forked from OSchip/llvm-project
419 lines
16 KiB
C++
419 lines
16 KiB
C++
//===- InstCombineNegator.cpp -----------------------------------*- C++ -*-===//
|
|
//
|
|
// Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
|
|
// See https://llvm.org/LICENSE.txt for license information.
|
|
// SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
//
|
|
// This file implements sinking of negation into expression trees,
|
|
// as long as that can be done without increasing instruction count.
|
|
//
|
|
//===----------------------------------------------------------------------===//
|
|
|
|
#include "InstCombineInternal.h"
|
|
#include "llvm/ADT/APInt.h"
|
|
#include "llvm/ADT/ArrayRef.h"
|
|
#include "llvm/ADT/None.h"
|
|
#include "llvm/ADT/Optional.h"
|
|
#include "llvm/ADT/STLExtras.h"
|
|
#include "llvm/ADT/SmallVector.h"
|
|
#include "llvm/ADT/Statistic.h"
|
|
#include "llvm/ADT/StringRef.h"
|
|
#include "llvm/ADT/Twine.h"
|
|
#include "llvm/ADT/iterator_range.h"
|
|
#include "llvm/Analysis/TargetFolder.h"
|
|
#include "llvm/Analysis/ValueTracking.h"
|
|
#include "llvm/IR/Constant.h"
|
|
#include "llvm/IR/Constants.h"
|
|
#include "llvm/IR/DebugLoc.h"
|
|
#include "llvm/IR/DerivedTypes.h"
|
|
#include "llvm/IR/IRBuilder.h"
|
|
#include "llvm/IR/Instruction.h"
|
|
#include "llvm/IR/Instructions.h"
|
|
#include "llvm/IR/PatternMatch.h"
|
|
#include "llvm/IR/Type.h"
|
|
#include "llvm/IR/Use.h"
|
|
#include "llvm/IR/User.h"
|
|
#include "llvm/IR/Value.h"
|
|
#include "llvm/Support/Casting.h"
|
|
#include "llvm/Support/CommandLine.h"
|
|
#include "llvm/Support/Compiler.h"
|
|
#include "llvm/Support/DebugCounter.h"
|
|
#include "llvm/Support/ErrorHandling.h"
|
|
#include "llvm/Support/raw_ostream.h"
|
|
#include <functional>
|
|
#include <tuple>
|
|
#include <utility>
|
|
|
|
namespace llvm {
|
|
class AssumptionCache;
|
|
class DataLayout;
|
|
class DominatorTree;
|
|
class LLVMContext;
|
|
} // namespace llvm
|
|
|
|
using namespace llvm;
|
|
|
|
#define DEBUG_TYPE "instcombine"
|
|
|
|
STATISTIC(NegatorTotalNegationsAttempted,
|
|
"Negator: Number of negations attempted to be sinked");
|
|
STATISTIC(NegatorNumTreesNegated,
|
|
"Negator: Number of negations successfully sinked");
|
|
STATISTIC(NegatorMaxDepthVisited, "Negator: Maximal traversal depth ever "
|
|
"reached while attempting to sink negation");
|
|
STATISTIC(NegatorTimesDepthLimitReached,
|
|
"Negator: How many times did the traversal depth limit was reached "
|
|
"during sinking");
|
|
STATISTIC(
|
|
NegatorNumValuesVisited,
|
|
"Negator: Total number of values visited during attempts to sink negation");
|
|
STATISTIC(NegatorMaxTotalValuesVisited,
|
|
"Negator: Maximal number of values ever visited while attempting to "
|
|
"sink negation");
|
|
STATISTIC(NegatorNumInstructionsCreatedTotal,
|
|
"Negator: Number of new negated instructions created, total");
|
|
STATISTIC(NegatorMaxInstructionsCreated,
|
|
"Negator: Maximal number of new instructions created during negation "
|
|
"attempt");
|
|
STATISTIC(NegatorNumInstructionsNegatedSuccess,
|
|
"Negator: Number of new negated instructions created in successful "
|
|
"negation sinking attempts");
|
|
|
|
DEBUG_COUNTER(NegatorCounter, "instcombine-negator",
|
|
