llvm-project/mlir/lib/Dialect/LLVMIR/IR/LLVMDialect.cpp

3236 lines
123 KiB
C++

//===- LLVMDialect.cpp - LLVM IR Ops and Dialect registration -------------===//
//
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
// See https://llvm.org/LICENSE.txt for license information.
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
//
//===----------------------------------------------------------------------===//
//
// This file defines the types and operation details for the LLVM IR dialect in
// MLIR, and the LLVM IR dialect. It also registers the dialect.
//
//===----------------------------------------------------------------------===//
#include "mlir/Dialect/LLVMIR/LLVMDialect.h"
#include "TypeDetail.h"
#include "mlir/Dialect/LLVMIR/LLVMTypes.h"
#include "mlir/IR/Builders.h"
#include "mlir/IR/BuiltinOps.h"
#include "mlir/IR/BuiltinTypes.h"
#include "mlir/IR/DialectImplementation.h"
#include "mlir/IR/FunctionImplementation.h"
#include "mlir/IR/MLIRContext.h"
#include "mlir/IR/Matchers.h"
#include "llvm/ADT/StringSwitch.h"
#include "llvm/ADT/TypeSwitch.h"
#include "llvm/AsmParser/Parser.h"
#include "llvm/Bitcode/BitcodeReader.h"
#include "llvm/Bitcode/BitcodeWriter.h"
#include "llvm/IR/Attributes.h"
#include "llvm/IR/Function.h"
#include "llvm/IR/Type.h"
#include "llvm/Support/Error.h"
#include "llvm/Support/Mutex.h"
#include "llvm/Support/SourceMgr.h"
#include <numeric>
using namespace mlir;
using namespace mlir::LLVM;
using mlir::LLVM::cconv::getMaxEnumValForCConv;
using mlir::LLVM::linkage::getMaxEnumValForLinkage;
#include "mlir/Dialect/LLVMIR/LLVMOpsDialect.cpp.inc"
static constexpr const char kVolatileAttrName[] = "volatile_";
static constexpr const char kNonTemporalAttrName[] = "nontemporal";
static constexpr const char kElemTypeAttrName[] = "elem_type";
#include "mlir/Dialect/LLVMIR/LLVMOpsEnums.cpp.inc"
#include "mlir/Dialect/LLVMIR/LLVMOpsInterfaces.cpp.inc"
#define GET_ATTRDEF_CLASSES
#include "mlir/Dialect/LLVMIR/LLVMOpsAttrDefs.cpp.inc"
static auto processFMFAttr(ArrayRef<NamedAttribute> attrs) {
SmallVector<NamedAttribute, 8> filteredAttrs(
llvm::make_filter_range(attrs, [&](NamedAttribute attr) {
if (attr.getName() == "fastmathFlags") {
auto defAttr = FMFAttr::get(attr.getValue().getContext(), {});
return defAttr != attr.getValue();
}
return true;
}));
return filteredAttrs;
}
static ParseResult parseLLVMOpAttrs(OpAsmParser &parser,
NamedAttrList &result) {
return parser.parseOptionalAttrDict(result);
}
static void printLLVMOpAttrs(OpAsmPrinter &printer, Operation *op,
DictionaryAttr attrs) {
printer.printOptionalAttrDict(processFMFAttr(attrs.getValue()));
}
/// Verifies `symbol`'s use in `op` to ensure the symbol is a valid and
/// fully defined llvm.func.
static LogicalResult verifySymbolAttrUse(FlatSymbolRefAttr symbol,
Operation *op,
SymbolTableCollection &symbolTable) {
StringRef name = symbol.getValue();
auto func =
symbolTable.lookupNearestSymbolFrom<LLVMFuncOp>(op, symbol.getAttr());
if (!func)
return op->emitOpError("'")
<< name << "' does not reference a valid LLVM function";
if (func.isExternal())
return op->emitOpError("'") << name << "' does not have a definition";
return success();
}
//===----------------------------------------------------------------------===//
// Printing, parsing and builder for LLVM::CmpOp.
//===----------------------------------------------------------------------===//
void ICmpOp::build(OpBuilder &builder, OperationState &result,
ICmpPredicate predicate, Value lhs, Value rhs) {
auto boolType = IntegerType::get(lhs.getType().getContext(), 1);
if (LLVM::isCompatibleVectorType(lhs.getType()) ||
LLVM::isCompatibleVectorType(rhs.getType())) {
int64_t numLHSElements = 1, numRHSElements = 1;
if (LLVM::isCompatibleVectorType(lhs.getType()))
numLHSElements =
LLVM::getVectorNumElements(lhs.getType()).getFixedValue();
if (LLVM::isCompatibleVectorType(rhs.getType()))
numRHSElements =
LLVM::getVectorNumElements(rhs.getType()).getFixedValue();
build(builder, result,
VectorType::get({std::max(numLHSElements, numRHSElements)}, boolType),
predicate, lhs, rhs);
} else {
build(builder, result, boolType, predicate, lhs, rhs);
}
}
void ICmpOp::print(OpAsmPrinter &p) {
p << " \"" << stringifyICmpPredicate(getPredicate()) << "\" " << getOperand(0)
<< ", " << getOperand(1);
p.printOptionalAttrDict((*this)->getAttrs(), {"predicate"});
p << " : " << getLhs().getType();
}
void FCmpOp::print(OpAsmPrinter &p) {
p << " \"" << stringifyFCmpPredicate(getPredicate()) << "\" " << getOperand(0)
<< ", " << getOperand(1);
p.printOptionalAttrDict(processFMFAttr((*this)->getAttrs()), {"predicate"});
p << " : " << getLhs().getType();
}
// <operation> ::= `llvm.icmp` string-literal ssa-use `,` ssa-use
// attribute-dict? `:` type
// <operation> ::= `llvm.fcmp` string-literal ssa-use `,` ssa-use
// attribute-dict? `:` type
template <typename CmpPredicateType>
static ParseResult parseCmpOp(OpAsmParser &parser, OperationState &result) {
Builder &builder = parser.getBuilder();
StringAttr predicateAttr;
OpAsmParser::UnresolvedOperand lhs, rhs;
Type type;
SMLoc predicateLoc, trailingTypeLoc;
if (parser.getCurrentLocation(&predicateLoc) ||
parser.parseAttribute(predicateAttr, "predicate", result.attributes) ||
parser.parseOperand(lhs) || parser.parseComma() ||
parser.parseOperand(rhs) ||
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type) ||
parser.resolveOperand(lhs, type, result.operands) ||
parser.resolveOperand(rhs, type, result.operands))
return failure();
// Replace the string attribute `predicate` with an integer attribute.
int64_t predicateValue = 0;
if (std::is_same<CmpPredicateType, ICmpPredicate>()) {
Optional<ICmpPredicate> predicate =
symbolizeICmpPredicate(predicateAttr.getValue());
if (!predicate)
return parser.emitError(predicateLoc)
<< "'" << predicateAttr.getValue()
<< "' is an incorrect value of the 'predicate' attribute";
predicateValue = static_cast<int64_t>(*predicate);
} else {
Optional<FCmpPredicate> predicate =
symbolizeFCmpPredicate(predicateAttr.getValue());
if (!predicate)
return parser.emitError(predicateLoc)
<< "'" << predicateAttr.getValue()
<< "' is an incorrect value of the 'predicate' attribute";
predicateValue = static_cast<int64_t>(*predicate);
}
result.attributes.set("predicate",
parser.getBuilder().getI64IntegerAttr(predicateValue));
// The result type is either i1 or a vector type <? x i1> if the inputs are
// vectors.
Type resultType = IntegerType::get(builder.getContext(), 1);
if (!isCompatibleType(type))
return parser.emitError(trailingTypeLoc,
"expected LLVM dialect-compatible type");
if (LLVM::isCompatibleVectorType(type)) {
if (LLVM::isScalableVectorType(type)) {
resultType = LLVM::getVectorType(
resultType, LLVM::getVectorNumElements(type).getKnownMinValue(),
/*isScalable=*/true);
} else {
resultType = LLVM::getVectorType(
resultType, LLVM::getVectorNumElements(type).getFixedValue(),
/*isScalable=*/false);
}
}
result.addTypes({resultType});
return success();
}
ParseResult ICmpOp::parse(OpAsmParser &parser, OperationState &result) {
return parseCmpOp<ICmpPredicate>(parser, result);
}
ParseResult FCmpOp::parse(OpAsmParser &parser, OperationState &result) {
return parseCmpOp<FCmpPredicate>(parser, result);
}
//===----------------------------------------------------------------------===//
// Printing, parsing and verification for LLVM::AllocaOp.
//===----------------------------------------------------------------------===//
void AllocaOp::print(OpAsmPrinter &p) {
Type elemTy = getType().cast<LLVM::LLVMPointerType>().getElementType();
if (!elemTy)
elemTy = *getElemType();
auto funcTy =
FunctionType::get(getContext(), {getArraySize().getType()}, {getType()});
p << ' ' << getArraySize() << " x " << elemTy;
if (getAlignment() && *getAlignment() != 0)
p.printOptionalAttrDict((*this)->getAttrs(), {kElemTypeAttrName});
else
p.printOptionalAttrDict((*this)->getAttrs(),
{"alignment", kElemTypeAttrName});
p << " : " << funcTy;
}
// <operation> ::= `llvm.alloca` ssa-use `x` type attribute-dict?
// `:` type `,` type
ParseResult AllocaOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::UnresolvedOperand arraySize;
Type type, elemType;
SMLoc trailingTypeLoc;
if (parser.parseOperand(arraySize) || parser.parseKeyword("x") ||
parser.parseType(elemType) ||
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type))
return failure();
Optional<NamedAttribute> alignmentAttr =
result.attributes.getNamed("alignment");
if (alignmentAttr.has_value()) {
auto alignmentInt =
alignmentAttr.value().getValue().dyn_cast<IntegerAttr>();
if (!alignmentInt)
return parser.emitError(parser.getNameLoc(),
"expected integer alignment");
if (alignmentInt.getValue().isNullValue())
result.attributes.erase("alignment");
}
// Extract the result type from the trailing function type.
auto funcType = type.dyn_cast<FunctionType>();
if (!funcType || funcType.getNumInputs() != 1 ||
funcType.getNumResults() != 1)
return parser.emitError(
trailingTypeLoc,
"expected trailing function type with one argument and one result");
if (parser.resolveOperand(arraySize, funcType.getInput(0), result.operands))
return failure();
Type resultType = funcType.getResult(0);
if (auto ptrResultType = resultType.dyn_cast<LLVMPointerType>()) {
if (ptrResultType.isOpaque())
result.addAttribute(kElemTypeAttrName, TypeAttr::get(elemType));
}
result.addTypes({funcType.getResult(0)});
return success();
}
/// Checks that the elemental type is present in either the pointer type or
/// the attribute, but not both.
static LogicalResult verifyOpaquePtr(Operation *op, LLVMPointerType ptrType,
Optional<Type> ptrElementType) {
if (ptrType.isOpaque() && !ptrElementType.has_value()) {
return op->emitOpError() << "expected '" << kElemTypeAttrName
<< "' attribute if opaque pointer type is used";
}
if (!ptrType.isOpaque() && ptrElementType.has_value()) {
return op->emitOpError()
<< "unexpected '" << kElemTypeAttrName
<< "' attribute when non-opaque pointer type is used";
}
return success();
}
LogicalResult AllocaOp::verify() {
return verifyOpaquePtr(getOperation(), getType().cast<LLVMPointerType>(),
getElemType());
}
//===----------------------------------------------------------------------===//
// LLVM::BrOp
//===----------------------------------------------------------------------===//
SuccessorOperands BrOp::getSuccessorOperands(unsigned index) {
assert(index == 0 && "invalid successor index");
return SuccessorOperands(getDestOperandsMutable());
}
//===----------------------------------------------------------------------===//
// LLVM::CondBrOp
//===----------------------------------------------------------------------===//
SuccessorOperands CondBrOp::getSuccessorOperands(unsigned index) {
assert(index < getNumSuccessors() && "invalid successor index");
return SuccessorOperands(index == 0 ? getTrueDestOperandsMutable()
: getFalseDestOperandsMutable());
}
//===----------------------------------------------------------------------===//
// LLVM::SwitchOp
//===----------------------------------------------------------------------===//
void SwitchOp::build(OpBuilder &builder, OperationState &result, Value value,
Block *defaultDestination, ValueRange defaultOperands,
ArrayRef<int32_t> caseValues, BlockRange caseDestinations,
ArrayRef<ValueRange> caseOperands,
ArrayRef<int32_t> branchWeights) {
ElementsAttr caseValuesAttr;
if (!caseValues.empty())
caseValuesAttr = builder.getI32VectorAttr(caseValues);
ElementsAttr weightsAttr;
if (!branchWeights.empty())
weightsAttr = builder.getI32VectorAttr(llvm::to_vector<4>(branchWeights));
build(builder, result, value, defaultOperands, caseOperands, caseValuesAttr,
weightsAttr, defaultDestination, caseDestinations);
}
/// <cases> ::= integer `:` bb-id (`(` ssa-use-and-type-list `)`)?
/// ( `,` integer `:` bb-id (`(` ssa-use-and-type-list `)`)? )?
static ParseResult parseSwitchOpCases(
OpAsmParser &parser, Type flagType, ElementsAttr &caseValues,
SmallVectorImpl<Block *> &caseDestinations,
SmallVectorImpl<SmallVector<OpAsmParser::UnresolvedOperand>> &caseOperands,
SmallVectorImpl<SmallVector<Type>> &caseOperandTypes) {
SmallVector<APInt> values;
unsigned bitWidth = flagType.getIntOrFloatBitWidth();
do {
int64_t value = 0;
OptionalParseResult integerParseResult = parser.parseOptionalInteger(value);
if (values.empty() && !integerParseResult.hasValue())
return success();
if (!integerParseResult.hasValue() || integerParseResult.getValue())
return failure();
values.push_back(APInt(bitWidth, value));
Block *destination;
SmallVector<OpAsmParser::UnresolvedOperand> operands;
SmallVector<Type> operandTypes;
if (parser.parseColon() || parser.parseSuccessor(destination))
return failure();
if (!parser.parseOptionalLParen()) {
if (parser.parseOperandList(operands, OpAsmParser::Delimiter::None,
/*allowResultNumber=*/false) ||
parser.parseColonTypeList(operandTypes) || parser.parseRParen())
return failure();
}
caseDestinations.push_back(destination);
caseOperands.emplace_back(operands);
caseOperandTypes.emplace_back(operandTypes);
} while (!parser.parseOptionalComma());
ShapedType caseValueType =
VectorType::get(static_cast<int64_t>(values.size()), flagType);
caseValues = DenseIntElementsAttr::get(caseValueType, values);
return success();
}
static void printSwitchOpCases(OpAsmPrinter &p, SwitchOp op, Type flagType,
ElementsAttr caseValues,
SuccessorRange caseDestinations,
OperandRangeRange caseOperands,
const TypeRangeRange &caseOperandTypes) {
if (!caseValues)
return;
size_t index = 0;
llvm::interleave(
llvm::zip(caseValues.cast<DenseIntElementsAttr>(), caseDestinations),
[&](auto i) {
p << " ";
p << std::get<0>(i).getLimitedValue();
p << ": ";
p.printSuccessorAndUseList(std::get<1>(i), caseOperands[index++]);
},
[&] {
p << ',';
p.printNewline();
});
p.printNewline();
}
LogicalResult SwitchOp::verify() {
if ((!getCaseValues() && !getCaseDestinations().empty()) ||
(getCaseValues() &&
getCaseValues()->size() !=
static_cast<int64_t>(getCaseDestinations().size())))
return emitOpError("expects number of case values to match number of "
"case destinations");
if (getBranchWeights() && getBranchWeights()->size() != getNumSuccessors())
return emitError("expects number of branch weights to match number of "
"successors: ")
<< getBranchWeights()->size() << " vs " << getNumSuccessors();
return success();
}
SuccessorOperands SwitchOp::getSuccessorOperands(unsigned index) {
assert(index < getNumSuccessors() && "invalid successor index");
return SuccessorOperands(index == 0 ? getDefaultOperandsMutable()
: getCaseOperandsMutable(index - 1));
}
//===----------------------------------------------------------------------===//
// Code for LLVM::GEPOp.
