llvm-project/lld/lib/Core/NativeWriter.cpp

556 lines
20 KiB
C++

//===- Core/NativeWriter.cpp - Creates a native object file ---------------===//
//
// The LLVM Linker
//
// This file is distributed under the University of Illinois Open Source
// License. See LICENSE.TXT for details.
//
//===----------------------------------------------------------------------===//
#include "lld/Core/NativeWriter.h"
#include "NativeFileFormat.h"
#include "lld/Core/File.h"
#include "llvm/ADT/ArrayRef.h"
#include "llvm/ADT/DenseMap.h"
#include "llvm/ADT/StringRef.h"
#include <vector>
namespace lld {
///
/// Class for writing native object files.
///
class NativeWriter {
public:
/// construct writer for an lld::File object
NativeWriter(const lld::File& file) : _file(file) {
// reserve first byte for unnamed atoms
_stringPool.push_back('\0');
// visit all atoms
for ( const DefinedAtom *defAtom : file.defined() ) {
this->addIVarsForDefinedAtom(*defAtom);
}
for ( const UndefinedAtom *undefAtom : file.undefined() ) {
this->addIVarsForUndefinedAtom(*undefAtom);
}
for ( const SharedLibraryAtom *shlibAtom : file.sharedLibrary() ) {
this->addIVarsForSharedLibraryAtom(*shlibAtom);
}
for ( const AbsoluteAtom *absAtom : file.absolute() ) {
this->addIVarsForAbsoluteAtom(*absAtom);
}
// construct file header based on atom information accumulated
makeHeader();
}
// write the lld::File in native format to the specified stream
void write(raw_ostream &out) {
assert( out.tell() == 0 );
out.write((char*)_headerBuffer, _headerBufferSize);
if (!_definedAtomIvars.empty()) {
assert( out.tell() == findChunk(NCS_DefinedAtomsV1).fileOffset );
out.write((char*)&_definedAtomIvars[0],
_definedAtomIvars.size()*sizeof(NativeDefinedAtomIvarsV1));
}
if (!_attributes.empty()) {
assert( out.tell() == findChunk(NCS_AttributesArrayV1).fileOffset );
out.write((char*)&_attributes[0],
_attributes.size()*sizeof(NativeAtomAttributesV1));
}
if ( !_undefinedAtomIvars.empty() ) {
assert( out.tell() == findChunk(NCS_UndefinedAtomsV1).fileOffset );
out.write((char*)&_undefinedAtomIvars[0],
_undefinedAtomIvars.size()*sizeof(NativeUndefinedAtomIvarsV1));
}
if ( !_sharedLibraryAtomIvars.empty() ) {
assert( out.tell() == findChunk(NCS_SharedLibraryAtomsV1).fileOffset );
out.write((char*)&_sharedLibraryAtomIvars[0],
_sharedLibraryAtomIvars.size()
* sizeof(NativeSharedLibraryAtomIvarsV1));
}
if ( !_absoluteAtomIvars.empty() ) {
assert( out.tell() == findChunk(NCS_AbsoluteAtomsV1).fileOffset );
out.write((char*)&_absoluteAtomIvars[0],
_absoluteAtomIvars.size()
* sizeof(NativeAbsoluteAtomIvarsV1));
}
if (!_stringPool.empty()) {
assert( out.tell() == findChunk(NCS_Strings).fileOffset );
out.write(&_stringPool[0], _stringPool.size());
}
if ( !_references.empty() ) {
assert( out.tell() == findChunk(NCS_ReferencesArrayV1).fileOffset );
out.write((char*)&_references[0],
_references.size()*sizeof(NativeReferenceIvarsV1));
}
if ( !_targetsTableIndex.empty() ) {
assert( out.tell() == findChunk(NCS_TargetsTable).fileOffset );
writeTargetTable(out);
}
if ( !_addendsTableIndex.empty() ) {
assert( out.tell() == findChunk(NCS_AddendsTable).fileOffset );
writeAddendTable(out);
}
if (!_contentPool.empty()) {
assert( out.tell() == findChunk(NCS_Content).fileOffset );
out.write((char*)&_contentPool[0], _contentPool.size());
}
}
private:
void addIVarsForDefinedAtom(const DefinedAtom& atom) {
_definedAtomIndex[&atom] = _definedAtomIvars.size();
NativeDefinedAtomIvarsV1 ivar;
unsigned refsCount;
ivar.nameOffset = getNameOffset(atom);
ivar.attributesOffset = getAttributeOffset(atom);