"Controls Negator transformations in InstCombine pass");
|
|
|
|
static cl::opt<bool>
|
|
NegatorEnabled("instcombine-negator-enabled", cl::init(true),
|
|
cl::desc("Should we attempt to sink negations?"));
|
|
|
|
static cl::opt<unsigned>
|
|
NegatorMaxDepth("instcombine-negator-max-depth",
|
|
cl::init(NegatorDefaultMaxDepth),
|
|
cl::desc("What is the maximal lookup depth when trying to "
|
|
"check for viability of negation sinking."));
|
|
|
|
Negator::Negator(LLVMContext &C, const DataLayout &DL_, AssumptionCache &AC_,
|
|
const DominatorTree &DT_, bool IsTrulyNegation_)
|
|
: Builder(C, TargetFolder(DL_),
|
|
IRBuilderCallbackInserter([&](Instruction *I) {
|
|
++NegatorNumInstructionsCreatedTotal;
|
|
NewInstructions.push_back(I);
|
|
})),
|
|
DL(DL_), AC(AC_), DT(DT_), IsTrulyNegation(IsTrulyNegation_) {}
|
|
|
|
#if LLVM_ENABLE_STATS
|
|
Negator::~Negator() {
|
|
NegatorMaxTotalValuesVisited.updateMax(NumValuesVisitedInThisNegator);
|
|
}
|
|
#endif
|
|
|
|
// FIXME: can this be reworked into a worklist-based algorithm while preserving
|
|
// the depth-first, early bailout traversal?
|
|
LLVM_NODISCARD Value *Negator::visit(Value *V, unsigned Depth) {
|
|
NegatorMaxDepthVisited.updateMax(Depth);
|
|
++NegatorNumValuesVisited;
|
|
|
|
#if LLVM_ENABLE_STATS
|
|
++NumValuesVisitedInThisNegator;
|
|
#endif
|
|
|
|
// -(undef) -> undef.
|
|
if (match(V, m_Undef()))
|
|
return V;
|
|
|
|
// In i1, negation can simply be ignored.
|
|
if (V->getType()->isIntOrIntVectorTy(1))
|
|
return V;
|
|
|
|
Value *X;
|
|
|
|
// -(-(X)) -> X.
|
|
if (match(V, m_Neg(m_Value(X))))
|
|
return X;
|
|
|
|
// Integral constants can be freely negated.
|
|
if (match(V, m_AnyIntegralConstant()))
|
|
return ConstantExpr::getNeg(cast<Constant>(V), /*HasNUW=*/false,
|
|
/*HasNSW=*/false);
|
|
|
|
// If we have a non-instruction, then give up.
|
|
if (!isa<Instruction>(V))
|
|
return nullptr;
|
|
|
|
// If we have started with a true negation (i.e. `sub 0, %y`), then if we've
|
|
// got instruction that does not require recursive reasoning, we can still
|
|
// negate it even if it has other uses, without increasing instruction count.
|
|
if (!V->hasOneUse() && !IsTrulyNegation)
|
|
return nullptr;
|
|
|
|
auto *I = cast<Instruction>(V);
|
|
unsigned BitWidth = I->getType()->getScalarSizeInBits();
|
|
|
|
// We must preserve the insertion point and debug info that is set in the
|
|
// builder at the time this function is called.
|
|
InstCombiner::BuilderTy::InsertPointGuard Guard(Builder);
|
|
// And since we are trying to negate instruction I, that tells us about the
|
|
// insertion point and the debug info that we need to keep.
|
|
Builder.SetInsertPoint(I);
|
|
|
|
// In some cases we can give the answer without further recursion.
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Add:
|
|
// `inc` is always negatible.
|
|
if (match(I->getOperand(1), m_One()))
|
|
return Builder.CreateNot(I->getOperand(0), I->getName() + ".neg");
|
|
break;
|
|
case Instruction::Xor:
|
|
// `not` is always negatible.
|
|
if (match(I, m_Not(m_Value(X))))
|
|
return Builder.CreateAdd(X, ConstantInt::get(X->getType(), 1),
|
|
I->getName() + ".neg");
|
|
break;
|
|
case Instruction::AShr:
|
|
case Instruction::LShr: {
|
|
// Right-shift sign bit smear is negatible.