//===----------------------------------------------------------------------===//
constexpr int32_t GEPOp::kDynamicIndex;
GEPIndicesAdaptor<ValueRange> GEPOp::getIndices() {
return GEPIndicesAdaptor<ValueRange>(getRawConstantIndicesAttr(),
getDynamicIndices());
}
/// Returns the elemental type of any LLVM-compatible vector type or self.
static Type extractVectorElementType(Type type) {
if (auto vectorType = type.dyn_cast<VectorType>())
return vectorType.getElementType();
if (auto scalableVectorType = type.dyn_cast<LLVMScalableVectorType>())
return scalableVectorType.getElementType();
if (auto fixedVectorType = type.dyn_cast<LLVMFixedVectorType>())
return fixedVectorType.getElementType();
return type;
}
void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType,
Value basePtr, ArrayRef<GEPArg> indices,
ArrayRef<NamedAttribute> attributes) {
auto ptrType =
extractVectorElementType(basePtr.getType()).cast<LLVMPointerType>();
assert(!ptrType.isOpaque() &&
"expected non-opaque pointer, provide elementType explicitly when "
"opaque pointers are used");
build(builder, result, resultType, ptrType.getElementType(), basePtr, indices,
attributes);
}
/// Destructures the 'indices' parameter into 'rawConstantIndices' and
/// 'dynamicIndices', encoding the former in the process. In the process,
/// dynamic indices which are used to index into a structure type are converted
/// to constant indices when possible. To do this, the GEPs element type should
/// be passed as first parameter.
static void destructureIndices(Type currType, ArrayRef<GEPArg> indices,
SmallVectorImpl<int32_t> &rawConstantIndices,
SmallVectorImpl<Value> &dynamicIndices) {
for (const GEPArg &iter : indices) {
// If the thing we are currently indexing into is a struct we must turn
// any integer constants into constant indices. If this is not possible
// we don't do anything here. The verifier will catch it and emit a proper
// error. All other canonicalization is done in the fold method.
bool requiresConst = !rawConstantIndices.empty() &&
currType.isa_and_nonnull<LLVMStructType>();
if (Value val = iter.dyn_cast<Value>()) {
APInt intC;
if (requiresConst && matchPattern(val, m_ConstantInt(&intC)) &&
intC.isSignedIntN(kGEPConstantBitWidth)) {
rawConstantIndices.push_back(intC.getSExtValue());
} else {
rawConstantIndices.push_back(GEPOp::kDynamicIndex);
dynamicIndices.push_back(val);
}
} else {
rawConstantIndices.push_back(iter.get<GEPConstantIndex>());
}
// Skip for very first iteration of this loop. First index does not index
// within the aggregates, but is just a pointer offset.
if (rawConstantIndices.size() == 1 || !currType)
continue;
currType =
TypeSwitch<Type, Type>(currType)
.Case<VectorType, LLVMScalableVectorType, LLVMFixedVectorType,
LLVMArrayType>([](auto containerType) {
return containerType.getElementType();
})
.Case([&](LLVMStructType structType) -> Type {
int64_t memberIndex = rawConstantIndices.back();
if (memberIndex >= 0 && static_cast<size_t>(memberIndex) <
structType.getBody().size())
return structType.getBody()[memberIndex];
return nullptr;
})
.Default(Type(nullptr));
}
}
void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType,
Type elementType, Value basePtr, ArrayRef<GEPArg> indices,
ArrayRef<NamedAttribute> attributes) {
SmallVector<int32_t> rawConstantIndices;
SmallVector<Value> dynamicIndices;
destructureIndices(elementType, indices, rawConstantIndices, dynamicIndices);
result.addTypes(resultType);
result.addAttributes(attributes);
result.addAttribute(getRawConstantIndicesAttrName(result.name),
builder.getDenseI32ArrayAttr(rawConstantIndices));
if (extractVectorElementType(basePtr.getType())
.cast<LLVMPointerType>()
.isOpaque())
result.addAttribute(kElemTypeAttrName, TypeAttr::get(elementType));
result.addOperands(basePtr);
result.addOperands(dynamicIndices);
}
void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType,
Value basePtr, ValueRange indices,
ArrayRef<NamedAttribute> attributes) {
build(builder, result, resultType, basePtr, SmallVector<GEPArg>(indices),
attributes);
}
void GEPOp::build(OpBuilder &builder, OperationState &result, Type resultType,
Type elementType, Value basePtr, ValueRange indices,
ArrayRef<NamedAttribute> attributes) {
build(builder, result, resultType, elementType, basePtr,
SmallVector<GEPArg>(indices), attributes);
}
static ParseResult
parseGEPIndices(OpAsmParser &parser,
SmallVectorImpl<OpAsmParser::UnresolvedOperand> &indices,
DenseI32ArrayAttr &rawConstantIndices) {
SmallVector<int32_t> constantIndices;
auto idxParser = [&]() -> ParseResult {
int32_t constantIndex;
OptionalParseResult parsedInteger =
parser.parseOptionalInteger(constantIndex);
if (parsedInteger.hasValue()) {
if (failed(parsedInteger.getValue()))
return failure();
constantIndices.push_back(constantIndex);
return success();
}
constantIndices.push_back(LLVM::GEPOp::kDynamicIndex);
return parser.parseOperand(indices.emplace_back());
};
if (parser.parseCommaSeparatedList(idxParser))
return failure();
rawConstantIndices =
DenseI32ArrayAttr::get(parser.getContext(), constantIndices);
return success();
}
static void printGEPIndices(OpAsmPrinter &printer, LLVM::GEPOp gepOp,
OperandRange indices,
DenseI32ArrayAttr rawConstantIndices) {
llvm::interleaveComma(
GEPIndicesAdaptor<OperandRange>(rawConstantIndices, indices), printer,
[&](PointerUnion<IntegerAttr, Value> cst) {
if (Value val = cst.dyn_cast<Value>())
printer.printOperand(val);
else
printer << cst.get<IntegerAttr>().getInt();
});
}
namespace {
/// Base class for llvm::Error related to GEP index.
class GEPIndexError : public llvm::ErrorInfo<GEPIndexError> {
protected:
unsigned indexPos;
public:
static char ID;
std::error_code convertToErrorCode() const override {
return llvm::inconvertibleErrorCode();
}
explicit GEPIndexError(unsigned pos) : indexPos(pos) {}
};
/// llvm::Error for out-of-bound GEP index.
struct GEPIndexOutOfBoundError
: public llvm::ErrorInfo<GEPIndexOutOfBoundError, GEPIndexError> {
static char ID;
using ErrorInfo::ErrorInfo;
void log(llvm::raw_ostream &os) const override {
os << "index " << indexPos << " indexing a struct is out of bounds";
}
};
/// llvm::Error for non-static GEP index indexing a struct.
struct GEPStaticIndexError
: public llvm::ErrorInfo<GEPStaticIndexError, GEPIndexError> {
static char ID;
using ErrorInfo::ErrorInfo;
void log(llvm::raw_ostream &os) const override {
os << "expected index " << indexPos << " indexing a struct "
<< "to be constant";
}
};
} // end anonymous namespace
char GEPIndexError::ID = 0;
char GEPIndexOutOfBoundError::ID = 0;
char GEPStaticIndexError::ID = 0;
/// For the given `structIndices` and `indices`, check if they're complied
/// with `baseGEPType`, especially check against LLVMStructTypes nested within.
static llvm::Error verifyStructIndices(Type baseGEPType, unsigned indexPos,
GEPIndicesAdaptor<ValueRange> indices) {
if (indexPos >= indices.size())
// Stop searching
return llvm::Error::success();
return llvm::TypeSwitch<Type, llvm::Error>(baseGEPType)
.Case<LLVMStructType>([&](LLVMStructType structType) -> llvm::Error {
if (!indices[indexPos].is<IntegerAttr>())
return llvm::make_error<GEPStaticIndexError>(indexPos);
int32_t gepIndex = indices[indexPos].get<IntegerAttr>().getInt();
ArrayRef<Type> elementTypes = structType.getBody();
if (gepIndex < 0 ||
static_cast<size_t>(gepIndex) >= elementTypes.size())
return llvm::make_error<GEPIndexOutOfBoundError>(indexPos);
// Instead of recursively going into every children types, we only
// dive into the one indexed by gepIndex.
return verifyStructIndices(elementTypes[gepIndex], indexPos + 1,
indices);
})
.Case<VectorType, LLVMScalableVectorType, LLVMFixedVectorType,
LLVMArrayType>([&](auto containerType) -> llvm::Error {
return verifyStructIndices(containerType.getElementType(), indexPos + 1,
indices);
})
.Default(
[](auto otherType) -> llvm::Error { return llvm::Error::success(); });
}
/// Driver function around `recordStructIndices`. Note that we always check
/// from the second GEP index since the first one is always dynamic.
static llvm::Error verifyStructIndices(Type baseGEPType,
GEPIndicesAdaptor<ValueRange> indices) {
return verifyStructIndices(baseGEPType, /*indexPos=*/1, indices);
}
LogicalResult LLVM::GEPOp::verify() {
if (failed(verifyOpaquePtr(
getOperation(),
extractVectorElementType(getType()).cast<LLVMPointerType>(),
getElemType())))
return failure();
if (static_cast<size_t>(
llvm::count(getRawConstantIndices(), kDynamicIndex)) !=
getDynamicIndices().size())
return emitOpError("expected as many dynamic indices as specified in '")
<< getRawConstantIndicesAttrName().getValue() << "'";
if (llvm::Error err =
verifyStructIndices(getSourceElementType(), getIndices()))
return emitOpError() << llvm::toString(std::move(err));
return success();
}
Type LLVM::GEPOp::getSourceElementType() {
if (Optional<Type> elemType = getElemType())
return *elemType;
return extractVectorElementType(getBase().getType())
.cast<LLVMPointerType>()
.getElementType();
}
//===----------------------------------------------------------------------===//
// Builder, printer and parser for for LLVM::LoadOp.
//===----------------------------------------------------------------------===//
LogicalResult verifySymbolAttribute(
Operation *op, StringRef attributeName,
llvm::function_ref<LogicalResult(Operation *, SymbolRefAttr)>
verifySymbolType) {
if (Attribute attribute = op->getAttr(attributeName)) {
// The attribute is already verified to be a symbol ref array attribute via
// a constraint in the operation definition.
for (SymbolRefAttr symbolRef :
attribute.cast<ArrayAttr>().getAsRange<SymbolRefAttr>()) {
StringAttr metadataName = symbolRef.getRootReference();
StringAttr symbolName = symbolRef.getLeafReference();
// We want @metadata::@symbol, not just @symbol
if (metadataName == symbolName) {
return op->emitOpError() << "expected '" << symbolRef
<< "' to specify a fully qualified reference";
}
auto metadataOp = SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
op->getParentOp(), metadataName);
if (!metadataOp)
return op->emitOpError()
<< "expected '" << symbolRef << "' to reference a metadata op";
Operation *symbolOp =
SymbolTable::lookupNearestSymbolFrom(metadataOp, symbolName);
if (!symbolOp)
return op->emitOpError()
<< "expected '" << symbolRef << "' to be a valid reference";
if (failed(verifySymbolType(symbolOp, symbolRef))) {
return failure();
}
}
}
return success();
}
// Verifies that metadata ops are wired up properly.
template <typename OpTy>
static LogicalResult verifyOpMetadata(Operation *op, StringRef attributeName) {
auto verifySymbolType = [op](Operation *symbolOp,
SymbolRefAttr symbolRef) -> LogicalResult {
if (!isa<OpTy>(symbolOp)) {
return op->emitOpError()
<< "expected '" << symbolRef << "' to resolve to a "
<< OpTy::getOperationName();
}
return success();
};
return verifySymbolAttribute(op, attributeName, verifySymbolType);
}
static LogicalResult verifyMemoryOpMetadata(Operation *op) {
// access_groups
if (failed(verifyOpMetadata<LLVM::AccessGroupMetadataOp>(
op, LLVMDialect::getAccessGroupsAttrName())))
return failure();
// alias_scopes
if (failed(verifyOpMetadata<LLVM::AliasScopeMetadataOp>(
op, LLVMDialect::getAliasScopesAttrName())))
return failure();
// noalias_scopes
if (failed(verifyOpMetadata<LLVM::AliasScopeMetadataOp>(
op, LLVMDialect::getNoAliasScopesAttrName())))
return failure();
return success();
}
LogicalResult LoadOp::verify() { return verifyMemoryOpMetadata(*this); }
void LoadOp::build(OpBuilder &builder, OperationState &result, Type t,
Value addr, unsigned alignment, bool isVolatile,
bool isNonTemporal) {
result.addOperands(addr);
result.addTypes(t);
if (isVolatile)
result.addAttribute(kVolatileAttrName, builder.getUnitAttr());
if (isNonTemporal)
result.addAttribute(kNonTemporalAttrName, builder.getUnitAttr());
if (alignment != 0)
result.addAttribute("alignment", builder.getI64IntegerAttr(alignment));
}
void LoadOp::print(OpAsmPrinter &p) {
p << ' ';
if (getVolatile_())
p << "volatile ";
p << getAddr();
p.printOptionalAttrDict((*this)->getAttrs(),
{kVolatileAttrName, kElemTypeAttrName});
p << " : " << getAddr().getType();
if (getAddr().getType().cast<LLVMPointerType>().isOpaque())
p << " -> " << getType();
}
// Extract the pointee type from the LLVM pointer type wrapped in MLIR. Return
// the resulting type if any, null type if opaque pointers are used, and None
// if the given type is not the pointer type.
static Optional<Type> getLoadStoreElementType(OpAsmParser &parser, Type type,
SMLoc trailingTypeLoc) {
auto llvmTy = type.dyn_cast<LLVM::LLVMPointerType>();
if (!llvmTy) {
parser.emitError(trailingTypeLoc, "expected LLVM pointer type");
return llvm::None;
}
return llvmTy.getElementType();
}
// <operation> ::= `llvm.load` `volatile` ssa-use attribute-dict? `:` type
// (`->` type)?
