefBehavior;
|
|
|
|
for (const auto &AA : AAs) {
|
|
Result = FunctionModRefBehavior(Result & AA->getModRefBehavior(F));
|
|
|
|
// Early-exit the moment we reach the bottom of the lattice.
|
|
if (Result == FMRB_DoesNotAccessMemory)
|
|
return Result;
|
|
}
|
|
|
|
return Result;
|
|
}
|
|
|
|
//===----------------------------------------------------------------------===//
|
|
// Helper method implementation
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
ModRefInfo AAResults::getModRefInfo(const LoadInst *L,
|
|
const MemoryLocation &Loc) {
|
|
// Be conservative in the face of volatile/atomic.
|
|
if (!L->isUnordered())
|
|
return MRI_ModRef;
|
|
|
|
// If the load address doesn't alias the given address, it doesn't read
|
|
// or write the specified memory.
|
|
if (Loc.Ptr && !alias(MemoryLocation::get(L), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
// Otherwise, a load just reads.
|
|
return MRI_Ref;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(const StoreInst *S,
|
|
const MemoryLocation &Loc) {
|
|
// Be conservative in the face of volatile/atomic.
|
|
if (!S->isUnordered())
|
|
return MRI_ModRef;
|
|
|
|
if (Loc.Ptr) {
|
|
// If the store address cannot alias the pointer in question, then the
|
|
// specified memory cannot be modified by the store.
|
|
if (!alias(MemoryLocation::get(S), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
// If the pointer is a pointer to constant memory, then it could not have
|
|
// been modified by this store.
|
|
if (pointsToConstantMemory(Loc))
|
|
return MRI_NoModRef;
|
|
}
|
|
|
|
// Otherwise, a store just writes.
|
|
return MRI_Mod;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(const VAArgInst *V,
|
|
const MemoryLocation &Loc) {
|
|
|
|
if (Loc.Ptr) {
|
|
// If the va_arg address cannot alias the pointer in question, then the
|
|
// specified memory cannot be accessed by the va_arg.
|
|
if (!alias(MemoryLocation::get(V), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
// If the pointer is a pointer to constant memory, then it could not have
|
|
// been modified by this va_arg.
|
|
if (pointsToConstantMemory(Loc))
|
|
return MRI_NoModRef;
|
|
}
|
|
|
|
// Otherwise, a va_arg reads and writes.
|
|
return MRI_ModRef;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(const AtomicCmpXchgInst *CX,
|
|
const MemoryLocation &Loc) {
|
|
// Acquire/Release cmpxchg has properties that matter for arbitrary addresses.
|
|
if (CX->getSuccessOrdering() > Monotonic)
|
|
return MRI_ModRef;
|
|
|
|
// If the cmpxchg address does not alias the location, it does not access it.
|
|
if (Loc.Ptr && !alias(MemoryLocation::get(CX), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
return MRI_ModRef;
|
|
}
|
|
|
|
ModRefInfo AAResults::getModRefInfo(const AtomicRMWInst *RMW,
|
|
const MemoryLocation &Loc) {
|
|
// Acquire/Release atomicrmw has properties that matter for arbitrary addresses.
|
|
if (RMW->getOrdering() > Monotonic)
|
|
return MRI_ModRef;
|
|
|
|
// If the atomicrmw address does not alias the location, it does not access it.
|
|
if (Loc.Ptr && !alias(MemoryLocation::get(RMW), Loc))
|
|
return MRI_NoModRef;
|
|
|
|
return MRI_ModRef;
|
|
}
|
|
|
|
/// \brief Return information about whether a particular call site modifies
|
|
/// or reads the specified memory location \p MemLoc before instruction \p I
|
|
/// in a BasicBlock. A ordered basic block \p OBB can be used to speed up
|
|
/// instruction-ordering queries inside the BasicBlock containing \p I.
|
|
/// FIXME: this is really just shoring-up a deficiency in alias analysis.
|
|
/// BasicAA isn't willing to spend linear time determining whether an alloca
|
|
/// was captured before or after this particular call, while we are. However,
|
|
/// with a smarter AA in place, this test is just wasting compile time.
|
|
ModRefInfo AAResults::callCapturesBefore(const Instruction *I,
|
|
const MemoryLocation &MemLoc,
|
|
DominatorTree *DT,
|
|
OrderedBasicBlock *OBB) {
|
|
if (!DT)
|
|
return MRI_ModRef;
|
|
|
|
const Value *Object =
|
|
GetUnderlyingObject(MemLoc.Ptr, I->getModule()->getDataLayout());
|
|
if (!isIdentifiedObject(Object) || isa<GlobalValue>(Object) ||
|
|
isa<Constant>(Object))
|
|
return MRI_ModRef;
|
|
|
|
ImmutableCallSite CS(I);
|
|
if (!CS.getInstruction() || CS.getInstruction() == Object)
|
|
return MRI_ModRef;
|
|
|
|
if (llvm::PointerMayBeCapturedBefore(Object, /* ReturnCaptures */ true,
|
|
/* StoreCaptures */ true, I, DT,
|
|
/* include Object */ true,
|
|
/* OrderedBasicBlock */ OBB))
|
|
return MRI_ModRef;
|
|
|
|
unsigned ArgNo = 0;
|
|
ModRefInfo R = MRI_NoModRef;
|
|
for (ImmutableCallSite::arg_iterator CI = CS.arg_begin(), CE = CS.arg_end();
|
|
CI != CE; ++CI, ++ArgNo) {
|
|
// Only look at the no-capture or byval pointer arguments. If this
|
|
// pointer were passed to arguments that were neither of these, then it
|
|
// couldn't be no-capture.