ivar.referencesStartIndex = getReferencesIndex(atom, refsCount);
ivar.referencesCount = refsCount;
ivar.contentOffset = getContentOffset(atom);
ivar.contentSize = atom.size();
_definedAtomIvars.push_back(ivar);
}
void addIVarsForUndefinedAtom(const UndefinedAtom& atom) {
_undefinedAtomIndex[&atom] = _undefinedAtomIvars.size();
NativeUndefinedAtomIvarsV1 ivar;
ivar.nameOffset = getNameOffset(atom);
ivar.flags = (atom.canBeNull() & 0x03);
_undefinedAtomIvars.push_back(ivar);
}
void addIVarsForSharedLibraryAtom(const SharedLibraryAtom& atom) {
_sharedLibraryAtomIndex[&atom] = _sharedLibraryAtomIvars.size();
NativeSharedLibraryAtomIvarsV1 ivar;
ivar.nameOffset = getNameOffset(atom);
ivar.loadNameOffset = getSharedLibraryNameOffset(atom.loadName());
ivar.flags = atom.canBeNullAtRuntime();
_sharedLibraryAtomIvars.push_back(ivar);
}
void addIVarsForAbsoluteAtom(const AbsoluteAtom& atom) {
_absoluteAtomIndex[&atom] = _absoluteAtomIvars.size();
NativeAbsoluteAtomIvarsV1 ivar;
ivar.nameOffset = getNameOffset(atom);
ivar.reserved = 0;
ivar.value = atom.value();
_absoluteAtomIvars.push_back(ivar);
}
// fill out native file header and chunk directory
void makeHeader() {
const bool hasDefines = !_definedAtomIvars.empty();
const bool hasUndefines = !_undefinedAtomIvars.empty();
const bool hasSharedLibraries = !_sharedLibraryAtomIvars.empty();
const bool hasAbsolutes = !_absoluteAtomIvars.empty();
const bool hasReferences = !_references.empty();
const bool hasTargetsTable = !_targetsTableIndex.empty();
const bool hasAddendTable = !_addendsTableIndex.empty();
const bool hasContent = !_contentPool.empty();
int chunkCount = 1; // always have string pool chunk
if ( hasDefines ) chunkCount += 2;
if ( hasUndefines ) ++chunkCount;
if ( hasSharedLibraries ) ++chunkCount;
if ( hasAbsolutes ) ++chunkCount;
if ( hasReferences ) ++chunkCount;
if ( hasTargetsTable ) ++chunkCount;
if ( hasAddendTable ) ++chunkCount;
if ( hasContent ) ++chunkCount;
_headerBufferSize = sizeof(NativeFileHeader)
+ chunkCount*sizeof(NativeChunk);
_headerBuffer = reinterpret_cast<NativeFileHeader*>
(operator new(_headerBufferSize, std::nothrow));
NativeChunk *chunks =
reinterpret_cast<NativeChunk*>(reinterpret_cast<char*>(_headerBuffer)
+ sizeof(NativeFileHeader));
memcpy(_headerBuffer->magic, NATIVE_FILE_HEADER_MAGIC, 16);
_headerBuffer->endian = NFH_LittleEndian;
_headerBuffer->architecture = 0;
_headerBuffer->fileSize = 0;
_headerBuffer->chunkCount = chunkCount;
// create chunk for defined atom ivar array
int nextIndex = 0;
uint32_t nextFileOffset = _headerBufferSize;
if ( hasDefines ) {
NativeChunk& chd = chunks[nextIndex++];
chd.signature = NCS_DefinedAtomsV1;
chd.fileOffset = nextFileOffset;
chd.fileSize = _definedAtomIvars.size()*sizeof(NativeDefinedAtomIvarsV1);
chd.elementCount = _definedAtomIvars.size();
nextFileOffset = chd.fileOffset + chd.fileSize;
// create chunk for attributes
NativeChunk& cha = chunks[nextIndex++];
cha.signature = NCS_AttributesArrayV1;
cha.fileOffset = nextFileOffset;
cha.fileSize = _attributes.size()*sizeof(NativeAtomAttributesV1);
cha.elementCount = _attributes.size();
nextFileOffset = cha.fileOffset + cha.fileSize;
}
// create chunk for undefined atom array
if ( hasUndefines ) {
NativeChunk& chu = chunks[nextIndex++];
chu.signature = NCS_UndefinedAtomsV1;
chu.fileOffset = nextFileOffset;
chu.fileSize = _undefinedAtomIvars.size() *
sizeof(NativeUndefinedAtomIvarsV1);
chu.elementCount = _undefinedAtomIvars.size();
nextFileOffset = chu.fileOffset + chu.fileSize;
}