ParseResult LoadOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::UnresolvedOperand addr;
Type type;
SMLoc trailingTypeLoc;
if (succeeded(parser.parseOptionalKeyword("volatile")))
result.addAttribute(kVolatileAttrName, parser.getBuilder().getUnitAttr());
if (parser.parseOperand(addr) ||
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type) ||
parser.resolveOperand(addr, type, result.operands))
return failure();
Optional<Type> elemTy =
getLoadStoreElementType(parser, type, trailingTypeLoc);
if (!elemTy)
return failure();
if (*elemTy) {
result.addTypes(*elemTy);
return success();
}
Type trailingType;
if (parser.parseArrow() || parser.parseType(trailingType))
return failure();
result.addTypes(trailingType);
return success();
}
//===----------------------------------------------------------------------===//
// Builder, printer and parser for LLVM::StoreOp.
//===----------------------------------------------------------------------===//
LogicalResult StoreOp::verify() { return verifyMemoryOpMetadata(*this); }
void StoreOp::build(OpBuilder &builder, OperationState &result, Value value,
Value addr, unsigned alignment, bool isVolatile,
bool isNonTemporal) {
result.addOperands({value, addr});
result.addTypes({});
if (isVolatile)
result.addAttribute(kVolatileAttrName, builder.getUnitAttr());
if (isNonTemporal)
result.addAttribute(kNonTemporalAttrName, builder.getUnitAttr());
if (alignment != 0)
result.addAttribute("alignment", builder.getI64IntegerAttr(alignment));
}
void StoreOp::print(OpAsmPrinter &p) {
p << ' ';
if (getVolatile_())
p << "volatile ";
p << getValue() << ", " << getAddr();
p.printOptionalAttrDict((*this)->getAttrs(), {kVolatileAttrName});
p << " : ";
if (getAddr().getType().cast<LLVMPointerType>().isOpaque())
p << getValue().getType() << ", ";
p << getAddr().getType();
}
// <operation> ::= `llvm.store` `volatile` ssa-use `,` ssa-use
// attribute-dict? `:` type (`,` type)?
ParseResult StoreOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::UnresolvedOperand addr, value;
Type type;
SMLoc trailingTypeLoc;
if (succeeded(parser.parseOptionalKeyword("volatile")))
result.addAttribute(kVolatileAttrName, parser.getBuilder().getUnitAttr());
if (parser.parseOperand(value) || parser.parseComma() ||
parser.parseOperand(addr) ||
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type))
return failure();
Type operandType;
if (succeeded(parser.parseOptionalComma())) {
operandType = type;
if (parser.parseType(type))
return failure();
} else {
Optional<Type> maybeOperandType =
getLoadStoreElementType(parser, type, trailingTypeLoc);
if (!maybeOperandType)
return failure();
operandType = *maybeOperandType;
}
if (parser.resolveOperand(value, operandType, result.operands) ||
parser.resolveOperand(addr, type, result.operands))
return failure();
return success();
}
///===---------------------------------------------------------------------===//
/// LLVM::InvokeOp
///===---------------------------------------------------------------------===//
SuccessorOperands InvokeOp::getSuccessorOperands(unsigned index) {
assert(index < getNumSuccessors() && "invalid successor index");
return SuccessorOperands(index == 0 ? getNormalDestOperandsMutable()
: getUnwindDestOperandsMutable());
}
CallInterfaceCallable InvokeOp::getCallableForCallee() {
// Direct call.
if (FlatSymbolRefAttr calleeAttr = getCalleeAttr())
return calleeAttr;
// Indirect call, callee Value is the first operand.
return getOperand(0);
}
Operation::operand_range InvokeOp::getArgOperands() {
return getOperands().drop_front(getCallee().has_value() ? 0 : 1);
}
LogicalResult InvokeOp::verify() {
if (getNumResults() > 1)
return emitOpError("must have 0 or 1 result");
Block *unwindDest = getUnwindDest();
if (unwindDest->empty())
return emitError("must have at least one operation in unwind destination");
// In unwind destination, first operation must be LandingpadOp
if (!isa<LandingpadOp>(unwindDest->front()))
return emitError("first operation in unwind destination should be a "
"llvm.landingpad operation");
return success();
}
void InvokeOp::print(OpAsmPrinter &p) {
auto callee = getCallee();
bool isDirect = callee.has_value();
p << ' ';
// Either function name or pointer
if (isDirect)
p.printSymbolName(callee.value());
else
p << getOperand(0);
p << '(' << getOperands().drop_front(isDirect ? 0 : 1) << ')';
p << " to ";
p.printSuccessorAndUseList(getNormalDest(), getNormalDestOperands());
p << " unwind ";
p.printSuccessorAndUseList(getUnwindDest(), getUnwindDestOperands());
p.printOptionalAttrDict((*this)->getAttrs(),
{InvokeOp::getOperandSegmentSizeAttr(), "callee"});
p << " : ";
p.printFunctionalType(llvm::drop_begin(getOperandTypes(), isDirect ? 0 : 1),
getResultTypes());
}
/// <operation> ::= `llvm.invoke` (function-id | ssa-use) `(` ssa-use-list `)`
/// `to` bb-id (`[` ssa-use-and-type-list `]`)?
/// `unwind` bb-id (`[` ssa-use-and-type-list `]`)?
/// attribute-dict? `:` function-type
ParseResult InvokeOp::parse(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::UnresolvedOperand, 8> operands;
FunctionType funcType;
SymbolRefAttr funcAttr;
SMLoc trailingTypeLoc;
Block *normalDest, *unwindDest;
SmallVector<Value, 4> normalOperands, unwindOperands;
Builder &builder = parser.getBuilder();
// Parse an operand list that will, in practice, contain 0 or 1 operand. In
// case of an indirect call, there will be 1 operand before `(`. In case of a
// direct call, there will be no operands and the parser will stop at the
// function identifier without complaining.
if (parser.parseOperandList(operands))
return failure();
bool isDirect = operands.empty();
// Optionally parse a function identifier.
if (isDirect && parser.parseAttribute(funcAttr, "callee", result.attributes))
return failure();
if (parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
parser.parseKeyword("to") ||
parser.parseSuccessorAndUseList(normalDest, normalOperands) ||
parser.parseKeyword("unwind") ||
parser.parseSuccessorAndUseList(unwindDest, unwindOperands) ||
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(funcType))
return failure();
if (isDirect) {
// Make sure types match.
if (parser.resolveOperands(operands, funcType.getInputs(),
parser.getNameLoc(), result.operands))
return failure();
result.addTypes(funcType.getResults());
} else {
// Construct the LLVM IR Dialect function type that the first operand
// should match.
if (funcType.getNumResults() > 1)
return parser.emitError(trailingTypeLoc,
"expected function with 0 or 1 result");
Type llvmResultType;
if (funcType.getNumResults() == 0) {
llvmResultType = LLVM::LLVMVoidType::get(builder.getContext());
} else {
llvmResultType = funcType.getResult(0);
if (!isCompatibleType(llvmResultType))
return parser.emitError(trailingTypeLoc,
"expected result to have LLVM type");
}
SmallVector<Type, 8> argTypes;
argTypes.reserve(funcType.getNumInputs());
for (Type ty : funcType.getInputs()) {
if (isCompatibleType(ty))
argTypes.push_back(ty);
else
return parser.emitError(trailingTypeLoc,
"expected LLVM types as inputs");
}
auto llvmFuncType = LLVM::LLVMFunctionType::get(llvmResultType, argTypes);
auto wrappedFuncType = LLVM::LLVMPointerType::get(llvmFuncType);
auto funcArguments = llvm::makeArrayRef(operands).drop_front();
// Make sure that the first operand (indirect callee) matches the wrapped
// LLVM IR function type, and that the types of the other call operands
// match the types of the function arguments.
if (parser.resolveOperand(operands[0], wrappedFuncType, result.operands) ||
parser.resolveOperands(funcArguments, funcType.getInputs(),
parser.getNameLoc(), result.operands))
return failure();
result.addTypes(llvmResultType);
}
result.addSuccessors({normalDest, unwindDest});
result.addOperands(normalOperands);
result.addOperands(unwindOperands);
result.addAttribute(
InvokeOp::getOperandSegmentSizeAttr(),
builder.getI32VectorAttr({static_cast<int32_t>(operands.size()),
static_cast<int32_t>(normalOperands.size()),
static_cast<int32_t>(unwindOperands.size())}));
return success();
}
///===----------------------------------------------------------------------===//
/// Verifying/Printing/Parsing for LLVM::LandingpadOp.
///===----------------------------------------------------------------------===//
LogicalResult LandingpadOp::verify() {
Value value;
if (LLVMFuncOp func = (*this)->getParentOfType<LLVMFuncOp>()) {
if (!func.getPersonality())
return emitError(
"llvm.landingpad needs to be in a function with a personality");
}
if (!getCleanup() && getOperands().empty())
return emitError("landingpad instruction expects at least one clause or "
"cleanup attribute");
for (unsigned idx = 0, ie = getNumOperands(); idx < ie; idx++) {
value = getOperand(idx);
bool isFilter = value.getType().isa<LLVMArrayType>();
if (isFilter) {
// FIXME: Verify filter clauses when arrays are appropriately handled
} else {
// catch - global addresses only.
// Bitcast ops should have global addresses as their args.
if (auto bcOp = value.getDefiningOp<BitcastOp>()) {
if (auto addrOp = bcOp.getArg().getDefiningOp<AddressOfOp>())
continue;
return emitError("constant clauses expected").attachNote(bcOp.getLoc())
<< "global addresses expected as operand to "
"bitcast used in clauses for landingpad";
}
// NullOp and AddressOfOp allowed
if (value.getDefiningOp<NullOp>())
continue;
if (value.getDefiningOp<AddressOfOp>())
continue;
return emitError("clause #")
<< idx << " is not a known constant - null, addressof, bitcast";
}
}
return success();
}
void LandingpadOp::print(OpAsmPrinter &p) {
p << (getCleanup() ? " cleanup " : " ");
// Clauses
for (auto value : getOperands()) {
// Similar to llvm - if clause is an array type then it is filter
// clause else catch clause
bool isArrayTy = value.getType().isa<LLVMArrayType>();
p << '(' << (isArrayTy ? "filter " : "catch ") << value << " : "
<< value.getType() << ") ";
}
p.printOptionalAttrDict((*this)->getAttrs(), {"cleanup"});
p << ": " << getType();
}
/// <operation> ::= `llvm.landingpad` `cleanup`?
/// ((`catch` | `filter`) operand-type ssa-use)* attribute-dict?
ParseResult LandingpadOp::parse(OpAsmParser &parser, OperationState &result) {
// Check for cleanup
if (succeeded(parser.parseOptionalKeyword("cleanup")))
result.addAttribute("cleanup", parser.getBuilder().getUnitAttr());
// Parse clauses with types
while (succeeded(parser.parseOptionalLParen()) &&
(succeeded(parser.parseOptionalKeyword("filter")) ||
succeeded(parser.parseOptionalKeyword("catch")))) {
OpAsmParser::UnresolvedOperand operand;
Type ty;
if (parser.parseOperand(operand) || parser.parseColon() ||
parser.parseType(ty) ||
parser.resolveOperand(operand, ty, result.operands) ||
parser.parseRParen())
return failure();
}
Type type;
if (parser.parseColon() || parser.parseType(type))
return failure();
result.addTypes(type);
return success();
}
//===----------------------------------------------------------------------===//
// Verifying/Printing/parsing for LLVM::CallOp.
//===----------------------------------------------------------------------===//
CallInterfaceCallable CallOp::getCallableForCallee() {
// Direct call.
if (FlatSymbolRefAttr calleeAttr = getCalleeAttr())
return calleeAttr;
// Indirect call, callee Value is the first operand.
return getOperand(0);
}
Operation::operand_range CallOp::getArgOperands() {
return getOperands().drop_front(getCallee().has_value() ? 0 : 1);
}
LogicalResult CallOp::verify() {
if (getNumResults() > 1)
return emitOpError("must have 0 or 1 result");
// Type for the callee, we'll get it differently depending if it is a direct
// or indirect call.
Type fnType;
bool isIndirect = false;
// If this is an indirect call, the callee attribute is missing.