|
|
const APInt *Op1Val;
|
|
if (match(I->getOperand(1), m_APInt(Op1Val)) && *Op1Val == BitWidth - 1) {
|
|
Value *BO = I->getOpcode() == Instruction::AShr
|
|
? Builder.CreateLShr(I->getOperand(0), I->getOperand(1))
|
|
: Builder.CreateAShr(I->getOperand(0), I->getOperand(1));
|
|
if (auto *NewInstr = dyn_cast<Instruction>(BO)) {
|
|
NewInstr->copyIRFlags(I);
|
|
NewInstr->setName(I->getName() + ".neg");
|
|
}
|
|
return BO;
|
|
}
|
|
break;
|
|
}
|
|
case Instruction::SExt:
|
|
case Instruction::ZExt:
|
|
// `*ext` of i1 is always negatible
|
|
if (I->getOperand(0)->getType()->isIntOrIntVectorTy(1))
|
|
return I->getOpcode() == Instruction::SExt
|
|
? Builder.CreateZExt(I->getOperand(0), I->getType(),
|
|
I->getName() + ".neg")
|
|
: Builder.CreateSExt(I->getOperand(0), I->getType(),
|
|
I->getName() + ".neg");
|
|
break;
|
|
default:
|
|
break; // Other instructions require recursive reasoning.
|
|
}
|
|
|
|
// Some other cases, while still don't require recursion,
|
|
// are restricted to the one-use case.
|
|
if (!V->hasOneUse())
|
|
return nullptr;
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::Sub:
|
|
// `sub` is always negatible.
|
|
// But if the old `sub` sticks around, even thought we don't increase
|
|
// instruction count, this is a likely regression since we increased
|
|
// live-range of *both* of the operands, which might lead to more spilling.
|
|
return Builder.CreateSub(I->getOperand(1), I->getOperand(0),
|
|
I->getName() + ".neg");
|
|
case Instruction::SDiv:
|
|
// `sdiv` is negatible if divisor is not undef/INT_MIN/1.
|
|
// While this is normally not behind a use-check,
|
|
// let's consider division to be special since it's costly.
|
|
if (auto *Op1C = dyn_cast<Constant>(I->getOperand(1))) {
|
|
if (!Op1C->containsUndefElement() && Op1C->isNotMinSignedValue() &&
|
|
Op1C->isNotOneValue()) {
|
|
Value *BO =
|
|
Builder.CreateSDiv(I->getOperand(0), ConstantExpr::getNeg(Op1C),
|
|
I->getName() + ".neg");
|
|
if (auto *NewInstr = dyn_cast<Instruction>(BO))
|
|
NewInstr->setIsExact(I->isExact());
|
|
return BO;
|
|
}
|
|
}
|
|
break;
|
|
}
|
|
|
|
// Rest of the logic is recursive, so if it's time to give up then it's time.
|
|
if (Depth > NegatorMaxDepth) {
|
|
LLVM_DEBUG(dbgs() << "Negator: reached maximal allowed traversal depth in "
|
|
<< *V << ". Giving up.\n");
|
|
++NegatorTimesDepthLimitReached;
|
|
return nullptr;
|
|
}
|
|
|
|
switch (I->getOpcode()) {
|
|
case Instruction::PHI: {
|
|
// `phi` is negatible if all the incoming values are negatible.
|
|
PHINode *PHI = cast<PHINode>(I);
|
|
SmallVector<Value *, 4> NegatedIncomingValues(PHI->getNumOperands());
|
|
for (auto I : zip(PHI->incoming_values(), NegatedIncomingValues)) {
|
|
if (!(std::get<1>(I) = visit(std::get<0>(I), Depth + 1))) // Early return.
|
|
return nullptr;
|
|
}
|
|
// All incoming values are indeed negatible. Create negated PHI node.
|
|
PHINode *NegatedPHI = Builder.CreatePHI(
|
|
PHI->getType(), PHI->getNumOperands(), PHI->getName() + ".neg");
|
|
for (auto I : zip(NegatedIncomingValues, PHI->blocks()))
|
|
NegatedPHI->addIncoming(std::get<0>(I), std::get<1>(I));
|
|
return NegatedPHI;
|
|
}
|
|
case Instruction::Select: {
|
|
{
|
|
// `abs`/`nabs` is always negatible.