|
|
if (!(*CI)->getType()->isPointerTy() ||
|
|
(!CS.doesNotCapture(ArgNo) && !CS.isByValArgument(ArgNo)))
|
|
continue;
|
|
|
|
// If this is a no-capture pointer argument, see if we can tell that it
|
|
// is impossible to alias the pointer we're checking. If not, we have to
|
|
// assume that the call could touch the pointer, even though it doesn't
|
|
// escape.
|
|
if (isNoAlias(MemoryLocation(*CI), MemoryLocation(Object)))
|
|
continue;
|
|
if (CS.doesNotAccessMemory(ArgNo))
|
|
continue;
|
|
if (CS.onlyReadsMemory(ArgNo)) {
|
|
R = MRI_Ref;
|
|
continue;
|
|
}
|
|
return MRI_ModRef;
|
|
}
|
|
return R;
|
|
}
|
|
|
|
/// canBasicBlockModify - Return true if it is possible for execution of the
|
|
/// specified basic block to modify the location Loc.
|
|
///
|
|
bool AAResults::canBasicBlockModify(const BasicBlock &BB,
|
|
const MemoryLocation &Loc) {
|
|
return canInstructionRangeModRef(BB.front(), BB.back(), Loc, MRI_Mod);
|
|
}
|
|
|
|
/// canInstructionRangeModRef - Return true if it is possible for the
|
|
/// execution of the specified instructions to mod\ref (according to the
|
|
/// mode) the location Loc. The instructions to consider are all
|
|
/// of the instructions in the range of [I1,I2] INCLUSIVE.
|
|
/// I1 and I2 must be in the same basic block.
|
|
bool AAResults::canInstructionRangeModRef(const Instruction &I1,
|
|
const Instruction &I2,
|
|
const MemoryLocation &Loc,
|
|
const ModRefInfo Mode) {
|
|
assert(I1.getParent() == I2.getParent() &&
|
|
"Instructions not in same basic block!");
|
|
BasicBlock::const_iterator I = &I1;
|
|
BasicBlock::const_iterator E = &I2;
|
|
++E; // Convert from inclusive to exclusive range.
|
|
|
|
for (; I != E; ++I) // Check every instruction in range
|
|
if (getModRefInfo(I, Loc) & Mode)
|
|
return true;
|
|
return false;
|
|
}
|
|
|
|
// Provide a definition for the root virtual destructor.
|
|
AAResults::Concept::~Concept() {}
|
|
|
|
AAResultsWrapperPass::AAResultsWrapperPass() : FunctionPass(ID) {
|
|
initializeAAResultsWrapperPassPass(*PassRegistry::getPassRegistry());
|
|
}
|
|
|
|
char AAResultsWrapperPass::ID = 0;
|
|
|
|
INITIALIZE_PASS_BEGIN(AAResultsWrapperPass, "aa",
|
|
"Function Alias Analysis Results", false, true)
|
|
INITIALIZE_PASS_DEPENDENCY(BasicAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(CFLAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(GlobalsAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ObjCARCAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(SCEVAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(ScopedNoAliasAAWrapperPass)
|
|
INITIALIZE_PASS_DEPENDENCY(TypeBasedAAWrapperPass)
|
|
INITIALIZE_PASS_END(AAResultsWrapperPass, "aa",
|
|
"Function Alias Analysis Results", false, true)
|
|
|
|
FunctionPass *llvm::createAAResultsWrapperPass() {
|
|
return new AAResultsWrapperPass();
|
|
}
|
|
|
|
/// Run the wrapper pass to rebuild an aggregation over known AA passes.
|
|
///
|
|
/// This is the legacy pass manager's interface to the new-style AA results
|
|
/// aggregation object. Because this is somewhat shoe-horned into the legacy
|
|
/// pass manager, we hard code all the specific alias analyses available into
|
|
/// it. While the particular set enabled is configured via commandline flags,
|
|
/// adding a new alias analysis to LLVM will require adding support for it to
|
|
/// this list.
|
|
bool AAResultsWrapperPass::runOnFunction(Function &F) {
|
|
// NB! This *must* be reset before adding new AA results to the new
|
|
// AAResults object because in the legacy pass manager, each instance
|
|
// of these will refer to the *same* immutable analyses, registering and
|
|
// unregistering themselves with them. We need to carefully tear down the
|
|
// previous object first, in this case replacing it with an empty one, before
|
|
// registering new results.