FlatSymbolRefAttr calleeName = getCalleeAttr();
if (!calleeName) {
isIndirect = true;
if (!getNumOperands())
return emitOpError(
"must have either a `callee` attribute or at least an operand");
auto ptrType = getOperand(0).getType().dyn_cast<LLVMPointerType>();
if (!ptrType)
return emitOpError("indirect call expects a pointer as callee: ")
<< ptrType;
fnType = ptrType.getElementType();
} else {
Operation *callee =
SymbolTable::lookupNearestSymbolFrom(*this, calleeName.getAttr());
if (!callee)
return emitOpError()
<< "'" << calleeName.getValue()
<< "' does not reference a symbol in the current scope";
auto fn = dyn_cast<LLVMFuncOp>(callee);
if (!fn)
return emitOpError() << "'" << calleeName.getValue()
<< "' does not reference a valid LLVM function";
fnType = fn.getFunctionType();
}
LLVMFunctionType funcType = fnType.dyn_cast<LLVMFunctionType>();
if (!funcType)
return emitOpError("callee does not have a functional type: ") << fnType;
// Verify that the operand and result types match the callee.
if (!funcType.isVarArg() &&
funcType.getNumParams() != (getNumOperands() - isIndirect))
return emitOpError() << "incorrect number of operands ("
<< (getNumOperands() - isIndirect)
<< ") for callee (expecting: "
<< funcType.getNumParams() << ")";
if (funcType.getNumParams() > (getNumOperands() - isIndirect))
return emitOpError() << "incorrect number of operands ("
<< (getNumOperands() - isIndirect)
<< ") for varargs callee (expecting at least: "
<< funcType.getNumParams() << ")";
for (unsigned i = 0, e = funcType.getNumParams(); i != e; ++i)
if (getOperand(i + isIndirect).getType() != funcType.getParamType(i))
return emitOpError() << "operand type mismatch for operand " << i << ": "
<< getOperand(i + isIndirect).getType()
<< " != " << funcType.getParamType(i);
if (getNumResults() == 0 &&
!funcType.getReturnType().isa<LLVM::LLVMVoidType>())
return emitOpError() << "expected function call to produce a value";
if (getNumResults() != 0 &&
funcType.getReturnType().isa<LLVM::LLVMVoidType>())
return emitOpError()
<< "calling function with void result must not produce values";
if (getNumResults() > 1)
return emitOpError()
<< "expected LLVM function call to produce 0 or 1 result";
if (getNumResults() && getResult(0).getType() != funcType.getReturnType())
return emitOpError() << "result type mismatch: " << getResult(0).getType()
<< " != " << funcType.getReturnType();
return success();
}
void CallOp::print(OpAsmPrinter &p) {
auto callee = getCallee();
bool isDirect = callee.has_value();
// Print the direct callee if present as a function attribute, or an indirect
// callee (first operand) otherwise.
p << ' ';
if (isDirect)
p.printSymbolName(callee.value());
else
p << getOperand(0);
auto args = getOperands().drop_front(isDirect ? 0 : 1);
p << '(' << args << ')';
p.printOptionalAttrDict(processFMFAttr((*this)->getAttrs()), {"callee"});
// Reconstruct the function MLIR function type from operand and result types.
p << " : ";
p.printFunctionalType(args.getTypes(), getResultTypes());
}
// <operation> ::= `llvm.call` (function-id | ssa-use) `(` ssa-use-list `)`
// attribute-dict? `:` function-type
ParseResult CallOp::parse(OpAsmParser &parser, OperationState &result) {
SmallVector<OpAsmParser::UnresolvedOperand, 8> operands;
Type type;
SymbolRefAttr funcAttr;
SMLoc trailingTypeLoc;
// Parse an operand list that will, in practice, contain 0 or 1 operand. In
// case of an indirect call, there will be 1 operand before `(`. In case of a
// direct call, there will be no operands and the parser will stop at the
// function identifier without complaining.
if (parser.parseOperandList(operands))
return failure();
bool isDirect = operands.empty();
// Optionally parse a function identifier.
if (isDirect)
if (parser.parseAttribute(funcAttr, "callee", result.attributes))
return failure();
if (parser.parseOperandList(operands, OpAsmParser::Delimiter::Paren) ||
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
parser.getCurrentLocation(&trailingTypeLoc) || parser.parseType(type))
return failure();
auto funcType = type.dyn_cast<FunctionType>();
if (!funcType)
return parser.emitError(trailingTypeLoc, "expected function type");
if (funcType.getNumResults() > 1)
return parser.emitError(trailingTypeLoc,
"expected function with 0 or 1 result");
if (isDirect) {
// Make sure types match.
if (parser.resolveOperands(operands, funcType.getInputs(),
parser.getNameLoc(), result.operands))
return failure();
if (funcType.getNumResults() != 0 &&
!funcType.getResult(0).isa<LLVM::LLVMVoidType>())
result.addTypes(funcType.getResults());
} else {
Builder &builder = parser.getBuilder();
Type llvmResultType;
if (funcType.getNumResults() == 0) {
llvmResultType = LLVM::LLVMVoidType::get(builder.getContext());
} else {
llvmResultType = funcType.getResult(0);
if (!isCompatibleType(llvmResultType))
return parser.emitError(trailingTypeLoc,
"expected result to have LLVM type");
}
SmallVector<Type, 8> argTypes;
argTypes.reserve(funcType.getNumInputs());
for (int i = 0, e = funcType.getNumInputs(); i < e; ++i) {
auto argType = funcType.getInput(i);
if (!isCompatibleType(argType))
return parser.emitError(trailingTypeLoc,
"expected LLVM types as inputs");
argTypes.push_back(argType);
}
auto llvmFuncType = LLVM::LLVMFunctionType::get(llvmResultType, argTypes);
auto wrappedFuncType = LLVM::LLVMPointerType::get(llvmFuncType);
auto funcArguments =
ArrayRef<OpAsmParser::UnresolvedOperand>(operands).drop_front();
// Make sure that the first operand (indirect callee) matches the wrapped
// LLVM IR function type, and that the types of the other call operands
// match the types of the function arguments.
if (parser.resolveOperand(operands[0], wrappedFuncType, result.operands) ||
parser.resolveOperands(funcArguments, funcType.getInputs(),
parser.getNameLoc(), result.operands))
return failure();
if (!llvmResultType.isa<LLVM::LLVMVoidType>())
result.addTypes(llvmResultType);
}
return success();
}
//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::ExtractElementOp.
//===----------------------------------------------------------------------===//
// Expects vector to be of wrapped LLVM vector type and position to be of
// wrapped LLVM i32 type.
void LLVM::ExtractElementOp::build(OpBuilder &b, OperationState &result,
Value vector, Value position,
ArrayRef<NamedAttribute> attrs) {
auto vectorType = vector.getType();
auto llvmType = LLVM::getVectorElementType(vectorType);
build(b, result, llvmType, vector, position);
result.addAttributes(attrs);
}
void ExtractElementOp::print(OpAsmPrinter &p) {
p << ' ' << getVector() << "[" << getPosition() << " : "
<< getPosition().getType() << "]";
p.printOptionalAttrDict((*this)->getAttrs());
p << " : " << getVector().getType();
}
// <operation> ::= `llvm.extractelement` ssa-use `, ` ssa-use
// attribute-dict? `:` type
ParseResult ExtractElementOp::parse(OpAsmParser &parser,
OperationState &result) {
SMLoc loc;
OpAsmParser::UnresolvedOperand vector, position;
Type type, positionType;
if (parser.getCurrentLocation(&loc) || parser.parseOperand(vector) ||
parser.parseLSquare() || parser.parseOperand(position) ||
parser.parseColonType(positionType) || parser.parseRSquare() ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(vector, type, result.operands) ||
parser.resolveOperand(position, positionType, result.operands))
return failure();
if (!LLVM::isCompatibleVectorType(type))
return parser.emitError(
loc, "expected LLVM dialect-compatible vector type for operand #1");
result.addTypes(LLVM::getVectorElementType(type));
return success();
}
LogicalResult ExtractElementOp::verify() {
Type vectorType = getVector().getType();
if (!LLVM::isCompatibleVectorType(vectorType))
return emitOpError("expected LLVM dialect-compatible vector type for "
"operand #1, got")
<< vectorType;
Type valueType = LLVM::getVectorElementType(vectorType);
if (valueType != getRes().getType())
return emitOpError() << "Type mismatch: extracting from " << vectorType
<< " should produce " << valueType
<< " but this op returns " << getRes().getType();
return success();
}
//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::ExtractValueOp.
//===----------------------------------------------------------------------===//
void ExtractValueOp::print(OpAsmPrinter &p) {
p << ' ' << getContainer() << getPosition();
p.printOptionalAttrDict((*this)->getAttrs(), {"position"});
p << " : " << getContainer().getType();
}
// Extract the type at `position` in the wrapped LLVM IR aggregate type
// `containerType`. Position is an integer array attribute where each value
// is a zero-based position of the element in the aggregate type. Return the
// resulting type wrapped in MLIR, or nullptr on error.
static Type getInsertExtractValueElementType(OpAsmParser &parser,
Type containerType,
ArrayAttr positionAttr,
SMLoc attributeLoc,
SMLoc typeLoc) {
Type llvmType = containerType;
if (!isCompatibleType(containerType))
return parser.emitError(typeLoc, "expected LLVM IR Dialect type"), nullptr;
// Infer the element type from the structure type: iteratively step inside the
// type by taking the element type, indexed by the position attribute for
// structures. Check the position index before accessing, it is supposed to
// be in bounds.
for (Attribute subAttr : positionAttr) {
auto positionElementAttr = subAttr.dyn_cast<IntegerAttr>();
if (!positionElementAttr)
return parser.emitError(attributeLoc,
"expected an array of integer literals"),
nullptr;
int position = positionElementAttr.getInt();
if (auto arrayType = llvmType.dyn_cast<LLVMArrayType>()) {
if (position < 0 ||
static_cast<unsigned>(position) >= arrayType.getNumElements())
return parser.emitError(attributeLoc, "position out of bounds"),
nullptr;
llvmType = arrayType.getElementType();
} else if (auto structType = llvmType.dyn_cast<LLVMStructType>()) {
if (position < 0 ||
static_cast<unsigned>(position) >= structType.getBody().size())
return parser.emitError(attributeLoc, "position out of bounds"),
nullptr;
llvmType = structType.getBody()[position];
} else {
return parser.emitError(typeLoc, "expected LLVM IR structure/array type"),
nullptr;
}
}
return llvmType;
}
// Extract the type at `position` in the wrapped LLVM IR aggregate type
// `containerType`. Returns null on failure.
static Type getInsertExtractValueElementType(Type containerType,
ArrayAttr positionAttr,
Operation *op) {
Type llvmType = containerType;
if (!isCompatibleType(containerType)) {
op->emitError("expected LLVM IR Dialect type, got ") << containerType;
return {};
}
// Infer the element type from the structure type: iteratively step inside the
// type by taking the element type, indexed by the position attribute for
// structures. Check the position index before accessing, it is supposed to
// be in bounds.
for (Attribute subAttr : positionAttr) {
auto positionElementAttr = subAttr.dyn_cast<IntegerAttr>();
if (!positionElementAttr) {
op->emitOpError("expected an array of integer literals, got: ")
<< subAttr;
return {};
}
int position = positionElementAttr.getInt();
if (auto arrayType = llvmType.dyn_cast<LLVMArrayType>()) {
if (position < 0 ||
static_cast<unsigned>(position) >= arrayType.getNumElements()) {
op->emitOpError("position out of bounds: ") << position;
return {};
}
llvmType = arrayType.getElementType();
} else if (auto structType = llvmType.dyn_cast<LLVMStructType>()) {
if (position < 0 ||
static_cast<unsigned>(position) >= structType.getBody().size()) {
op->emitOpError("position out of bounds") << position;
return {};
}
llvmType = structType.getBody()[position];
} else {
op->emitOpError("expected LLVM IR structure/array type, got: ")
<< llvmType;
return {};
}
}
return llvmType;
}
// <operation> ::= `llvm.extractvalue` ssa-use
// `[` integer-literal (`,` integer-literal)* `]`
// attribute-dict? `:` type
ParseResult ExtractValueOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::UnresolvedOperand container;
Type containerType;
ArrayAttr positionAttr;
SMLoc attributeLoc, trailingTypeLoc;
if (parser.parseOperand(container) ||
parser.getCurrentLocation(&attributeLoc) ||
parser.parseAttribute(positionAttr, "position", result.attributes) ||
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
parser.getCurrentLocation(&trailingTypeLoc) ||
parser.parseType(containerType) ||
parser.resolveOperand(container, containerType, result.operands))
return failure();
auto elementType = getInsertExtractValueElementType(
parser, containerType, positionAttr, attributeLoc, trailingTypeLoc);
if (!elementType)
return failure();
result.addTypes(elementType);
return success();
}
OpFoldResult LLVM::ExtractValueOp::fold(ArrayRef<Attribute> operands) {
auto insertValueOp = getContainer().getDefiningOp<InsertValueOp>();
OpFoldResult result = {};
while (insertValueOp) {
if (getPosition() == insertValueOp.getPosition())
return insertValueOp.getValue();
unsigned min =
std::min(getPosition().size(), insertValueOp.getPosition().size());
// If one is fully prefix of the other, stop propagating back as it will
// miss dependencies. For instance, %3 should not fold to %f0 in the
// following example:
// ```
// %1 = llvm.insertvalue %f0, %0[0, 0] :
// !llvm.array<4 x !llvm.array<4xf32>>
// %2 = llvm.insertvalue %arr, %1[0] :
// !llvm.array<4 x !llvm.array<4xf32>>
// %3 = llvm.extractvalue %2[0, 0] : !llvm.array<4 x !llvm.array<4xf32>>
// ```
if (getPosition().getValue().take_front(min) ==
insertValueOp.getPosition().getValue().take_front(min))
return result;
// If neither a prefix, nor the exact position, we can extract out of the
// value being inserted into. Moreover, we can try again if that operand
// is itself an insertvalue expression.
getContainerMutable().assign(insertValueOp.getContainer());
result = getResult();
insertValueOp = insertValueOp.getContainer().getDefiningOp<InsertValueOp>();
}
return result;
}
LogicalResult ExtractValueOp::verify() {
Type valueType = getInsertExtractValueElementType(getContainer().getType(),
getPositionAttr(), *this);
if (!valueType)
return failure();
if (getRes().getType() != valueType)
return emitOpError() << "Type mismatch: extracting from "
<< getContainer().getType() << " should produce "
<< valueType << " but this op returns "
<< getRes().getType();
return success();
}
//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::InsertElementOp.
//===----------------------------------------------------------------------===//
void InsertElementOp::print(OpAsmPrinter &p) {
p << ' ' << getValue() << ", " << getVector() << "[" << getPosition() << " : "
<< getPosition().getType() << "]";
p.printOptionalAttrDict((*this)->getAttrs());
p << " : " << getVector().getType();
}
// <operation> ::= `llvm.insertelement` ssa-use `,` ssa-use `,` ssa-use
// attribute-dict? `:` type
ParseResult InsertElementOp::parse(OpAsmParser &parser,
OperationState &result) {
SMLoc loc;
OpAsmParser::UnresolvedOperand vector, value, position;
Type vectorType, positionType;
if (parser.getCurrentLocation(&loc) || parser.parseOperand(value) ||
parser.parseComma() || parser.parseOperand(vector) ||
parser.parseLSquare() || parser.parseOperand(position) ||
parser.parseColonType(positionType) || parser.parseRSquare() ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(vectorType))
return failure();
if (!LLVM::isCompatibleVectorType(vectorType))
return parser.emitError(
loc, "expected LLVM dialect-compatible vector type for operand #1");
Type valueType = LLVM::getVectorElementType(vectorType);
if (!valueType)
return failure();
if (parser.resolveOperand(vector, vectorType, result.operands) ||
parser.resolveOperand(value, valueType, result.operands) ||
parser.resolveOperand(position, positionType, result.operands))
return failure();
result.addTypes(vectorType);
return success();
}
LogicalResult InsertElementOp::verify() {
Type valueType = LLVM::getVectorElementType(getVector().getType());
if (valueType != getValue().getType())
return emitOpError() << "Type mismatch: cannot insert "
<< getValue().getType() << " into "
<< getVector().getType();
return success();
}
//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::InsertValueOp.