|
|
Value *LHS, *RHS;
|
|
SelectPatternFlavor SPF =
|
|
matchSelectPattern(I, LHS, RHS, /*CastOp=*/nullptr, Depth).Flavor;
|
|
if (SPF == SPF_ABS || SPF == SPF_NABS) {
|
|
auto *NewSelect = cast<SelectInst>(I->clone());
|
|
// Just swap the operands of the select.
|
|
NewSelect->swapValues();
|
|
// Don't swap prof metadata, we didn't change the branch behavior.
|
|
NewSelect->setName(I->getName() + ".neg");
|
|
Builder.Insert(NewSelect);
|
|
return NewSelect;
|
|
}
|
|
}
|
|
// `select` is negatible if both hands of `select` are negatible.
|
|
Value *NegOp1 = visit(I->getOperand(1), Depth + 1);
|
|
if (!NegOp1) // Early return.
|
|
return nullptr;
|
|
Value *NegOp2 = visit(I->getOperand(2), Depth + 1);
|
|
if (!NegOp2)
|
|
return nullptr;
|
|
// Do preserve the metadata!
|
|
return Builder.CreateSelect(I->getOperand(0), NegOp1, NegOp2,
|
|
I->getName() + ".neg", /*MDFrom=*/I);
|
|
}
|
|
case Instruction::ShuffleVector: {
|
|
// `shufflevector` is negatible if both operands are negatible.
|
|
ShuffleVectorInst *Shuf = cast<ShuffleVectorInst>(I);
|
|
Value *NegOp0 = visit(I->getOperand(0), Depth + 1);
|
|
if (!NegOp0) // Early return.
|
|
return nullptr;
|
|
Value *NegOp1 = visit(I->getOperand(1), Depth + 1);
|
|
if (!NegOp1)
|
|
return nullptr;
|
|
return Builder.CreateShuffleVector(NegOp0, NegOp1, Shuf->getShuffleMask(),
|
|
I->getName() + ".neg");
|
|
}
|
|
case Instruction::Trunc: {
|
|
// `trunc` is negatible if its operand is negatible.
|
|
Value *NegOp = visit(I->getOperand(0), Depth + 1);
|
|
if (!NegOp) // Early return.
|
|
return nullptr;
|
|
return Builder.CreateTrunc(NegOp, I->getType(), I->getName() + ".neg");
|
|
}
|
|
case Instruction::Shl: {
|
|
// `shl` is negatible if the first operand is negatible.
|
|
Value *NegOp0 = visit(I->getOperand(0), Depth + 1);
|
|
if (!NegOp0) // Early return.
|
|
return nullptr;
|
|
return Builder.CreateShl(NegOp0, I->getOperand(1), I->getName() + ".neg");
|
|
}
|
|
case Instruction::Or:
|
|
if (!haveNoCommonBitsSet(I->getOperand(0), I->getOperand(1), DL, &AC, I,
|
|
&DT))
|
|
return nullptr; // Don't know how to handle `or` in general.
|
|
// `or`/`add` are interchangeable when operands have no common bits set.
|
|
// `inc` is always negatible.
|
|
if (match(I->getOperand(1), m_One()))
|
|
return Builder.CreateNot(I->getOperand(0), I->getName() + ".neg");
|
|
// Else, just defer to Instruction::Add handling.
|
|
LLVM_FALLTHROUGH;
|
|
case Instruction::Add: {
|
|
// `add` is negatible if both of its operands are negatible.
|
|
Value *NegOp0 = visit(I->getOperand(0), Depth + 1);
|
|
if (!NegOp0) // Early return.
|
|
return nullptr;
|
|
Value *NegOp1 = visit(I->getOperand(1), Depth + 1);
|
|
if (!NegOp1)
|
|
return nullptr;
|
|
return Builder.CreateAdd(NegOp0, NegOp1, I->getName() + ".neg");
|
|
}
|
|
case Instruction::Xor:
|
|
// `xor` is negatible if one of its operands is invertible.
|
|
// FIXME: InstCombineInverter? But how to connect Inverter and Negator?