|
|
AAR.reset(new AAResults());
|
|
|
|
// BasicAA is always available for function analyses. Also, we add it first
|
|
// so that it can trump TBAA results when it proves MustAlias.
|
|
// FIXME: TBAA should have an explicit mode to support this and then we
|
|
// should reconsider the ordering here.
|
|
if (!DisableBasicAA)
|
|
AAR->addAAResult(getAnalysis<BasicAAWrapperPass>().getResult());
|
|
|
|
// Populate the results with the currently available AAs.
|
|
if (auto *WrapperPass = getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass =
|
|
getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = getAnalysisIfAvailable<GlobalsAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = getAnalysisIfAvailable<SCEVAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = getAnalysisIfAvailable<CFLAAWrapperPass>())
|
|
AAR->addAAResult(WrapperPass->getResult());
|
|
|
|
// Analyses don't mutate the IR, so return false.
|
|
return false;
|
|
}
|
|
|
|
void AAResultsWrapperPass::getAnalysisUsage(AnalysisUsage &AU) const {
|
|
AU.setPreservesAll();
|
|
AU.addRequired<BasicAAWrapperPass>();
|
|
|
|
// We also need to mark all the alias analysis passes we will potentially
|
|
// probe in runOnFunction as used here to ensure the legacy pass manager
|
|
// preserves them. This hard coding of lists of alias analyses is specific to
|
|
// the legacy pass manager.
|
|
AU.addUsedIfAvailable<ScopedNoAliasAAWrapperPass>();
|
|
AU.addUsedIfAvailable<TypeBasedAAWrapperPass>();
|
|
AU.addUsedIfAvailable<objcarc::ObjCARCAAWrapperPass>();
|
|
AU.addUsedIfAvailable<GlobalsAAWrapperPass>();
|
|
AU.addUsedIfAvailable<SCEVAAWrapperPass>();
|
|
AU.addUsedIfAvailable<CFLAAWrapperPass>();
|
|
}
|
|
|
|
AAResults llvm::createLegacyPMAAResults(Pass &P, Function &F,
|
|
BasicAAResult &BAR) {
|
|
AAResults AAR;
|
|
|
|
// Add in our explicitly constructed BasicAA results.
|
|
if (!DisableBasicAA)
|
|
AAR.addAAResult(BAR);
|
|
|
|
// Populate the results with the other currently available AAs.
|
|
if (auto *WrapperPass =
|
|
P.getAnalysisIfAvailable<ScopedNoAliasAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = P.getAnalysisIfAvailable<TypeBasedAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass =
|
|
P.getAnalysisIfAvailable<objcarc::ObjCARCAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = P.getAnalysisIfAvailable<GlobalsAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = P.getAnalysisIfAvailable<SCEVAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
if (auto *WrapperPass = P.getAnalysisIfAvailable<CFLAAWrapperPass>())
|
|
AAR.addAAResult(WrapperPass->getResult());
|
|
|
|
return AAR;
|
|
}
|
|
|
|
/// isNoAliasCall - Return true if this pointer is returned by a noalias
|
|
/// function.
|
|
bool llvm::isNoAliasCall(const Value *V) {
|
|
if (auto CS = ImmutableCallSite(V))
|
|
return CS.paramHasAttr(0, Attribute::NoAlias);
|
|
return false;
|
|
}
|
|
|
|
/// isNoAliasArgument - Return true if this is an argument with the noalias
|
|
/// attribute.
|
|
bool llvm::isNoAliasArgument(const Value *V)
|
|
{
|
|
if (const Argument *A = dyn_cast<Argument>(V))
|
|
return A->hasNoAliasAttr();
|
|
return false;
|
|
}
|
|
|
|
/// isIdentifiedObject - Return true if this pointer refers to a distinct and
|
|
/// identifiable object. This returns true for:
|
|
/// Global Variables and Functions (but not Global Aliases)
|
|
/// Allocas and Mallocs
|
|
/// ByVal and NoAlias Arguments
|
|
/// NoAlias returns
|
|
///
|
|
bool llvm::isIdentifiedObject(const Value *V) {
|
|
if (isa<AllocaInst>(V))
|
|
return true;
|
|
if (isa<GlobalValue>(V) && !isa<GlobalAlias>(V))
|
|
return true;
|
|
if (isNoAliasCall(V))
|
|
return true;
|
|
if (const Argument *A = dyn_cast<Argument>(V))
|
|
return A->hasNoAliasAttr() || A->hasByValAttr();
|
|
return false;
|
|
}
|
|
|
|
/// isIdentifiedFunctionLocal - Return true if V is umabigously identified
|
|
/// at the function-level. Different IdentifiedFunctionLocals can't alias.
|
|
/// Further, an IdentifiedFunctionLocal can not alias with any function
|
|
/// arguments other than itself, which is not necessarily true for
|
|
/// IdentifiedObjects.
|
|
bool llvm::isIdentifiedFunctionLocal(const Value *V)
|
|
{
|
|
return isa<AllocaInst>(V) || isNoAliasCall(V) || isNoAliasArgument(V);
|
|
}
|