//===----------------------------------------------------------------------===//
void InsertValueOp::print(OpAsmPrinter &p) {
p << ' ' << getValue() << ", " << getContainer() << getPosition();
p.printOptionalAttrDict((*this)->getAttrs(), {"position"});
p << " : " << getContainer().getType();
}
// <operation> ::= `llvm.insertvaluevalue` ssa-use `,` ssa-use
// `[` integer-literal (`,` integer-literal)* `]`
// attribute-dict? `:` type
ParseResult InsertValueOp::parse(OpAsmParser &parser, OperationState &result) {
OpAsmParser::UnresolvedOperand container, value;
Type containerType;
ArrayAttr positionAttr;
SMLoc attributeLoc, trailingTypeLoc;
if (parser.parseOperand(value) || parser.parseComma() ||
parser.parseOperand(container) ||
parser.getCurrentLocation(&attributeLoc) ||
parser.parseAttribute(positionAttr, "position", result.attributes) ||
parser.parseOptionalAttrDict(result.attributes) || parser.parseColon() ||
parser.getCurrentLocation(&trailingTypeLoc) ||
parser.parseType(containerType))
return failure();
auto valueType = getInsertExtractValueElementType(
parser, containerType, positionAttr, attributeLoc, trailingTypeLoc);
if (!valueType)
return failure();
if (parser.resolveOperand(container, containerType, result.operands) ||
parser.resolveOperand(value, valueType, result.operands))
return failure();
result.addTypes(containerType);
return success();
}
LogicalResult InsertValueOp::verify() {
Type valueType = getInsertExtractValueElementType(getContainer().getType(),
getPositionAttr(), *this);
if (!valueType)
return failure();
if (getValue().getType() != valueType)
return emitOpError() << "Type mismatch: cannot insert "
<< getValue().getType() << " into "
<< getContainer().getType();
return success();
}
//===----------------------------------------------------------------------===//
// Printing, parsing and verification for LLVM::ReturnOp.
//===----------------------------------------------------------------------===//
LogicalResult ReturnOp::verify() {
if (getNumOperands() > 1)
return emitOpError("expected at most 1 operand");
if (auto parent = (*this)->getParentOfType<LLVMFuncOp>()) {
Type expectedType = parent.getFunctionType().getReturnType();
if (expectedType.isa<LLVMVoidType>()) {
if (getNumOperands() == 0)
return success();
InFlightDiagnostic diag = emitOpError("expected no operands");
diag.attachNote(parent->getLoc()) << "when returning from function";
return diag;
}
if (getNumOperands() == 0) {
if (expectedType.isa<LLVMVoidType>())
return success();
InFlightDiagnostic diag = emitOpError("expected 1 operand");
diag.attachNote(parent->getLoc()) << "when returning from function";
return diag;
}
if (expectedType != getOperand(0).getType()) {
InFlightDiagnostic diag = emitOpError("mismatching result types");
diag.attachNote(parent->getLoc()) << "when returning from function";
return diag;
}
}
return success();
}
//===----------------------------------------------------------------------===//
// ResumeOp
//===----------------------------------------------------------------------===//
LogicalResult ResumeOp::verify() {
if (!getValue().getDefiningOp<LandingpadOp>())
return emitOpError("expects landingpad value as operand");
// No check for personality of function - landingpad op verifies it.
return success();
}
//===----------------------------------------------------------------------===//
// Verifier for LLVM::AddressOfOp.
//===----------------------------------------------------------------------===//
template <typename OpTy>
static OpTy lookupSymbolInModule(Operation *parent, StringRef name) {
Operation *module = parent;
while (module && !satisfiesLLVMModule(module))
module = module->getParentOp();
assert(module && "unexpected operation outside of a module");
return dyn_cast_or_null<OpTy>(
mlir::SymbolTable::lookupSymbolIn(module, name));
}
GlobalOp AddressOfOp::getGlobal() {
return lookupSymbolInModule<LLVM::GlobalOp>((*this)->getParentOp(),
getGlobalName());
}
LLVMFuncOp AddressOfOp::getFunction() {
return lookupSymbolInModule<LLVM::LLVMFuncOp>((*this)->getParentOp(),
getGlobalName());
}
LogicalResult AddressOfOp::verify() {
auto global = getGlobal();
auto function = getFunction();
if (!global && !function)
return emitOpError(
"must reference a global defined by 'llvm.mlir.global' or 'llvm.func'");
LLVMPointerType type = getType();
if (global && global.getAddrSpace() != type.getAddressSpace())
return emitOpError("pointer address space must match address space of the "
"referenced global");
if (type.isOpaque())
return success();
if (global && type.getElementType() != global.getType())
return emitOpError(
"the type must be a pointer to the type of the referenced global");
if (function && type.getElementType() != function.getFunctionType())
return emitOpError(
"the type must be a pointer to the type of the referenced function");
return success();
}
//===----------------------------------------------------------------------===//
// Builder, printer and verifier for LLVM::GlobalOp.
//===----------------------------------------------------------------------===//
void GlobalOp::build(OpBuilder &builder, OperationState &result, Type type,
bool isConstant, Linkage linkage, StringRef name,
Attribute value, uint64_t alignment, unsigned addrSpace,
bool dsoLocal, bool threadLocal,
ArrayRef<NamedAttribute> attrs) {
result.addAttribute(getSymNameAttrName(result.name),
builder.getStringAttr(name));
result.addAttribute(getGlobalTypeAttrName(result.name), TypeAttr::get(type));
if (isConstant)
result.addAttribute(getConstantAttrName(result.name),
builder.getUnitAttr());
if (value)
result.addAttribute(getValueAttrName(result.name), value);
if (dsoLocal)
result.addAttribute(getDsoLocalAttrName(result.name),
builder.getUnitAttr());
if (threadLocal)
result.addAttribute(getThreadLocal_AttrName(result.name),
builder.getUnitAttr());
// Only add an alignment attribute if the "alignment" input
// is different from 0. The value must also be a power of two, but
// this is tested in GlobalOp::verify, not here.
if (alignment != 0)
result.addAttribute(getAlignmentAttrName(result.name),
builder.getI64IntegerAttr(alignment));
result.addAttribute(getLinkageAttrName(result.name),
LinkageAttr::get(builder.getContext(), linkage));
if (addrSpace != 0)
result.addAttribute(getAddrSpaceAttrName(result.name),
builder.getI32IntegerAttr(addrSpace));
result.attributes.append(attrs.begin(), attrs.end());
result.addRegion();
}
void GlobalOp::print(OpAsmPrinter &p) {
p << ' ' << stringifyLinkage(getLinkage()) << ' ';
if (auto unnamedAddr = getUnnamedAddr()) {
StringRef str = stringifyUnnamedAddr(*unnamedAddr);
if (!str.empty())
p << str << ' ';
}
if (getThreadLocal_())
p << "thread_local ";
if (getConstant())
p << "constant ";
p.printSymbolName(getSymName());
p << '(';
if (auto value = getValueOrNull())
p.printAttribute(value);
p << ')';
// Note that the alignment attribute is printed using the
// default syntax here, even though it is an inherent attribute
// (as defined in https://mlir.llvm.org/docs/LangRef/#attributes)
p.printOptionalAttrDict(
(*this)->getAttrs(),
{SymbolTable::getSymbolAttrName(), getGlobalTypeAttrName(),
getConstantAttrName(), getValueAttrName(), getLinkageAttrName(),
getUnnamedAddrAttrName(), getThreadLocal_AttrName()});
// Print the trailing type unless it's a string global.
if (getValueOrNull().dyn_cast_or_null<StringAttr>())
return;
p << " : " << getType();
Region &initializer = getInitializerRegion();
if (!initializer.empty()) {
p << ' ';
p.printRegion(initializer, /*printEntryBlockArgs=*/false);
}
}
// Parses one of the keywords provided in the list `keywords` and returns the
// position of the parsed keyword in the list. If none of the keywords from the
// list is parsed, returns -1.
static int parseOptionalKeywordAlternative(OpAsmParser &parser,
ArrayRef<StringRef> keywords) {
for (const auto &en : llvm::enumerate(keywords)) {
if (succeeded(parser.parseOptionalKeyword(en.value())))
return en.index();
}
return -1;
}
namespace {
template <typename Ty>
struct EnumTraits {};
#define REGISTER_ENUM_TYPE(Ty) \
template <> \
struct EnumTraits<Ty> { \
static StringRef stringify(Ty value) { return stringify##Ty(value); } \
static unsigned getMaxEnumVal() { return getMaxEnumValFor##Ty(); } \
}
REGISTER_ENUM_TYPE(Linkage);
REGISTER_ENUM_TYPE(UnnamedAddr);
REGISTER_ENUM_TYPE(CConv);
} // namespace
/// Parse an enum from the keyword, or default to the provided default value.
/// The return type is the enum type by default, unless overriden with the
/// second template argument.
template <typename EnumTy, typename RetTy = EnumTy>
static RetTy parseOptionalLLVMKeyword(OpAsmParser &parser,
OperationState &result,
EnumTy defaultValue) {
SmallVector<StringRef, 10> names;
for (unsigned i = 0, e = EnumTraits<EnumTy>::getMaxEnumVal(); i <= e; ++i)
names.push_back(EnumTraits<EnumTy>::stringify(static_cast<EnumTy>(i)));
int index = parseOptionalKeywordAlternative(parser, names);
if (index == -1)
return static_cast<RetTy>(defaultValue);
return static_cast<RetTy>(index);
}
// operation ::= `llvm.mlir.global` linkage? `constant`? `@` identifier
// `(` attribute? `)` align? attribute-list? (`:` type)? region?
// align ::= `align` `=` UINT64
//
// The type can be omitted for string attributes, in which case it will be
// inferred from the value of the string as [strlen(value) x i8].
ParseResult GlobalOp::parse(OpAsmParser &parser, OperationState &result) {
MLIRContext *ctx = parser.getContext();
// Parse optional linkage, default to External.
result.addAttribute(getLinkageAttrName(result.name),
LLVM::LinkageAttr::get(
ctx, parseOptionalLLVMKeyword<Linkage>(
parser, result, LLVM::Linkage::External)));
if (succeeded(parser.parseOptionalKeyword("thread_local")))
result.addAttribute(getThreadLocal_AttrName(result.name),
parser.getBuilder().getUnitAttr());
// Parse optional UnnamedAddr, default to None.
result.addAttribute(getUnnamedAddrAttrName(result.name),
parser.getBuilder().getI64IntegerAttr(
parseOptionalLLVMKeyword<UnnamedAddr, int64_t>(
parser, result, LLVM::UnnamedAddr::None)));
if (succeeded(parser.parseOptionalKeyword("constant")))
result.addAttribute(getConstantAttrName(result.name),
parser.getBuilder().getUnitAttr());
StringAttr name;
if (parser.parseSymbolName(name, getSymNameAttrName(result.name),
result.attributes) ||
parser.parseLParen())
return failure();
Attribute value;
if (parser.parseOptionalRParen()) {
if (parser.parseAttribute(value, getValueAttrName(result.name),
result.attributes) ||
parser.parseRParen())
return failure();
}
SmallVector<Type, 1> types;
if (parser.parseOptionalAttrDict(result.attributes) ||
parser.parseOptionalColonTypeList(types))
return failure();
if (types.size() > 1)
return parser.emitError(parser.getNameLoc(), "expected zero or one type");
Region &initRegion = *result.addRegion();
if (types.empty()) {
if (auto strAttr = value.dyn_cast_or_null<StringAttr>()) {
MLIRContext *context = parser.getContext();
auto arrayType = LLVM::LLVMArrayType::get(IntegerType::get(context, 8),
strAttr.getValue().size());
types.push_back(arrayType);
} else {
return parser.emitError(parser.getNameLoc(),
"type can only be omitted for string globals");
}
} else {
OptionalParseResult parseResult =
parser.parseOptionalRegion(initRegion, /*arguments=*/{},
/*argTypes=*/{});
if (parseResult.hasValue() && failed(*parseResult))
return failure();
}
result.addAttribute(getGlobalTypeAttrName(result.name),
TypeAttr::get(types[0]));
return success();
}
static bool isZeroAttribute(Attribute value) {
if (auto intValue = value.dyn_cast<IntegerAttr>())
return intValue.getValue().isNullValue();
if (auto fpValue = value.dyn_cast<FloatAttr>())
return fpValue.getValue().isZero();
if (auto splatValue = value.dyn_cast<SplatElementsAttr>())
return isZeroAttribute(splatValue.getSplatValue<Attribute>());
if (auto elementsValue = value.dyn_cast<ElementsAttr>())
return llvm::all_of(elementsValue.getValues<Attribute>(), isZeroAttribute);
if (auto arrayValue = value.dyn_cast<ArrayAttr>())
return llvm::all_of(arrayValue.getValue(), isZeroAttribute);
return false;
}
LogicalResult GlobalOp::verify() {
if (!LLVMPointerType::isValidElementType(getType()))
return emitOpError(
"expects type to be a valid element type for an LLVM pointer");
if ((*this)->getParentOp() && !satisfiesLLVMModule((*this)->getParentOp()))
return emitOpError("must appear at the module level");
if (auto strAttr = getValueOrNull().dyn_cast_or_null<StringAttr>()) {
auto type = getType().dyn_cast<LLVMArrayType>();
IntegerType elementType =
type ? type.getElementType().dyn_cast<IntegerType>() : nullptr;
if (!elementType || elementType.getWidth() != 8 ||
type.getNumElements() != strAttr.getValue().size())
return emitOpError(
"requires an i8 array type of the length equal to that of the string "
"attribute");
}
if (getLinkage() == Linkage::Common) {
if (Attribute value = getValueOrNull()) {
if (!isZeroAttribute(value)) {
return emitOpError()
<< "expected zero value for '"
<< stringifyLinkage(Linkage::Common) << "' linkage";
}
}
}
if (getLinkage() == Linkage::Appending) {
if (!getType().isa<LLVMArrayType>()) {
return emitOpError() << "expected array type for '"
<< stringifyLinkage(Linkage::Appending)
<< "' linkage";
}
}
Optional<uint64_t> alignAttr = getAlignment();
if (alignAttr.has_value()) {
uint64_t value = alignAttr.value();
if (!llvm::isPowerOf2_64(value))
return emitError() << "alignment attribute is not a power of 2";
}
return success();
}
LogicalResult GlobalOp::verifyRegions() {
if (Block *b = getInitializerBlock()) {
ReturnOp ret = cast<ReturnOp>(b->getTerminator());
if (ret.operand_type_begin() == ret.operand_type_end())
return emitOpError("initializer region cannot return void");
if (*ret.operand_type_begin() != getType())
return emitOpError("initializer region type ")
<< *ret.operand_type_begin() << " does not match global type "
<< getType();
for (Operation &op : *b) {
auto iface = dyn_cast<MemoryEffectOpInterface>(op);
if (!iface || !iface.hasNoEffect())
return op.emitError()
<< "ops with side effects not allowed in global initializers";
}
if (getValueOrNull())
return emitOpError("cannot have both initializer value and region");
}
return success();
}
//===----------------------------------------------------------------------===//
// LLVM::GlobalCtorsOp
//===----------------------------------------------------------------------===//
LogicalResult
GlobalCtorsOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
for (Attribute ctor : getCtors()) {
if (failed(verifySymbolAttrUse(ctor.cast<FlatSymbolRefAttr>(), *this,
symbolTable)))
return failure();
}
return success();
}
LogicalResult GlobalCtorsOp::verify() {
if (getCtors().size() != getPriorities().size())
return emitError(
"mismatch between the number of ctors and the number of priorities");
return success();
}
//===----------------------------------------------------------------------===//
// LLVM::GlobalDtorsOp
//===----------------------------------------------------------------------===//
LogicalResult
GlobalDtorsOp::verifySymbolUses(SymbolTableCollection &symbolTable) {
for (Attribute dtor : getDtors()) {
if (failed(verifySymbolAttrUse(dtor.cast<FlatSymbolRefAttr>(), *this,
symbolTable)))
return failure();
}
return success();
}
LogicalResult GlobalDtorsOp::verify() {
if (getDtors().size() != getPriorities().size())
return emitError(
"mismatch between the number of dtors and the number of priorities");
return success();
}
//===----------------------------------------------------------------------===//
// Printing/parsing for LLVM::ShuffleVectorOp.