|
|
if (auto *C = dyn_cast<Constant>(I->getOperand(1))) {
|
|
Value *Xor = Builder.CreateXor(I->getOperand(0), ConstantExpr::getNot(C));
|
|
return Builder.CreateAdd(Xor, ConstantInt::get(Xor->getType(), 1),
|
|
I->getName() + ".neg");
|
|
}
|
|
return nullptr;
|
|
case Instruction::Mul: {
|
|
// `mul` is negatible if one of its operands is negatible.
|
|
Value *NegatedOp, *OtherOp;
|
|
// First try the second operand, in case it's a constant it will be best to
|
|
// just invert it instead of sinking the `neg` deeper.
|
|
if (Value *NegOp1 = visit(I->getOperand(1), Depth + 1)) {
|
|
NegatedOp = NegOp1;
|
|
OtherOp = I->getOperand(0);
|
|
} else if (Value *NegOp0 = visit(I->getOperand(0), Depth + 1)) {
|
|
NegatedOp = NegOp0;
|
|
OtherOp = I->getOperand(1);
|
|
} else
|
|
// Can't negate either of them.
|
|
return nullptr;
|
|
return Builder.CreateMul(NegatedOp, OtherOp, I->getName() + ".neg");
|
|
}
|
|
default:
|
|
return nullptr; // Don't know, likely not negatible for free.
|
|
}
|
|
|
|
llvm_unreachable("Can't get here. We always return from switch.");
|
|
}
|
|
|
|
LLVM_NODISCARD Optional<Negator::Result> Negator::run(Value *Root) {
|
|
Value *Negated = visit(Root, /*Depth=*/0);
|
|
if (!Negated) {
|
|
// We must cleanup newly-inserted instructions, to avoid any potential
|
|
// endless combine looping.
|
|
llvm::for_each(llvm::reverse(NewInstructions),
|
|
[&](Instruction *I) { I->eraseFromParent(); });
|
|
return llvm::None;
|
|
}
|
|
return std::make_pair(ArrayRef<Instruction *>(NewInstructions), Negated);
|
|
}
|
|
|
|
LLVM_NODISCARD Value *Negator::Negate(bool LHSIsZero, Value *Root,
|
|
InstCombiner &IC) {
|
|
++NegatorTotalNegationsAttempted;
|
|
LLVM_DEBUG(dbgs() << "Negator: attempting to sink negation into " << *Root
|
|
<< "\n");
|
|
|
|
if (!NegatorEnabled || !DebugCounter::shouldExecute(NegatorCounter))
|
|
return nullptr;
|
|
|
|
Negator N(Root->getContext(), IC.getDataLayout(), IC.getAssumptionCache(),
|
|
IC.getDominatorTree(), LHSIsZero);
|
|
Optional<Result> Res = N.run(Root);
|
|
if (!Res) { // Negation failed.
|
|
LLVM_DEBUG(dbgs() << "Negator: failed to sink negation into " << *Root
|
|
<< "\n");
|
|
return nullptr;
|
|
}
|
|
|
|
LLVM_DEBUG(dbgs() << "Negator: successfully sunk negation into " << *Root
|
|
<< "\n NEW: " << *Res->second << "\n");
|
|
++NegatorNumTreesNegated;
|
|
|
|
// We must temporarily unset the 'current' insertion point and DebugLoc of the
|
|
// InstCombine's IRBuilder so that it won't interfere with the ones we have
|
|
// already specified when producing negated instructions.
|
|
InstCombiner::BuilderTy::InsertPointGuard Guard(IC.Builder);
|
|
IC.Builder.ClearInsertionPoint();
|
|
IC.Builder.SetCurrentDebugLocation(DebugLoc());
|
|
|
|
// And finally, we must add newly-created instructions into the InstCombine's
|
|
// worklist (in a proper order!) so it can attempt to combine them.
|
|
LLVM_DEBUG(dbgs() << "Negator: Propagating " << Res->first.size()
|
|
<< " instrs to InstCombine\n");
|
|
NegatorMaxInstructionsCreated.updateMax(Res->first.size());
|
|
NegatorNumInstructionsNegatedSuccess += Res->first.size();
|
|
|
|
// They are in def-use order, so nothing fancy, just insert them in order.
|
|
llvm::for_each(Res->first,
|
|
[&](Instruction *I) { IC.Builder.Insert(I, I->getName()); });
|
|
|
|
// And return the new root.
|
|
return Res->second;
|
|
}
|