// create chunk for shared library atom array
if ( hasSharedLibraries ) {
NativeChunk& chsl = chunks[nextIndex++];
chsl.signature = NCS_SharedLibraryAtomsV1;
chsl.fileOffset = nextFileOffset;
chsl.fileSize = _sharedLibraryAtomIvars.size() *
sizeof(NativeSharedLibraryAtomIvarsV1);
chsl.elementCount = _sharedLibraryAtomIvars.size();
nextFileOffset = chsl.fileOffset + chsl.fileSize;
}
// create chunk for shared library atom array
if ( hasAbsolutes ) {
NativeChunk& chsl = chunks[nextIndex++];
chsl.signature = NCS_AbsoluteAtomsV1;
chsl.fileOffset = nextFileOffset;
chsl.fileSize = _absoluteAtomIvars.size() *
sizeof(NativeAbsoluteAtomIvarsV1);
chsl.elementCount = _absoluteAtomIvars.size();
nextFileOffset = chsl.fileOffset + chsl.fileSize;
}
// create chunk for symbol strings
// pad end of string pool to 4-bytes
while ( (_stringPool.size() % 4) != 0 )
_stringPool.push_back('\0');
NativeChunk& chs = chunks[nextIndex++];
chs.signature = NCS_Strings;
chs.fileOffset = nextFileOffset;
chs.fileSize = _stringPool.size();
chs.elementCount = _stringPool.size();
nextFileOffset = chs.fileOffset + chs.fileSize;
// create chunk for references
if ( hasReferences ) {
NativeChunk& chr = chunks[nextIndex++];
chr.signature = NCS_ReferencesArrayV1;
chr.fileOffset = nextFileOffset;
chr.fileSize = _references.size() * sizeof(NativeReferenceIvarsV1);
chr.elementCount = _references.size();
nextFileOffset = chr.fileOffset + chr.fileSize;
}
// create chunk for target table
if ( hasTargetsTable ) {
NativeChunk& cht = chunks[nextIndex++];
cht.signature = NCS_TargetsTable;
cht.fileOffset = nextFileOffset;
cht.fileSize = _targetsTableIndex.size() * sizeof(uint32_t);
cht.elementCount = _targetsTableIndex.size();
nextFileOffset = cht.fileOffset + cht.fileSize;
}
// create chunk for addend table
if ( hasAddendTable ) {
NativeChunk& chad = chunks[nextIndex++];
chad.signature = NCS_AddendsTable;
chad.fileOffset = nextFileOffset;
chad.fileSize = _addendsTableIndex.size() * sizeof(Reference::Addend);
chad.elementCount = _addendsTableIndex.size();
nextFileOffset = chad.fileOffset + chad.fileSize;
}
// create chunk for content
if ( hasContent ) {
NativeChunk& chc = chunks[nextIndex++];
chc.signature = NCS_Content;
chc.fileOffset = nextFileOffset;
chc.fileSize = _contentPool.size();
chc.elementCount = _contentPool.size();
nextFileOffset = chc.fileOffset + chc.fileSize;
}
_headerBuffer->fileSize = nextFileOffset;
}
// scan header to find particular chunk
NativeChunk& findChunk(uint32_t signature) {
const uint32_t chunkCount = _headerBuffer->chunkCount;
NativeChunk* chunks =
reinterpret_cast<NativeChunk*>(reinterpret_cast<char*>(_headerBuffer)
+ sizeof(NativeFileHeader));
for (uint32_t i=0; i < chunkCount; ++i) {
if ( chunks[i].signature == signature )
return chunks[i];
}
assert(0 && "findChunk() signature not found");
static NativeChunk x; return x; // suppress warning
}
// append atom name to string pool and return offset
uint32_t getNameOffset(const Atom& atom) {
return this->getNameOffset(atom.name());
}
// check if name is already in pool or append and return offset
uint32_t getSharedLibraryNameOffset(StringRef name) {
assert( ! name.empty() );
// look to see if this library name was used by another atom
for(NameToOffsetVector::iterator it = _sharedLibraryNames.begin();
it != _sharedLibraryNames.end(); ++it) {
if ( name.equals(it->first) )
return it->second;
}
// first use of this library name
uint32_t result = this->getNameOffset(name);
_sharedLibraryNames.push_back(std::make_pair(name, result));
return result;
}