//===----------------------------------------------------------------------===//
// Expects vector to be of wrapped LLVM vector type and position to be of
// wrapped LLVM i32 type.
void LLVM::ShuffleVectorOp::build(OpBuilder &b, OperationState &result,
Value v1, Value v2, ArrayAttr mask,
ArrayRef<NamedAttribute> attrs) {
auto containerType = v1.getType();
auto vType = LLVM::getVectorType(LLVM::getVectorElementType(containerType),
mask.size(),
LLVM::isScalableVectorType(containerType));
build(b, result, vType, v1, v2, mask);
result.addAttributes(attrs);
}
void ShuffleVectorOp::print(OpAsmPrinter &p) {
p << ' ' << getV1() << ", " << getV2() << " " << getMask();
p.printOptionalAttrDict((*this)->getAttrs(), {"mask"});
p << " : " << getV1().getType() << ", " << getV2().getType();
}
// <operation> ::= `llvm.shufflevector` ssa-use `, ` ssa-use
// `[` integer-literal (`,` integer-literal)* `]`
// attribute-dict? `:` type
ParseResult ShuffleVectorOp::parse(OpAsmParser &parser,
OperationState &result) {
SMLoc loc;
OpAsmParser::UnresolvedOperand v1, v2;
ArrayAttr maskAttr;
Type typeV1, typeV2;
if (parser.getCurrentLocation(&loc) || parser.parseOperand(v1) ||
parser.parseComma() || parser.parseOperand(v2) ||
parser.parseAttribute(maskAttr, "mask", result.attributes) ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(typeV1) || parser.parseComma() ||
parser.parseType(typeV2) ||
parser.resolveOperand(v1, typeV1, result.operands) ||
parser.resolveOperand(v2, typeV2, result.operands))
return failure();
if (!LLVM::isCompatibleVectorType(typeV1))
return parser.emitError(
loc, "expected LLVM IR dialect vector type for operand #1");
auto vType =
LLVM::getVectorType(LLVM::getVectorElementType(typeV1), maskAttr.size(),
LLVM::isScalableVectorType(typeV1));
result.addTypes(vType);
return success();
}
LogicalResult ShuffleVectorOp::verify() {
Type type1 = getV1().getType();
Type type2 = getV2().getType();
if (LLVM::getVectorElementType(type1) != LLVM::getVectorElementType(type2))
return emitOpError("expected matching LLVM IR Dialect element types");
if (LLVM::isScalableVectorType(type1))
if (llvm::any_of(getMask(), [](Attribute attr) {
return attr.cast<IntegerAttr>().getInt() != 0;
}))
return emitOpError("expected a splat operation for scalable vectors");
return success();
}
//===----------------------------------------------------------------------===//
// Implementations for LLVM::LLVMFuncOp.
//===----------------------------------------------------------------------===//
// Add the entry block to the function.
Block *LLVMFuncOp::addEntryBlock() {
assert(empty() && "function already has an entry block");
auto *entry = new Block;
push_back(entry);
// FIXME: Allow passing in proper locations for the entry arguments.
LLVMFunctionType type = getFunctionType();
for (unsigned i = 0, e = type.getNumParams(); i < e; ++i)
entry->addArgument(type.getParamType(i), getLoc());
return entry;
}
void LLVMFuncOp::build(OpBuilder &builder, OperationState &result,
StringRef name, Type type, LLVM::Linkage linkage,
bool dsoLocal, CConv cconv,
ArrayRef<NamedAttribute> attrs,
ArrayRef<DictionaryAttr> argAttrs) {
result.addRegion();
result.addAttribute(SymbolTable::getSymbolAttrName(),
builder.getStringAttr(name));
result.addAttribute(getFunctionTypeAttrName(result.name),
TypeAttr::get(type));
result.addAttribute(getLinkageAttrName(result.name),
LinkageAttr::get(builder.getContext(), linkage));
result.addAttribute(getCConvAttrName(result.name),
CConvAttr::get(builder.getContext(), cconv));
result.attributes.append(attrs.begin(), attrs.end());
if (dsoLocal)
result.addAttribute("dso_local", builder.getUnitAttr());
if (argAttrs.empty())
return;
assert(type.cast<LLVMFunctionType>().getNumParams() == argAttrs.size() &&
"expected as many argument attribute lists as arguments");
function_interface_impl::addArgAndResultAttrs(builder, result, argAttrs,
/*resultAttrs=*/llvm::None);
}
// Builds an LLVM function type from the given lists of input and output types.
// Returns a null type if any of the types provided are non-LLVM types, or if
// there is more than one output type.
static Type
buildLLVMFunctionType(OpAsmParser &parser, SMLoc loc, ArrayRef<Type> inputs,
ArrayRef<Type> outputs,
function_interface_impl::VariadicFlag variadicFlag) {
Builder &b = parser.getBuilder();
if (outputs.size() > 1) {
parser.emitError(loc, "failed to construct function type: expected zero or "
"one function result");
return {};
}
// Convert inputs to LLVM types, exit early on error.
SmallVector<Type, 4> llvmInputs;
for (auto t : inputs) {
if (!isCompatibleType(t)) {
parser.emitError(loc, "failed to construct function type: expected LLVM "
"type for function arguments");
return {};
}
llvmInputs.push_back(t);
}
// No output is denoted as "void" in LLVM type system.
Type llvmOutput =
outputs.empty() ? LLVMVoidType::get(b.getContext()) : outputs.front();
if (!isCompatibleType(llvmOutput)) {
parser.emitError(loc, "failed to construct function type: expected LLVM "
"type for function results")
<< llvmOutput;
return {};
}
return LLVMFunctionType::get(llvmOutput, llvmInputs,
variadicFlag.isVariadic());
}
// Parses an LLVM function.
//
// operation ::= `llvm.func` linkage? cconv? function-signature
// function-attributes?
// function-body
//
ParseResult LLVMFuncOp::parse(OpAsmParser &parser, OperationState &result) {
// Default to external linkage if no keyword is provided.
result.addAttribute(
getLinkageAttrName(result.name),
LinkageAttr::get(parser.getContext(),
parseOptionalLLVMKeyword<Linkage>(
parser, result, LLVM::Linkage::External)));
// Default to C Calling Convention if no keyword is provided.
result.addAttribute(
getCConvAttrName(result.name),
CConvAttr::get(parser.getContext(), parseOptionalLLVMKeyword<CConv>(
parser, result, LLVM::CConv::C)));
StringAttr nameAttr;
SmallVector<OpAsmParser::Argument> entryArgs;
SmallVector<DictionaryAttr> resultAttrs;
SmallVector<Type> resultTypes;
bool isVariadic;
auto signatureLocation = parser.getCurrentLocation();
if (parser.parseSymbolName(nameAttr, SymbolTable::getSymbolAttrName(),
result.attributes) ||
function_interface_impl::parseFunctionSignature(
parser, /*allowVariadic=*/true, entryArgs, isVariadic, resultTypes,
resultAttrs))
return failure();
SmallVector<Type> argTypes;
for (auto &arg : entryArgs)
argTypes.push_back(arg.type);
auto type =
buildLLVMFunctionType(parser, signatureLocation, argTypes, resultTypes,
function_interface_impl::VariadicFlag(isVariadic));
if (!type)
return failure();
result.addAttribute(FunctionOpInterface::getTypeAttrName(),
TypeAttr::get(type));
if (failed(parser.parseOptionalAttrDictWithKeyword(result.attributes)))
return failure();
function_interface_impl::addArgAndResultAttrs(parser.getBuilder(), result,
entryArgs, resultAttrs);
auto *body = result.addRegion();
OptionalParseResult parseResult =
parser.parseOptionalRegion(*body, entryArgs);
return failure(parseResult.hasValue() && failed(*parseResult));
}
// Print the LLVMFuncOp. Collects argument and result types and passes them to
// helper functions. Drops "void" result since it cannot be parsed back. Skips
// the external linkage since it is the default value.
void LLVMFuncOp::print(OpAsmPrinter &p) {
p << ' ';
if (getLinkage() != LLVM::Linkage::External)
p << stringifyLinkage(getLinkage()) << ' ';
if (getCConv() != LLVM::CConv::C)
p << stringifyCConv(getCConv()) << ' ';
p.printSymbolName(getName());
LLVMFunctionType fnType = getFunctionType();
SmallVector<Type, 8> argTypes;
SmallVector<Type, 1> resTypes;
argTypes.reserve(fnType.getNumParams());
for (unsigned i = 0, e = fnType.getNumParams(); i < e; ++i)
argTypes.push_back(fnType.getParamType(i));
Type returnType = fnType.getReturnType();
if (!returnType.isa<LLVMVoidType>())
resTypes.push_back(returnType);
function_interface_impl::printFunctionSignature(p, *this, argTypes,
isVarArg(), resTypes);
function_interface_impl::printFunctionAttributes(
p, *this, argTypes.size(), resTypes.size(),
{getLinkageAttrName(), getCConvAttrName()});
// Print the body if this is not an external function.
Region &body = getBody();
if (!body.empty()) {
p << ' ';
p.printRegion(body, /*printEntryBlockArgs=*/false,
/*printBlockTerminators=*/true);
}
}
// Verifies LLVM- and implementation-specific properties of the LLVM func Op:
// - functions don't have 'common' linkage
// - external functions have 'external' or 'extern_weak' linkage;
// - vararg is (currently) only supported for external functions;
LogicalResult LLVMFuncOp::verify() {
if (getLinkage() == LLVM::Linkage::Common)
return emitOpError() << "functions cannot have '"
<< stringifyLinkage(LLVM::Linkage::Common)
<< "' linkage";
// Check to see if this function has a void return with a result attribute to
// it. It isn't clear what semantics we would assign to that.
if (getFunctionType().getReturnType().isa<LLVMVoidType>() &&
!getResultAttrs(0).empty()) {
return emitOpError()
<< "cannot attach result attributes to functions with a void return";
}
if (isExternal()) {
if (getLinkage() != LLVM::Linkage::External &&
getLinkage() != LLVM::Linkage::ExternWeak)
return emitOpError() << "external functions must have '"
<< stringifyLinkage(LLVM::Linkage::External)
<< "' or '"
<< stringifyLinkage(LLVM::Linkage::ExternWeak)
<< "' linkage";
return success();
}
return success();
}
/// Verifies LLVM- and implementation-specific properties of the LLVM func Op:
/// - entry block arguments are of LLVM types.
LogicalResult LLVMFuncOp::verifyRegions() {
if (isExternal())
return success();
unsigned numArguments = getFunctionType().getNumParams();
Block &entryBlock = front();
for (unsigned i = 0; i < numArguments; ++i) {
Type argType = entryBlock.getArgument(i).getType();
if (!isCompatibleType(argType))
return emitOpError("entry block argument #")
<< i << " is not of LLVM type";
}
return success();
}
//===----------------------------------------------------------------------===//
// Verification for LLVM::ConstantOp.
//===----------------------------------------------------------------------===//
LogicalResult LLVM::ConstantOp::verify() {
if (StringAttr sAttr = getValue().dyn_cast<StringAttr>()) {
auto arrayType = getType().dyn_cast<LLVMArrayType>();
if (!arrayType || arrayType.getNumElements() != sAttr.getValue().size() ||
!arrayType.getElementType().isInteger(8)) {
return emitOpError() << "expected array type of "
<< sAttr.getValue().size()
<< " i8 elements for the string constant";
}
return success();
}
if (auto structType = getType().dyn_cast<LLVMStructType>()) {
if (structType.getBody().size() != 2 ||
structType.getBody()[0] != structType.getBody()[1]) {
return emitError() << "expected struct type with two elements of the "
"same type, the type of a complex constant";
}
auto arrayAttr = getValue().dyn_cast<ArrayAttr>();
if (!arrayAttr || arrayAttr.size() != 2) {
return emitOpError() << "expected array attribute with two elements, "
"representing a complex constant";
}
auto re = arrayAttr[0].dyn_cast<TypedAttr>();
auto im = arrayAttr[1].dyn_cast<TypedAttr>();
if (!re || !im || re.getType() != im.getType()) {
return emitOpError()
<< "expected array attribute with two elements of the same type";
}
Type elementType = structType.getBody()[0];
if (!elementType
.isa<IntegerType, Float16Type, Float32Type, Float64Type>()) {
return emitError()
<< "expected struct element types to be floating point type or "
"integer type";
}
return success();
}
if (!getValue().isa<IntegerAttr, ArrayAttr, FloatAttr, ElementsAttr>())
return emitOpError()
<< "only supports integer, float, string or elements attributes";
return success();
}
// Constant op constant-folds to its value.
OpFoldResult LLVM::ConstantOp::fold(ArrayRef<Attribute>) { return getValue(); }
//===----------------------------------------------------------------------===//
// Utility functions for parsing atomic ops
//===----------------------------------------------------------------------===//
// Helper function to parse a keyword into the specified attribute named by
// `attrName`. The keyword must match one of the string values defined by the
// AtomicBinOp enum. The resulting I64 attribute is added to the `result`
// state.
static ParseResult parseAtomicBinOp(OpAsmParser &parser, OperationState &result,
StringRef attrName) {
SMLoc loc;
StringRef keyword;
if (parser.getCurrentLocation(&loc) || parser.parseKeyword(&keyword))
return failure();
// Replace the keyword `keyword` with an integer attribute.
auto kind = symbolizeAtomicBinOp(keyword);
if (!kind) {
return parser.emitError(loc)
<< "'" << keyword << "' is an incorrect value of the '" << attrName
<< "' attribute";
}
auto value = static_cast<int64_t>(*kind);
auto attr = parser.getBuilder().getI64IntegerAttr(value);
result.addAttribute(attrName, attr);
return success();
}
// Helper function to parse a keyword into the specified attribute named by
// `attrName`. The keyword must match one of the string values defined by the
// AtomicOrdering enum. The resulting I64 attribute is added to the `result`
// state.
static ParseResult parseAtomicOrdering(OpAsmParser &parser,
OperationState &result,
StringRef attrName) {
SMLoc loc;
StringRef ordering;
if (parser.getCurrentLocation(&loc) || parser.parseKeyword(&ordering))
return failure();
// Replace the keyword `ordering` with an integer attribute.
auto kind = symbolizeAtomicOrdering(ordering);
if (!kind) {
return parser.emitError(loc)
<< "'" << ordering << "' is an incorrect value of the '" << attrName
<< "' attribute";
}
auto value = static_cast<int64_t>(*kind);
auto attr = parser.getBuilder().getI64IntegerAttr(value);
result.addAttribute(attrName, attr);
return success();
}
//===----------------------------------------------------------------------===//
// Printer, parser and verifier for LLVM::AtomicRMWOp.
//===----------------------------------------------------------------------===//
void AtomicRMWOp::print(OpAsmPrinter &p) {
p << ' ' << stringifyAtomicBinOp(getBinOp()) << ' ' << getPtr() << ", "
<< getVal() << ' ' << stringifyAtomicOrdering(getOrdering()) << ' ';
p.printOptionalAttrDict((*this)->getAttrs(), {"bin_op", "ordering"});
p << " : " << getRes().getType();
}
// <operation> ::= `llvm.atomicrmw` keyword ssa-use `,` ssa-use keyword
// attribute-dict? `:` type
ParseResult AtomicRMWOp::parse(OpAsmParser &parser, OperationState &result) {
Type type;
OpAsmParser::UnresolvedOperand ptr, val;
if (parseAtomicBinOp(parser, result, "bin_op") || parser.parseOperand(ptr) ||
parser.parseComma() || parser.parseOperand(val) ||
parseAtomicOrdering(parser, result, "ordering") ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(ptr, LLVM::LLVMPointerType::get(type),
result.operands) ||
parser.resolveOperand(val, type, result.operands))
return failure();
result.addTypes(type);
return success();
}
LogicalResult AtomicRMWOp::verify() {
auto ptrType = getPtr().getType().cast<LLVM::LLVMPointerType>();
auto valType = getVal().getType();
if (valType != ptrType.getElementType())
return emitOpError("expected LLVM IR element type for operand #0 to "
"match type for operand #1");
auto resType = getRes().getType();
if (resType != valType)
return emitOpError(
"expected LLVM IR result type to match type for operand #1");
if (getBinOp() == AtomicBinOp::fadd || getBinOp() == AtomicBinOp::fsub) {
if (!mlir::LLVM::isCompatibleFloatingPointType(valType))
return emitOpError("expected LLVM IR floating point type");
} else if (getBinOp() == AtomicBinOp::xchg) {
auto intType = valType.dyn_cast<IntegerType>();
unsigned intBitWidth = intType ? intType.getWidth() : 0;
if (intBitWidth != 8 && intBitWidth != 16 && intBitWidth != 32 &&
intBitWidth != 64 && !valType.isa<BFloat16Type>() &&
!valType.isa<Float16Type>() && !valType.isa<Float32Type>() &&
!valType.isa<Float64Type>())
return emitOpError("unexpected LLVM IR type for 'xchg' bin_op");
} else {
auto intType = valType.dyn_cast<IntegerType>();
unsigned intBitWidth = intType ? intType.getWidth() : 0;
if (intBitWidth != 8 && intBitWidth != 16 && intBitWidth != 32 &&
intBitWidth != 64)
return emitOpError("expected LLVM IR integer type");
}
if (static_cast<unsigned>(getOrdering()) <
static_cast<unsigned>(AtomicOrdering::monotonic))
return emitOpError() << "expected at least '"
<< stringifyAtomicOrdering(AtomicOrdering::monotonic)
<< "' ordering";
return success();
}
//===----------------------------------------------------------------------===//
// Printer, parser and verifier for LLVM::AtomicCmpXchgOp.
//===----------------------------------------------------------------------===//
void AtomicCmpXchgOp::print(OpAsmPrinter &p) {
p << ' ' << getPtr() << ", " << getCmp() << ", " << getVal() << ' '
<< stringifyAtomicOrdering(getSuccessOrdering()) << ' '
<< stringifyAtomicOrdering(getFailureOrdering());
p.printOptionalAttrDict((*this)->getAttrs(),
{"success_ordering", "failure_ordering"});
p << " : " << getVal().getType();
}
// <operation> ::= `llvm.cmpxchg` ssa-use `,` ssa-use `,` ssa-use
// keyword keyword attribute-dict? `:` type
ParseResult AtomicCmpXchgOp::parse(OpAsmParser &parser,
OperationState &result) {
auto &builder = parser.getBuilder();
Type type;
OpAsmParser::UnresolvedOperand ptr, cmp, val;
if (parser.parseOperand(ptr) || parser.parseComma() ||
parser.parseOperand(cmp) || parser.parseComma() ||
parser.parseOperand(val) ||
parseAtomicOrdering(parser, result, "success_ordering") ||
parseAtomicOrdering(parser, result, "failure_ordering") ||
parser.parseOptionalAttrDict(result.attributes) ||
parser.parseColonType(type) ||
parser.resolveOperand(ptr, LLVM::LLVMPointerType::get(type),
result.operands) ||
parser.resolveOperand(cmp, type, result.operands) ||
parser.resolveOperand(val, type, result.operands))
return failure();
auto boolType = IntegerType::get(builder.getContext(), 1);
auto resultType =
LLVMStructType::getLiteral(builder.getContext(), {type, boolType});
result.addTypes(resultType);
return success();
}
LogicalResult AtomicCmpXchgOp::verify() {
auto ptrType = getPtr().getType().cast<LLVM::LLVMPointerType>();
if (!ptrType)
return emitOpError("expected LLVM IR pointer type for operand #0");
auto cmpType = getCmp().getType();
auto valType = getVal().getType();
if (cmpType != ptrType.getElementType() || cmpType != valType)
return emitOpError("expected LLVM IR element type for operand #0 to "
"match type for all other operands");
auto intType = valType.dyn_cast<IntegerType>();
unsigned intBitWidth = intType ? intType.getWidth() : 0;
if (!valType.isa<LLVMPointerType>() && intBitWidth != 8 &&
intBitWidth != 16 && intBitWidth != 32 && intBitWidth != 64 &&
!valType.isa<BFloat16Type>() && !valType.isa<Float16Type>() &&
!valType.isa<Float32Type>() && !valType.isa<Float64Type>())
return emitOpError("unexpected LLVM IR type");
if (getSuccessOrdering() < AtomicOrdering::monotonic ||
getFailureOrdering() < AtomicOrdering::monotonic)
return emitOpError("ordering must be at least 'monotonic'");
if (getFailureOrdering() == AtomicOrdering::release ||
getFailureOrdering() == AtomicOrdering::acq_rel)
return emitOpError("failure ordering cannot be 'release' or 'acq_rel'");
return success();
}
//===----------------------------------------------------------------------===//
// Printer, parser and verifier for LLVM::FenceOp.
//===----------------------------------------------------------------------===//
// <operation> ::= `llvm.fence` (`syncscope(`strAttr`)`)? keyword
// attribute-dict?
ParseResult FenceOp::parse(OpAsmParser &parser, OperationState &result) {
StringAttr sScope;
StringRef syncscopeKeyword = "syncscope";
if (!failed(parser.parseOptionalKeyword(syncscopeKeyword))) {
if (parser.parseLParen() ||
parser.parseAttribute(sScope, syncscopeKeyword, result.attributes) ||
parser.parseRParen())
return failure();
} else {
result.addAttribute(syncscopeKeyword,
parser.getBuilder().getStringAttr(""));
}
if (parseAtomicOrdering(parser, result, "ordering") ||
parser.parseOptionalAttrDict(result.attributes))
return failure();
return success();
}
void FenceOp::print(OpAsmPrinter &p) {
StringRef syncscopeKeyword = "syncscope";
p << ' ';
if (!(*this)->getAttr(syncscopeKeyword).cast<StringAttr>().getValue().empty())
p << "syncscope(" << (*this)->getAttr(syncscopeKeyword) << ") ";
p << stringifyAtomicOrdering(getOrdering());
}
LogicalResult FenceOp::verify() {
if (getOrdering() == AtomicOrdering::not_atomic ||
getOrdering() == AtomicOrdering::unordered ||
getOrdering() == AtomicOrdering::monotonic)
return emitOpError("can be given only acquire, release, acq_rel, "
"and seq_cst orderings");
return success();
}
//===----------------------------------------------------------------------===//
// Folder for LLVM::BitcastOp
//===----------------------------------------------------------------------===//
OpFoldResult LLVM::BitcastOp::fold(ArrayRef<Attribute> operands) {
// bitcast(x : T0, T0) -> x
if (getArg().getType() == getType())
return getArg();
// bitcast(bitcast(x : T0, T1), T0) -> x
if (auto prev = getArg().getDefiningOp<BitcastOp>())
if (prev.getArg().getType() == getType())
return prev.getArg();
return {};
}
//===----------------------------------------------------------------------===//
// Folder for LLVM::AddrSpaceCastOp
//===----------------------------------------------------------------------===//
OpFoldResult LLVM::AddrSpaceCastOp::fold(ArrayRef<Attribute> operands) {
// addrcast(x : T0, T0) -> x
if (getArg().getType() == getType())
return getArg();
// addrcast(addrcast(x : T0, T1), T0) -> x
if (auto prev = getArg().getDefiningOp<AddrSpaceCastOp>())
if (prev.getArg().getType() == getType())
return prev.getArg();
return {};
}
//===----------------------------------------------------------------------===//
// Folder for LLVM::GEPOp
//===----------------------------------------------------------------------===//
OpFoldResult LLVM::GEPOp::fold(ArrayRef<Attribute> operands) {
GEPIndicesAdaptor<ArrayRef<Attribute>> indices(getRawConstantIndicesAttr(),
operands.drop_front());
// gep %x:T, 0 -> %x
if (getBase().getType() == getType() && indices.size() == 1)
if (auto integer = indices[0].dyn_cast_or_null<IntegerAttr>())
if (integer.getValue().isZero())
return getBase();
// Canonicalize any dynamic indices of constant value to constant indices.
bool changed = false;
SmallVector<GEPArg> gepArgs;
for (auto &iter : llvm::enumerate(indices)) {
auto integer = iter.value().dyn_cast_or_null<IntegerAttr>();
// Constant indices can only be int32_t, so if integer does not fit we
// are forced to keep it dynamic, despite being a constant.
if (!indices.isDynamicIndex(iter.index()) || !integer ||
!integer.getValue().isSignedIntN(kGEPConstantBitWidth)) {
PointerUnion<IntegerAttr, Value> existing = getIndices()[iter.index()];
if (Value val = existing.dyn_cast<Value>())
gepArgs.emplace_back(val);
else
gepArgs.emplace_back(existing.get<IntegerAttr>().getInt());
continue;
}
changed = true;
gepArgs.emplace_back(integer.getInt());
}
if (changed) {
SmallVector<int32_t> rawConstantIndices;
SmallVector<Value> dynamicIndices;
destructureIndices(getSourceElementType(), gepArgs, rawConstantIndices,
dynamicIndices);
getDynamicIndicesMutable().assign(dynamicIndices);
setRawConstantIndicesAttr(
DenseI32ArrayAttr::get(getContext(), rawConstantIndices));
return Value{*this};
}
return {};
}
//===----------------------------------------------------------------------===//
// LLVMDialect initialization, type parsing, and registration.
//===----------------------------------------------------------------------===//
void LLVMDialect::initialize() {
addAttributes<FMFAttr, LinkageAttr, CConvAttr, LoopOptionsAttr>();
// clang-format off
addTypes<LLVMVoidType,
LLVMPPCFP128Type,
LLVMX86MMXType,
LLVMTokenType,
LLVMLabelType,
LLVMMetadataType,
LLVMFunctionType,
LLVMPointerType,
LLVMFixedVectorType,
LLVMScalableVectorType,
LLVMArrayType,
LLVMStructType>();
// clang-format on
addOperations<
#define GET_OP_LIST
#include "mlir/Dialect/LLVMIR/LLVMOps.cpp.inc"
,
#define GET_OP_LIST
#include "mlir/Dialect/LLVMIR/LLVMIntrinsicOps.cpp.inc"
>();
// Support unknown operations because not all LLVM operations are registered.
allowUnknownOperations();
}
#define GET_OP_CLASSES
#include "mlir/Dialect/LLVMIR/LLVMOps.cpp.inc"
/// Parse a type registered to this dialect.
Type LLVMDialect::parseType(DialectAsmParser &parser) const {
return detail::parseType(parser);
}
/// Print a type registered to this dialect.
void LLVMDialect::printType(Type type, DialectAsmPrinter &os) const {
return detail::printType(type, os);
}
LogicalResult LLVMDialect::verifyDataLayoutString(
StringRef descr, llvm::function_ref<void(const Twine &)> reportError) {
llvm::Expected<llvm::DataLayout> maybeDataLayout =
llvm::DataLayout::parse(descr);
if (maybeDataLayout)
return success();
std::string message;
llvm::raw_string_ostream messageStream(message);
llvm::logAllUnhandledErrors(maybeDataLayout.takeError(), messageStream);
reportError("invalid data layout descriptor: " + messageStream.str());
return failure();
}
/// Verify LLVM dialect attributes.