// append atom name to string pool and return offset
uint32_t getNameOffset(StringRef name) {
if ( name.empty() )
return 0;
uint32_t result = _stringPool.size();
_stringPool.insert(_stringPool.end(), name.begin(), name.end());
_stringPool.push_back(0);
return result;
}
// append atom cotent to content pool and return offset
uint32_t getContentOffset(const class DefinedAtom& atom) {
if ( atom.contentType() == DefinedAtom::typeZeroFill )
return 0;
uint32_t result = _contentPool.size();
ArrayRef<uint8_t> cont = atom.rawContent();
_contentPool.insert(_contentPool.end(), cont.begin(), cont.end());
return result;
}
// reuse existing attributes entry or create a new one and return offet
uint32_t getAttributeOffset(const class DefinedAtom& atom) {
NativeAtomAttributesV1 attrs;
computeAttributesV1(atom, attrs);
for(unsigned int i=0; i < _attributes.size(); ++i) {
if ( !memcmp(&_attributes[i], &attrs, sizeof(NativeAtomAttributesV1)) ) {
// found that this set of attributes already used, so re-use
return i * sizeof(NativeAtomAttributesV1);
}
}
// append new attribute set to end
uint32_t result = _attributes.size() * sizeof(NativeAtomAttributesV1);
_attributes.push_back(attrs);
return result;
}
uint32_t sectionNameOffset(const class DefinedAtom& atom) {
// if section based on content, then no custom section name available
if ( atom.sectionChoice() == DefinedAtom::sectionBasedOnContent )
return 0;
StringRef name = atom.customSectionName();
assert( ! name.empty() );
// look to see if this section name was used by another atom
for(NameToOffsetVector::iterator it=_sectionNames.begin();
it != _sectionNames.end(); ++it) {
if ( name.equals(it->first) )
return it->second;
}
// first use of this section name
uint32_t result = this->getNameOffset(name);
_sectionNames.push_back(std::make_pair(name, result));
return result;
}
void computeAttributesV1(const class DefinedAtom& atom,
NativeAtomAttributesV1& attrs) {
attrs.sectionNameOffset = sectionNameOffset(atom);
attrs.align2 = atom.alignment().powerOf2;
attrs.alignModulus = atom.alignment().modulus;
attrs.scope = atom.scope();
attrs.interposable = atom.interposable();
attrs.merge = atom.merge();
attrs.contentType = atom.contentType();
attrs.sectionChoice = atom.sectionChoice();
attrs.deadStrip = atom.deadStrip();
attrs.permissions = atom.permissions();
//attrs.thumb = atom.isThumb();
attrs.alias = atom.isAlias();
}
// add references for this atom in a contiguous block in NCS_ReferencesArrayV1
uint32_t getReferencesIndex(const DefinedAtom& atom, unsigned& count) {
count = 0;
size_t startRefSize = _references.size();
uint32_t result = startRefSize;
for (const Reference *ref : atom) {
NativeReferenceIvarsV1 nref;
nref.offsetInAtom = ref->offsetInAtom();
nref.kind = ref->kind();
nref.targetIndex = this->getTargetIndex(ref->target());
nref.addendIndex = this->getAddendIndex(ref->addend());
_references.push_back(nref);
}
count = _references.size() - startRefSize;
if ( count == 0 )
return 0;
else
return result;
}
uint32_t getTargetIndex(const Atom* target) {
if ( target == nullptr )
return NativeReferenceIvarsV1::noTarget;
TargetToIndex::const_iterator pos = _targetsTableIndex.find(target);
if ( pos != _targetsTableIndex.end() ) {
return pos->second;
}
uint32_t result = _targetsTableIndex.size();
_targetsTableIndex[target] = result;
return result;
}
void writeTargetTable(raw_ostream &out) {
// Build table of target indexes
uint32_t maxTargetIndex = _targetsTableIndex.size();
assert(maxTargetIndex > 0);
std::vector<uint32_t> targetIndexes(maxTargetIndex);