LogicalResult LLVMDialect::verifyOperationAttribute(Operation *op,
NamedAttribute attr) {
// If the `llvm.loop` attribute is present, enforce the following structure,
// which the module translation can assume.
if (attr.getName() == LLVMDialect::getLoopAttrName()) {
auto loopAttr = attr.getValue().dyn_cast<DictionaryAttr>();
if (!loopAttr)
return op->emitOpError() << "expected '" << LLVMDialect::getLoopAttrName()
<< "' to be a dictionary attribute";
Optional<NamedAttribute> parallelAccessGroup =
loopAttr.getNamed(LLVMDialect::getParallelAccessAttrName());
if (parallelAccessGroup) {
auto accessGroups = parallelAccessGroup->getValue().dyn_cast<ArrayAttr>();
if (!accessGroups)
return op->emitOpError()
<< "expected '" << LLVMDialect::getParallelAccessAttrName()
<< "' to be an array attribute";
for (Attribute attr : accessGroups) {
auto accessGroupRef = attr.dyn_cast<SymbolRefAttr>();
if (!accessGroupRef)
return op->emitOpError()
<< "expected '" << attr << "' to be a symbol reference";
StringAttr metadataName = accessGroupRef.getRootReference();
auto metadataOp =
SymbolTable::lookupNearestSymbolFrom<LLVM::MetadataOp>(
op->getParentOp(), metadataName);
if (!metadataOp)
return op->emitOpError()
<< "expected '" << attr << "' to reference a metadata op";
StringAttr accessGroupName = accessGroupRef.getLeafReference();
Operation *accessGroupOp =
SymbolTable::lookupNearestSymbolFrom(metadataOp, accessGroupName);
if (!accessGroupOp)
return op->emitOpError()
<< "expected '" << attr << "' to reference an access_group op";
}
}
Optional<NamedAttribute> loopOptions =
loopAttr.getNamed(LLVMDialect::getLoopOptionsAttrName());
if (loopOptions && !loopOptions->getValue().isa<LoopOptionsAttr>())
return op->emitOpError()
<< "expected '" << LLVMDialect::getLoopOptionsAttrName()
<< "' to be a `loopopts` attribute";
}
if (attr.getName() == LLVMDialect::getStructAttrsAttrName()) {
return op->emitOpError()
<< "'" << LLVM::LLVMDialect::getStructAttrsAttrName()
<< "' is permitted only in argument or result attributes";
}
// If the data layout attribute is present, it must use the LLVM data layout
// syntax. Try parsing it and report errors in case of failure. Users of this
// attribute may assume it is well-formed and can pass it to the (asserting)
// llvm::DataLayout constructor.
if (attr.getName() != LLVM::LLVMDialect::getDataLayoutAttrName())
return success();
if (auto stringAttr = attr.getValue().dyn_cast<StringAttr>())
return verifyDataLayoutString(
stringAttr.getValue(),
[op](const Twine &message) { op->emitOpError() << message.str(); });
return op->emitOpError() << "expected '"
<< LLVM::LLVMDialect::getDataLayoutAttrName()
<< "' to be a string attributes";
}
LogicalResult LLVMDialect::verifyStructAttr(Operation *op, Attribute attr,
Type annotatedType) {
auto structType = annotatedType.dyn_cast<LLVMStructType>();
if (!structType) {
const auto emitIncorrectAnnotatedType = [&op]() {
return op->emitError()
<< "expected '" << LLVMDialect::getStructAttrsAttrName()
<< "' to annotate '!llvm.struct' or '!llvm.ptr<struct<...>>'";
};
const auto ptrType = annotatedType.dyn_cast<LLVMPointerType>();
if (!ptrType)
return emitIncorrectAnnotatedType();
structType = ptrType.getElementType().dyn_cast<LLVMStructType>();
if (!structType)
return emitIncorrectAnnotatedType();
}
const auto arrAttrs = attr.dyn_cast<ArrayAttr>();
if (!arrAttrs)
return op->emitError() << "expected '"
<< LLVMDialect::getStructAttrsAttrName()
<< "' to be an array attribute";
if (structType.getBody().size() != arrAttrs.size())
return op->emitError()
<< "size of '" << LLVMDialect::getStructAttrsAttrName()
<< "' must match the size of the annotated '!llvm.struct'";
return success();
}
static LogicalResult verifyFuncOpInterfaceStructAttr(
Operation *op, Attribute attr,
const std::function<Type(FunctionOpInterface)> &getAnnotatedType) {
if (auto funcOp = dyn_cast<FunctionOpInterface>(op))
return LLVMDialect::verifyStructAttr(op, attr, getAnnotatedType(funcOp));
return op->emitError() << "expected '"
<< LLVMDialect::getStructAttrsAttrName()
<< "' to be used on function-like operations";
}
/// Verify LLVMIR function argument attributes.
LogicalResult LLVMDialect::verifyRegionArgAttribute(Operation *op,
unsigned regionIdx,
unsigned argIdx,
NamedAttribute argAttr) {
// Check that llvm.noalias is a unit attribute.
if (argAttr.getName() == LLVMDialect::getNoAliasAttrName() &&
!argAttr.getValue().isa<UnitAttr>())
return op->emitError()
<< "expected llvm.noalias argument attribute to be a unit attribute";
// Check that llvm.align is an integer attribute.
if (argAttr.getName() == LLVMDialect::getAlignAttrName() &&
!argAttr.getValue().isa<IntegerAttr>())
return op->emitError()
<< "llvm.align argument attribute of non integer type";
if (argAttr.getName() == LLVMDialect::getStructAttrsAttrName()) {
return verifyFuncOpInterfaceStructAttr(
op, argAttr.getValue(), [argIdx](FunctionOpInterface funcOp) {
return funcOp.getArgumentTypes()[argIdx];
});
}
return success();
}
LogicalResult LLVMDialect::verifyRegionResultAttribute(Operation *op,
unsigned regionIdx,
unsigned resIdx,
NamedAttribute resAttr) {
if (resAttr.getName() == LLVMDialect::getStructAttrsAttrName()) {
return verifyFuncOpInterfaceStructAttr(
op, resAttr.getValue(), [resIdx](FunctionOpInterface funcOp) {
return funcOp.getResultTypes()[resIdx];
});
}
return success();
}
//===----------------------------------------------------------------------===//
// Utility functions.
//===----------------------------------------------------------------------===//
Value mlir::LLVM::createGlobalString(Location loc, OpBuilder &builder,
StringRef name, StringRef value,
LLVM::Linkage linkage) {
assert(builder.getInsertionBlock() &&
builder.getInsertionBlock()->getParentOp() &&
"expected builder to point to a block constrained in an op");
auto module =
builder.getInsertionBlock()->getParentOp()->getParentOfType<ModuleOp>();
assert(module && "builder points to an op outside of a module");
// Create the global at the entry of the module.
OpBuilder moduleBuilder(module.getBodyRegion(), builder.getListener());
MLIRContext *ctx = builder.getContext();
auto type = LLVM::LLVMArrayType::get(IntegerType::get(ctx, 8), value.size());
auto global = moduleBuilder.create<LLVM::GlobalOp>(
loc, type, /*isConstant=*/true, linkage, name,
builder.getStringAttr(value), /*alignment=*/0);
// Get the pointer to the first character in the global string.
Value globalPtr = builder.create<LLVM::AddressOfOp>(loc, global);
return builder.create<LLVM::GEPOp>(
loc, LLVM::LLVMPointerType::get(IntegerType::get(ctx, 8)), globalPtr,
ArrayRef<GEPArg>{0, 0});
}
bool mlir::LLVM::satisfiesLLVMModule(Operation *op) {
return op->hasTrait<OpTrait::SymbolTable>() &&
op->hasTrait<OpTrait::IsIsolatedFromAbove>();
}
void FMFAttr::print(AsmPrinter &printer) const {
printer << "<";
printer << stringifyFastmathFlags(this->getFlags());
printer << ">";
}
Attribute FMFAttr::parse(AsmParser &parser, Type type) {
if (failed(parser.parseLess()))
return {};
FastmathFlags flags = {};
if (failed(parser.parseOptionalGreater())) {
auto parseFlags = [&]() -> ParseResult {
StringRef elemName;
if (failed(parser.parseKeyword(&elemName)))
return failure();
auto elem = symbolizeFastmathFlags(elemName);
if (!elem)
return parser.emitError(parser.getNameLoc(), "Unknown fastmath flag: ")
<< elemName;
flags = flags | *elem;
return success();
};
if (failed(parser.parseCommaSeparatedList(parseFlags)) ||
parser.parseGreater())
return {};
}
return FMFAttr::get(parser.getContext(), flags);
}
void LinkageAttr::print(AsmPrinter &printer) const {
printer << "<";
if (static_cast<uint64_t>(getLinkage()) <= getMaxEnumValForLinkage())
printer << stringifyEnum(getLinkage());
else
printer << static_cast<uint64_t>(getLinkage());
printer << ">";
}
Attribute LinkageAttr::parse(AsmParser &parser, Type type) {
StringRef elemName;
if (parser.parseLess() || parser.parseKeyword(&elemName) ||
parser.parseGreater())
return {};
auto elem = linkage::symbolizeLinkage(elemName);
if (!elem) {
parser.emitError(parser.getNameLoc(), "Unknown linkage: ") << elemName;
return {};
}
Linkage linkage = *elem;
return LinkageAttr::get(parser.getContext(), linkage);
}
void CConvAttr::print(AsmPrinter &printer) const {
printer << "<";
if (static_cast<uint64_t>(getCallingConv()) <= cconv::getMaxEnumValForCConv())
printer << stringifyEnum(getCallingConv());
else
printer << "INVALID_cc_" << static_cast<uint64_t>(getCallingConv());
printer << ">";
}
Attribute CConvAttr::parse(AsmParser &parser, Type type) {
StringRef convName;
if (parser.parseLess() || parser.parseKeyword(&convName) ||
parser.parseGreater())
return {};
auto cconv = cconv::symbolizeCConv(convName);
if (!cconv) {
parser.emitError(parser.getNameLoc(), "unknown calling convention: ")
<< convName;
return {};
}
CConv cconvVal = *cconv;
return CConvAttr::get(parser.getContext(), cconvVal);
}
LoopOptionsAttrBuilder::LoopOptionsAttrBuilder(LoopOptionsAttr attr)
: options(attr.getOptions().begin(), attr.getOptions().end()) {}
template <typename T>
LoopOptionsAttrBuilder &LoopOptionsAttrBuilder::setOption(LoopOptionCase tag,
Optional<T> value) {
auto option = llvm::find_if(
options, [tag](auto option) { return option.first == tag; });
if (option != options.end()) {
if (value)
option->second = *value;
else
options.erase(option);
} else {
options.push_back(LoopOptionsAttr::OptionValuePair(tag, *value));
}
return *this;
}
LoopOptionsAttrBuilder &
LoopOptionsAttrBuilder::setDisableLICM(Optional<bool> value) {
return setOption(LoopOptionCase::disable_licm, value);
}
/// Set the `interleave_count` option to the provided value. If no value
/// is provided the option is deleted.
LoopOptionsAttrBuilder &
LoopOptionsAttrBuilder::setInterleaveCount(Optional<uint64_t> count) {
return setOption(LoopOptionCase::interleave_count, count);
}
/// Set the `disable_unroll` option to the provided value. If no value
/// is provided the option is deleted.
LoopOptionsAttrBuilder &
LoopOptionsAttrBuilder::setDisableUnroll(Optional<bool> value) {
return setOption(LoopOptionCase::disable_unroll, value);
}
/// Set the `disable_pipeline` option to the provided value. If no value
/// is provided the option is deleted.
LoopOptionsAttrBuilder &
LoopOptionsAttrBuilder::setDisablePipeline(Optional<bool> value) {
return setOption(LoopOptionCase::disable_pipeline, value);
}
/// Set the `pipeline_initiation_interval` option to the provided value.
/// If no value is provided the option is deleted.
LoopOptionsAttrBuilder &LoopOptionsAttrBuilder::setPipelineInitiationInterval(
Optional<uint64_t> count) {
return setOption(LoopOptionCase::pipeline_initiation_interval, count);
}
template <typename T>
static Optional<T>
getOption(ArrayRef<std::pair<LoopOptionCase, int64_t>> options,
LoopOptionCase option) {
auto it =
lower_bound(options, option, [](auto optionPair, LoopOptionCase option) {
return optionPair.first < option;
});
if (it == options.end())
return {};
return static_cast<T>(it->second);
}
Optional<bool> LoopOptionsAttr::disableUnroll() {
return getOption<bool>(getOptions(), LoopOptionCase::disable_unroll);
}
Optional<bool> LoopOptionsAttr::disableLICM() {
return getOption<bool>(getOptions(), LoopOptionCase::disable_licm);
}
Optional<int64_t> LoopOptionsAttr::interleaveCount() {
return getOption<int64_t>(getOptions(), LoopOptionCase::interleave_count);
}
/// Build the LoopOptions Attribute from a sorted array of individual options.
LoopOptionsAttr LoopOptionsAttr::get(
MLIRContext *context,
ArrayRef<std::pair<LoopOptionCase, int64_t>> sortedOptions) {
assert(llvm::is_sorted(sortedOptions, llvm::less_first()) &&
"LoopOptionsAttr ctor expects a sorted options array");
return Base::get(context, sortedOptions);
}
/// Build the LoopOptions Attribute from a sorted array of individual options.
LoopOptionsAttr LoopOptionsAttr::get(MLIRContext *context,
LoopOptionsAttrBuilder &optionBuilders) {
llvm::sort(optionBuilders.options, llvm::less_first());
return Base::get(context, optionBuilders.options);
}
void LoopOptionsAttr::print(AsmPrinter &printer) const {
printer << "<";
llvm::interleaveComma(getOptions(), printer, [&](auto option) {
printer << stringifyEnum(option.first) << " = ";
switch (option.first) {
case LoopOptionCase::disable_licm:
case LoopOptionCase::disable_unroll:
case LoopOptionCase::disable_pipeline:
printer << (option.second ? "true" : "false");
break;
case LoopOptionCase::interleave_count:
case LoopOptionCase::pipeline_initiation_interval:
printer << option.second;
break;
}
});
printer << ">";
}
Attribute LoopOptionsAttr::parse(AsmParser &parser, Type type) {
if (failed(parser.parseLess()))
return {};
SmallVector<std::pair<LoopOptionCase, int64_t>> options;
llvm::SmallDenseSet<LoopOptionCase> seenOptions;
auto parseLoopOptions = [&]() -> ParseResult {
StringRef optionName;
if (parser.parseKeyword(&optionName))
return failure();
auto option = symbolizeLoopOptionCase(optionName);
if (!option)
return parser.emitError(parser.getNameLoc(), "unknown loop option: ")
<< optionName;
if (!seenOptions.insert(*option).second)
return parser.emitError(parser.getNameLoc(), "loop option present twice");
if (failed(parser.parseEqual()))
return failure();
int64_t value;
switch (*option) {
case LoopOptionCase::disable_licm:
case LoopOptionCase::disable_unroll:
case LoopOptionCase::disable_pipeline:
if (succeeded(parser.parseOptionalKeyword("true")))
value = 1;
else if (succeeded(parser.parseOptionalKeyword("false")))
value = 0;
else {
return parser.emitError(parser.getNameLoc(),
"expected boolean value 'true' or 'false'");
}
break;
case LoopOptionCase::interleave_count:
case LoopOptionCase::pipeline_initiation_interval:
if (failed(parser.parseInteger(value)))
return parser.emitError(parser.getNameLoc(), "expected integer value");
break;
}
options.push_back(std::make_pair(*option, value));
return success();
};
if (parser.parseCommaSeparatedList(parseLoopOptions) || parser.parseGreater())
return {};
llvm::sort(options, llvm::less_first());
return get(parser.getContext(), options);
}