for (TargetToIndex::iterator it = _targetsTableIndex.begin();
it != _targetsTableIndex.end(); ++it) {
const Atom* atom = it->first;
uint32_t targetIndex = it->second;
assert(targetIndex < maxTargetIndex);
uint32_t atomIndex = 0;
TargetToIndex::iterator pos = _definedAtomIndex.find(atom);
if ( pos != _definedAtomIndex.end() ) {
atomIndex = pos->second;
}
else {
pos = _undefinedAtomIndex.find(atom);
if ( pos != _undefinedAtomIndex.end() ) {
atomIndex = pos->second + _definedAtomIvars.size();
}
else {
pos = _sharedLibraryAtomIndex.find(atom);
if ( pos != _sharedLibraryAtomIndex.end() ) {
assert(pos != _sharedLibraryAtomIndex.end());
atomIndex = pos->second
+ _definedAtomIvars.size()
+ _undefinedAtomIndex.size();
}
else {
pos = _absoluteAtomIndex.find(atom);
assert(pos != _absoluteAtomIndex.end());
atomIndex = pos->second
+ _definedAtomIvars.size()
+ _undefinedAtomIndex.size()
+ _sharedLibraryAtomIndex.size();
}
}
}
targetIndexes[targetIndex] = atomIndex;
}
// write table
out.write((char*)&targetIndexes[0], maxTargetIndex*sizeof(uint32_t));
}
uint32_t getAddendIndex(Reference::Addend addend) {
if ( addend == 0 )
return 0; // addend index zero is used to mean "no addend"
AddendToIndex::const_iterator pos = _addendsTableIndex.find(addend);
if ( pos != _addendsTableIndex.end() ) {
return pos->second;
}
uint32_t result = _addendsTableIndex.size() + 1; // one-based index
_addendsTableIndex[addend] = result;
return result;
}
void writeAddendTable(raw_ostream &out) {
// Build table of addends
uint32_t maxAddendIndex = _addendsTableIndex.size();
std::vector<Reference::Addend> addends(maxAddendIndex);
for (AddendToIndex::iterator it = _addendsTableIndex.begin();
it != _addendsTableIndex.end(); ++it) {
Reference::Addend addend = it->first;
uint32_t index = it->second;
assert(index <= maxAddendIndex);
addends[index-1] = addend;
}
// write table
out.write((char*)&addends[0], maxAddendIndex*sizeof(Reference::Addend));
}
typedef std::vector<std::pair<StringRef, uint32_t> > NameToOffsetVector;
typedef llvm::DenseMap<const Atom*, uint32_t> TargetToIndex;
typedef llvm::DenseMap<Reference::Addend, uint32_t> AddendToIndex;
const lld::File& _file;
NativeFileHeader* _headerBuffer;
size_t _headerBufferSize;
std::vector<char> _stringPool;
std::vector<uint8_t> _contentPool;
std::vector<NativeDefinedAtomIvarsV1> _definedAtomIvars;
std::vector<NativeAtomAttributesV1> _attributes;
std::vector<NativeUndefinedAtomIvarsV1> _undefinedAtomIvars;
std::vector<NativeSharedLibraryAtomIvarsV1> _sharedLibraryAtomIvars;
std::vector<NativeAbsoluteAtomIvarsV1> _absoluteAtomIvars;
std::vector<NativeReferenceIvarsV1> _references;
TargetToIndex _targetsTableIndex;
TargetToIndex _definedAtomIndex;
TargetToIndex _undefinedAtomIndex;
TargetToIndex _sharedLibraryAtomIndex;
TargetToIndex _absoluteAtomIndex;
AddendToIndex _addendsTableIndex;
NameToOffsetVector _sectionNames;
NameToOffsetVector _sharedLibraryNames;
};
/// writeNativeObjectFile - writes the lld::File object in native object
/// file format to the specified stream.
int writeNativeObjectFile(const File &file, raw_ostream &out) {
NativeWriter writer(file);
writer.write(out);
return 0;
}
/// writeNativeObjectFile - writes the lld::File object in native object
/// file format to the specified file path.
int writeNativeObjectFile(const File &file, StringRef path) {
std::string errorInfo;
llvm::raw_fd_ostream out( path.data()
, errorInfo
, llvm::raw_fd_ostream::F_Binary);
if (!errorInfo.empty())
return -1;
return writeNativeObjectFile(file, out);
}
} // namespace lld